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ABSTRACT In recent years, an alarming number of natural disasters, specifically hurricanes and floods have
affected the United States. Flooding is a global crisis, however we still do not have an automated approach
for real-time flood risk detection and mitigation. Detecting inundation in urban areas and road segments is
crucial for vehicle routing and traffic management. Unlike remote sensing images that have been used in past
studies, it is better to mine social media data and geo-tagged images or videos for flood estimation in near
real time. In this paper, multimedia content was collected from social media streaming services, primarily
Twitter for analysis. We propose DX-FloodLine, an interpretable, intelligent, multi-stage, end-to-end, deep
neural network-based pipeline to classify near real time emerging flood occurrence from images and detect
submerged objects and pedestrians around flooded regions. We introduce a novel hybrid neural network
for flood detection, a VGG16(Visual Geometry Group 16-layer model)-LSTM (Long short term memory)
ensemble. Our novel ensemble architecture recognizes flood in images in the first stage of pipeline, to be
later passed on to second stage for object detection. We applied interpretable models to flood classifiers
to identify model shortcomings and then incrementally train for continuous improvement. DX-FloodLine
was deployed and tested on unseen and near real time streamed flood images. Our VGG16-LSTM flood
recognition model achieved around 90% validation accuracy on multiple benchmark studies and surpassed
other competitors by a good margin.

INDEX TERMS Flood detection, model uncertainty, object detection, social media data, VGG16-LSTM.

I. INTRODUCTION
Flooding events can cause loss of life and significant
destruction to properties and critical infrastructure. These
effects are often easily recognized and frequently reported in
the media. Recently, natural flood surveillance and detection
has been a prominent research interest. Efficient and accurate
flood occurrence detection is critical for authorities to
control floods and manage flooding impacts. Furthermore,
it is crucial to alert authorities and first responders about
at-risk areas to flooding for real time decision making
and planning. Various methods have been used to monitor
and estimate flood magnitude, and a recently popularized
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approach for flood monitoring and assessment is the use of
crowd sourced data. Multimedia images and videos from
news outlets, and social media posts with geo-location tags,
known as Volunteered Geographic Information (VGI), can
provide valuable insights into flood situations occurring
in real time. Extracting publicly shared content and user
metadata, neighborhoods can be narrowed down to precise
locations where the inundation is impending. However,
labeling and extracting the voluminous and unfiltered images
retrieved continuously through online sources, reminds of
the defining factors of working with big data, i.e volume,
velocity and variety. Deep Learning (DL) models such as
the Convolutional Neural Network (CNN) [1] have proved to
be proficient in extracting meaningful features and detecting
flood labels accurately from the massive number of social

110644

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6602-6305
https://orcid.org/0000-0003-1494-6481
https://orcid.org/0000-0001-7282-2503


N. Humaira et al.: DX-FloodLine: End-To-End Deep Explainable Pipeline

media data generated in real time or after the event. As there
are different combinations of layers and structure of neural
networks for different tasks, it makes sense to incorporate
the best group of networks in a pipeline to serve the
purpose. An automated pipeline that is equipped with big
data analytics, data engineering and deep neural network
to assess risk concerning locations and livelihood based on
tweets collected near real time flood situations, certainly
would benefit both stakeholders and civilians. We identified
few research gaps in prior flood detection pipelines that are
relevant to the objective of this paper. Donratanapat et al.
[2] proposed flood informatics pipeline named FAIS, Flood
analytics information system, which analyzes data collected
during historical and real time events, through web platform,
river level and discharge from USGS (United states geolog-
ical survey) and tweets from Twitter, and visualizes flood
impacted areas in a web application. The FAIS application
detected roads, bridges fromflooded areas and provided flood
frequencymetrics with peak prediction. Techniques proposed
by FAIS acted as starting point to develop our pipeline where
we sourced images from web and social media platforms
to perform image analysis to assess flood risks. Unlike
FAIS, we split the flood recognition task and flooded scene
object detection task into two separate modules, and provide
near real time inference with model incrementally trained
with incoming data. To improve the model performance,
we added interpretable attribute visualization methods in
the pipeline. In [3], Baker et al. presents similar pipeline
linking real-time river level information and social media
to aid national level flood management for Britain. The
major difference between this pipeline and DX-Floodine
is that they focused on analyzing and classifying tweets
with natural language processing tools and did not utilize
multimedia images for visual assessment of flood situa-
tions. Focusing on these shortcomings, this paper proposes
DX-FloodLine, an explainable, deep learning based multi-
stage, end-to-end pipeline to estimate real time emerging
flood severity and detect objects submerged in flooded areas.
Multiple modules embedded in the proposed pipeline are
designated for specific tasks that attempt to address several
limitations of above mentioned prior works. Overall, the
objectives of this paper are to: (i) present an end-to-end
flood monitoring pipeline to deliver near real-time response,
(ii) propose a novel hybrid ensemble method called the
VGG16-LSTM for flood image classification, (ii) construct
a custom labeled image database consisting more than
9000 images in addition to using MNIST [4], CIFAR-10
[5] and STL-10 [6] for evaluation, (iii) implement an
ensemble of object detection models to detect various
categories of roadside and urban objects in the images
such as vehicles, pedestrians, buildings, bridges, etc.,
(iv) offer clarity and explainability using attribute-based
methods applied on the flood image classification model
when the model outcomes veer off the expected direction.
This paper is organized as follows: Section II describes
related work. In section III, a detailed description of the

end-to-end pipeline, its workflow, and the structure of
individual modules are discussed. SectionIV presents the
performance evaluation of our flood event detection architec-
ture against benchmark datasets, urban flooded scene object
detection, interpretable visualization of classifier attributes,
and uncertainty assessment of trained models. Finally, the
discussion and future work of this study is presented in
section V.

II. RELATED WORK
In order to create a baseline of systems closest to the desired
pipeline, we referenced publications focused on urban area
flooding [7], near real time solutions [8], social media data
analysis for flood informatics [9], floodwater level estimation
[10], [11], [12] or pipeline processes including retrieval and
detection [2], [13]. We included references that was used as
baseline and state-of-the-art methods in the development of
DX-Floodline. As our pipeline has multiple modules, it was
crucial to look into frameworks for social media data based
flood analytics, flood recognition from image attributes,
textual and geographical information. Moumtzidou et al. [7]
proposed a framework that streams real time social media
data for relevant contents using which the model analyzes
both visual and textual features to detect flooding events.
The support vector machine classifier learned visual features
whereas the random forest classifier was trained on textual
features. Classifier results were evaluated in dual mode,
once sequentially and then once simultaneously. In the first
case, textual classifier results were examined after visual
classifier results to determine event relevancy, while in the
second case both classifiers produced the same outcome
at the same time. Instead of visual features, Bruijin et al.
[9] extracted contextual hydrological information such as
precipitation, rainfall from the timestamp and location of
the tweets and both hydrological and tweet text features
were passed through a multi-modal neural network to finally
reach a uniform decision. Fitrianah et al. [8] extracted spatial
information from user updates on a flood event and put the
location coordinates on map near real time to communicate
developing flood situations to users. Lin et al. [14] presented
image-based volunteered geographic information (VGI) that
were obtained from smartphone cameras to determine the
flood water levels based on photogrammetric principles.
Random forest classifier model was applied to highlight
flooding regions and Canny edge detection method was used
to detect the flooding line of the classified image based VGI.
Both Feng et al. [15] and Quan et al. [16] predicted flood
level by estimating human activity on water related scenes
crawled from social media. Human pose information was
gleaned using a binary mask processed throughMask-RCNN
by He et al. [17]. Chawdhury et al. [18] applied a similar
mask based detection approach by tracking submerged
portion of objects in images taken from social media in
real time. Features were extracted by combining water level
regression with a relative ranking of image as pairs. Water
level regression involved supervised learning while pairwise
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water level ranking was weakly supervised. Singh et al.
[19] classified localized flood related tweets using natural
language model based transfer learning. Opella et al. [20]
primarily used high resolution topological spatial imagery
and other geographic information such as wetness index,
contour details, soil quality to map potential flood prone
areas using a combination of convolutional neural network
and support vector machine. Lohumi et al. [21] focused
on gathering short videos that captured flooding incidents
and categorized them based on flood severity and damage
inflicted on local infrastructure. Base CNN model extracts
fixed length representation from video frames and a GRU
(Gated Recurrent Unit) encodes the dependencies from the
sequences of those representations at different time steps.
Final prediction determines the severity of the flood.

III. DX-FLOODLINE
In the proposed pipeline there are two main phases, one for
training and the other for creating the inference in real time.
Within training phase, there are two sub-task modules, one
for flood event classification and another for scene object
detection. For the flood event classification task, we proposed
a hybrid VGG16-LSTM ensemble (VGG 16-Long Short-
Term Memory) model to classify sequences of frames from
archived images and videos on the relevance of flood event.
After this task, images would be classified as relevant or
not relevant to developing flood situations and propagated as
input to the object detection task. Object detection models
predict the chosen categories of objects found in the image
along with prediction confidence score. We focused on
detecting pedestrians and common objects such as traffic
signs and vehicles or houses found along roads and highways.
Further augmentation on the detection model segments
irregular shaped object such as bridge and flyover from the
background and estimates bounding area surrounding those
objects. The inference module is set to infer predictions on
unseen flood images by deploying saved models from the
training phase. For inference purpose, multimedia images
and videos obtained through any web streaming application
programming interface (API) or social media for particular
locations were propagated through the pipeline. Final pre-
diction results are displayed to the user with a bounding
box around objects and corresponding confidence score on
the predicted object label. Fig. 1 illustrated a schematic
workflow of our proposed DX-FloodLine. As shown, images
were collected and aggregated from multiple source and fed
into the pipeline. We evaluated modeling performances on
data collected from major hurricane events in the Southern
USA, i.e., Hurricanes Harvey and Florence, that occurred in
2017 and 2018.

A. FLOOD EVENT CLASSIFICATION
Two categories of ensemble neural architecture with different
predictor network were created for the flood classification
task. In the first category, pre-trained convolutional networks
were utilized as feature extractors and multi-layer fully

connected network as predictors. For the second category,
same feature extractor was connected to the LSTM subnet-
work so it can interpret those features as a sequence across
consecutive time steps. VGG-Net [22] achieved state-of-
the-art image classification results in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [23]. In this
research, we selected a 16 layers version of VGG-net pre-
trained on the ImageNet dataset as feature extractor. Fine
tuning of pre-trained network needs to be balanced properly
to avoid overfitting or missing useful information. The
lower layers in convolutional network extract generalized
features while upper layers extract specific features. From the
convolutional base of the VGG-16 net, we kept most lower
layers up to the final maxpooling layers frozen and trained
upper layers. We maintained a small learning rate to decrease
the risk of losing knowledge previously learned by the model.
Predictor networks for first category are listed below:

• Fully Connected dense layers: We implemented a
stack of fully connected layers, followed by a softmax
activated layer [24] to output the probability distribution
over class labels and classifies the image to the most
probable class.

• Global average pooling:We replaced the dense layers
with a global average pooling (GAP) layer and kept
the softmax activated layer as it is. GAP layers are
similar to max pooling layer, but their usefulness lies in
their ability to reduce spatial dimensions and number of
parameters.

The second architecture was a hybrid combination where
we used a convolutional neural network as base for feature
extraction and recurrent upper layers. We started off with a
simple, two block convolutional base to see how it works
in tandem with the recurrent network. Each convolutional
block was followed by ReLu activation [25] and a max
pooling layer. ReLu activation has been used by many state-
of-the art such as [26]. Output of max pooling aggregates
the feature maps to be reshaped, and then transferred it to
the LSTM sub-network for modeling sequential variation of
image properties over time. Distinct characteristics of LSTM
network enables learning particular pattern observed over
successive periods of time. So, when all images in the set
are repeatedly processed and reshaped to flattened form,
resultant is set of spatial features over time which is to be
handled by the LSTM network. For this model we used
64 nodes for the LSTM layer construction. Alternatively we
considered GRU (Gated recurrent unit) for sub-network as
well, however the performance difference was nominal so we
kept LSTM network for simplicity. Finally, a flatten layer
and softmax layer ends as last layer to output classification
labels.We replaced abovementioned shallower convolutional
base with VGG-16 pre-trained on ImageNet while keeping
the recurrent LSTM subnetwork same. The pretrained
VGG16 base captured patterns in sequences of images from
developing flood videos which was learned through recurrent
LSTM layers over consecutive time steps. Proposed hybrid
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FIGURE 1. DX-FloodLine: near real time end-to-end flood detection pipeline with explainer module that discovers evidence of flooding and
submerged objects from images collected primarily from Twitter and web sources. Images are pooled based on their geographic location.
Training module is separated into flood event classification and flooded scene object detection task with intermediate explainer module.

VGG16-LSTM model is completely illustrated in Fig. 2.
We kept VGG-16 network layers frozen and only trained
LSTM layers.

L = Lcls + Lbox (1)

L({pi}, {ti}) =
1
Ncls

∑
i

Lcls(pi, p∗
i )

+
λ

Nbox

∑
i

p∗
i · Lsmooth

1 (ti − t∗i ) (2)

B. ROADSIDE SCENE OBJECT DETECTION
Next, we discuss the scene object detection task from
flood images which was developed using the Tensorflow
object detection API. We explored two state-of-the-art
CNN based framework for object detection, YOLO [27]
and Region proposal classification networks. While RPN
performs detection in two stages, extraction of the region
proposal and prediction on the region proposal on various
regions of the image, YOLO completes the prediction in one
pass. YOLO is considered to be faster and more accurate
which will benefit real time performance. Despite those
benefits, we employed RPN models for few reasons. Our
primary goal is to detect objects common in urban areas
e.g, vehicles, pedestrians, trees and properties like house,
bridge. Differences in object shapes, structures and properties
required specific consideration thus we chose two types

of models, the faster R-CNN [28] and the mask R-CNN
[17]. Both models use region proposal network for the first
stage to extract candidate bounding boxes around regions of
interest for each object in the image. Thus it was possible
to utilize RoI extraction phase between two RCNN models
in our pipeline to cover for all objects as an additional
benefit and reduced computational load. With Mask R-CNN,
it was possible to detect polygonal shaped objects like bridges
and buildings. In future, we plan to use shapes to estimate
the depth of submersion for the infrastructure. TensorFlow
API offers building blocks to create custom object detection
models, with the key notion of objects being recognized as
regional bounding box out of the whole image. Thus, input
images need to have a corresponding annotation file that have
information on respective location of object, category and so
on. Each object category is given a label to be an integer
encoded. All images, annotations, mapped category label
are serialized into TensorFlow record format. TensorFlow
requires training jobs to be configured properly and satisfy
some existing conditions. Those requirements include choice
of a pre-trained model to fine tune a model selected from
available models, options to resize images, regularize and
set batch size to match the memory available for execution.
Tensorflow object detection model zoo provides a wide
collection of pretrained R-CNNmodels with different ResNet
backbone trained on COCO 2017 dataset of images in
varying resolution. This factor also solidified our decision
for employing R-CNN based object detection models. Model
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FIGURE 2. Proposed hybrid VGG16-LSTM architecture for flood image classification. Light orange rectangular blocks in the lower layers
shows convolutional blocks with increasing kernel size (64,128,256,512), darker orange blocks are max-pooling layers. Final max-pooling
layer of the extraction base is connected to average pooling layer, then passed on to the LSTM layers and final classification layer.

results can be evaluated using detection evaluation metrics
used by the COCO object detection challenge [29]. Finally,
when training job was complete and evaluation seems
satisfactory, we exported the newly trained inference graph,
which was later used to perform the object detection during
run-time inference on unseen images. Ensemble of models
we applied for scene object detection are described in more
details as follows.

1) FASTER R-CNN:
Faster R-CNN [28]network belongs to region proposal-based
object detection algorithm family. This network can be
considered as an object detection pipeline where first stage,
region proposal network (RPN) generates candidate variable
sized bounding boxes or object RoI (region of interest)
proposals to be passed on to Fast R-CNN [30] for final
detection results in the second stage. Object bounding boxes
produced by RPN are also known as Anchors and they
are ranked by their likelihood of containing certain objects.
RPN attempts to correct bounding box prediction error by
localized regression which minimizes SSE loss as Lreg =∑

i∈{x,y,w,h}(ti − di(p))2 + λ∥w∥
2 where predicted bounding

box coordinates p = (px , py, pw, ph). Regressor learns
correction function di(p) where i ∈ {x, y,w, h} and target
function tx = (gx − px)/pw, ty = (gy − py)/ph, tw =

log(gw/pw), th = log(gh/ph). Fast-RCNN improves training
convergence speed by aggregating feature vectors from all
region proposals into one shared matrix. Now Faster RCNN
uses RPN for region proposal task and fast R-CNN for
object detection using those proposals. Optimization problem
changes to multi-task loss function as combination of the
losses of classification and bounding box regression as
defined in (1) and (2). Here Lcls is the log loss function

over two classes, as we can easily translate a multi-class
classification into a binary classification by predicting a
sample being a target object versus not. Lsmooth

1 is the smooth
L1 loss.Lcls is defined in (3):

Lcls(pi, p∗
i ) = −p∗

i log pi − (1 − p∗
i ) log(1 − pi) (3)

2) MASK R-CNN:
This algorithm by He et al. [17] extends Faster R-CNN
by adding parallel module for segmenting different object
instance as a mask from background while keeping the
original bounding box and class prediction module as it is.
Segmentation module matches objects by its mask shape and
other factors by pixel-to-pixel after region of interests (ROT)
have been identified by the bounding box regression module.
As there are multiple tasks being executed in parallel for
the second stage of Mask R-CNN, a multitask loss L =

Lcls + Lbox + Lmask. Lmask is the new loss which can be a
typical binary cross entropy loss. Mask segmentation module
encodes K number of binary masks, each of size m by m for
K number of classes to represent object’s spatial layout. This
module outputs of Km2 size and a sigmoid function applied
on top of pixels of this output.

C. INTERPRETATION OF FLOOD IMAGE CLASSIFICATION
THROUGH ATTRIBUTE VISUALIZATIONS
Deep neural models continue to be more complex and
less transparent behind the scenes and the outcome they
produce. Thus, model understanding became an active area of
innovation for practical intelligent systems deployed across
many industries. Attempt to explain a model’s decision can
be achieved by investigating input features that contribute
to certain decision. In our pipeline, we added interpretabil-
ity methods as intermediate phase after the flood event
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classifier and before the scene object detector. With attribute
visualization methods for interpretability, we discovered
image pixels around houses or cars submerged in water,
often influenced the model to classify it as flood relevant
image. In this phase, mis-classification were caught early
on and helped for model improvement intuitively. With
Captum [31] library for Pytorch, we used gradient based
attribution algorithms to understand and explain flood image
classification. Attribution algorithms used for this paper
were Saliency map, integrated gradients [32], Deep Lift
(Deep Lift Important Features) [33]. It can be noted that
assigning attribution scores to input features is something
all algorithms have in common. Sign of the attribution
score, positive and negative means whether a particular input
element contributed positively or negatively to the final
model prediction.

IV. EXPERIMENTS AND EVALUATION
As we built DX-FloodLine module by module, we continued
to run performance evaluation experiments for each module
in the pipeline. Integrated pipeline was also tested to
understand how all modules together perform for near real
time inference. In this section, we showcase the conducted
experiments, starting from data pre-processing and collection
to final object detection.

A. DATA COLLECTION
We sourced flooding images from Disaster Image Retrieval
Social Media (DIRSM) dataset that was published for
proceedings by MediaEval Benchmarking Initiative for
Multimedia Evaluation [34]. We also used Central European
Flood 2013 dataset [35], mined multimedia tweets, image
search engines (Google), and Github repositories to pro-
vide additional images from past flooding events. Publicly
available traffic cam images from SCDOT (South Carolina
Department of Transportation) were also included in the
set. These images were labeled manually as flood or
non-flood, based on discriminative features often present
in scenarios related to urban and inland flooding. The
criteria to differentiate between floods and heavy rains was
decided based on certain features such as water clogged
areas, submerged roads and buildings, cars, and humans.
Tweets were streamed using the Tweepy python library, API
version 1.1. We used developer credentials to authenticate
and access the tweets. Since the time of data collection,
Twitter API version 2.0 has been released while updating the
data access policy for academic researchers and developers.
The flexibility of our pipeline design ensures that we can
replace the tweepy data collection module scripts with
updated API methods without compromising the rest of the
modules’ stability. Twitter API queries were filtered with
geocode (i.e., latitude/longitude) of places within the US
with past and frequent flood occurrences. Gathering live
tweets real-time during flood or hurricane was difficult at
times due to the limited availability of historical tweets from
only past 7 days. Also only about 10-15% of the collected

FIGURE 3. Demonstration of image augmentation as (a) randomly
cropped and (b) random black patches overlaid.

tweets had images attached to them. Regular twitter users
shared inundated indoor scenes along with outdoor scenes,
while media photographers shared outdoor scenes. Thus we
broadened the search to archived tweets and grouped them by
flood or hurricane names or hashtags associated with disaster
such as road/bridge damage, shelter, emergency, evacuation.
Minimum of 1000 tweets each from several flood events were
collected which were filteredmanually based on the inclusion
of certain objects such as houses, cars, or trees, in water
bodies and inundation areas. To have balanced training set,
we included random non-flood images as well. Merging all
collected images, we have built more than 9000 flood event
images.

B. DATA PRE-PROCESSING AND AUGMENTATION
As images and videos were collected from various sources as
shown before, image enhancement methods were performed
to create uniform image feature distribution. Contrast of
the images and extracted video frames were improved with
adaptive gamma correction algorithm by Rahman et al.
[36], Cao et al. [37]. By varying the gamma value we
modulated the contrast for uneven brightness in images
and countered white exposure. We performed geometric
translation to images such as translation, rotation, and affine
transformation to incorporate variety. Other augmentations
were applied in the later stage of object detection model
training. Using Tensorflow object detection API, we applied
enhancements such as crop, padding, overlapping black
patches, horizontal flip, and rotation all in a randomized
manner. Fig. 3 demonstrates augmentation by crop in (a) and
overlaid black patches in (b). Doing so increased the number
of training images and prevented overfitting. As mentioned in
previous section, images for first phase of flood recognition
task were labeled as flood and non-flood, manually. Object
detection models based on region proposal network rely on
predetermined bounding boxes around objects of specific
categories to learn the features of objects and quality of
annotations. With incredible number of images in our dataset,
manual annotations were both time consuming and required
more attention to achieve precision since the number of
instances of objects in the images is quite large. Specially,
for polygonal shaped objects like bridges that needed to
annotated for Mask R-CNN to train, the level of precision
required was higher. To lessen the workload, we shifted
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FIGURE 4. Left image(a) is taken during Hurricane Florence, North
Carolina and the right(b) during Hurricane Harvey, Texas. Both images
contain people, vehicle, traffic sign, tree that are detected using
DX-FloodLine along with the confidence score of detection.

TABLE 1. Performance comparison: Flood event classification.

FIGURE 5. ROC-AUC curve comparison on all flood image classification
models, legend shows the area under each curve which puts VGG-LSTM
ahead of the rest of models.

some portion of object annotation task to pre-trained object
detection model from Tensorflow model zoo.

C. FLOOD CASE STUDIES
Two case studies are paramount for our study a) hurricane
Harvey and b) Hurricane Florence - both of them occurring
in the USA. Hurricane Harvey made landfall in Texas on
Aug. 25, 2017, as a Category 4 hurricane, that caused
unprecedented flooding around Houston, Texas. Around
September 14, 2018, Hurricane Florence made landfall near
Wilmington, North Carolina which led to record floods in
North and South Carolina. We used Hurricanes Harvey and
Florence driven flooding images for segmentation and flood
label detection. In fig. 4 we can see many objects detected
around flooded area caused by Hurricanes Florence (a) and
Harvey (b), respectively.

D. PREDICTION EVALUATION
The baseline of classification models for the flood event
classification task on images and corresponding performance

FIGURE 6. Comparative analysis of average validation accuracy of four
flood image classification models proposed in this paper and
vision-transformer. As noted, VGG16-LSTM outperformed other four
models, including state-of-the-art ViT model in terms of validation
accuracy by good margin. For this task of flood classification from
sequence of images, VGG16-LSTM model offered the best fit.

metrics is shown in Table. 1. We used four classification
quality metrics for comparison to ensure different angles
of the method: accuracy, F1-score - the harmonic mean
of precision and recall, ROC-AUC for visualization quality
score [38] andNormalizedMutual Information (NMI) [39] an
information-theoretic metric, for evaluation. Among our four
novel ensemble models that were invented and implemented
in this paper, three models use VGG-16 as the base feature
extraction layer and different combinations of upper layers
for classification, thus they were named, accordingly as
VGG-Dense, VGG-GAP and VGG-LSTM. Dense indicates
a two-layer dense neural network while GAP is a global
average pooling layer. The fourth model, CNN-LSTM is a
combination of convolutional ANN and a LSTM network
which was implemented to showcase how a shallower,
convolutional feature extraction network fare in comparison
to deeper networks. To deliver a thorough performance
evaluation, we brought a state-of-the-art, Vision Transformer
(ViT) model [40], [41] against the four models previously
mentioned. Inspired by the Transformer architecture [42]
for Natural Language Processing (NLP) tasks, Vision Trans-
former was created to give attention to specific pixels in
images, to break the limitation of standard convolutional
models and learn sparsely distributed features of images. All
models were trained for 100 epochs with learning rate of
1e− 4 and batch size of 64. The train-test split was done in a
70 − 30 ratio. Training and test set images were normalized
before being fed into the network. ROC-AUC curve for
the VGG16-LSTM architecture and all competitor models
mentioned before are displayed in Fig. 5, with Area Under
Curve (auc) score for each curve. Overall, VGG16-LSTM
reached our expectation by achieving the highest accuracy,
ROC-AUC score and Normalized Mutual Information (NMI)
score.

E. EXECUTION LATENCY EVALUATION
We conducted several experiments to quantify the effective-
ness and latency of flood event classification models during
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FIGURE 7. Execution time for training and testing/inference phase of
flood recognition model. Time was measured in seconds (y-axis) plotted
against images in different scale (x-axis). We performed this experiment
to test whether image size affects execution time of model as it may
increase latency of inference module for near real time inference. Results
show no significant change in execution time and ensures quick response
during training and inference both.

inference. We calculated average validation accuracy over
every 25th epoch for each of the models and visualized them
in Fig. 6 to understand the differences in performances. All
models were trained and tested on Palmetto supercomputer
at Clemson University. Multiple NVIDIA GPU with 56 gbps
infiniband interconnect, 32 cores and 126 GB RAM were
selected at each complete run of the pipeline. Models were
synchronized on the GPU and we measured execution time
for train and test or inference phase as shown in plot in
Fig. 7. Image sizes were varied starting from 32 by 32 pixels
and going exponentially up to 512 by 512 pixels. Time
during inference was significantly lower and low-resolution
images took less time in both phases without any negative
impact on accuracy. Again we observed that VGG16-LSTM
maintained consistent performance over others and thus we
demonstrate latency evaluation only for this model. VGG16-
LSTM achieved 90% average validation accuracy on our
flood image dataset and three other benchmark datasets,
namely MNIST, CIFAR-10 and STL-10. MNIST [4] has a
training set of 60,000 images and test set of 10,000 images.
CIFAR-10 dataset [5] consists of 60000 colored images in
10 categories and 32 by 32 pixel size, with 6000 images per
category. There are 50000 training images and 10000 test
images. STL-10 [6] is modified from CIFAR-10 to introduce
large number of unlabeled images and higher resolution.
Dataset contains 500 training images (that has 10 pre-defined
folds), 800 test images for each of the 10 classes and
100000 unlabeled images.

F. BENCHMARKING ARCHITECTURE ON MULTIPLE IMAGE
DATASETS
We conducted a benchmark study to compare the per-
formance of the proposed VGG16-LSTM architecture for
classification over our customized flood image dataset and
other publicly available datasets such as CIFAR10, MNIST,
STL10. We compared VGG16-LSTM against models that

FIGURE 8. Comparative benchmark results of VGG16-LSTM (left) and
CNN-LSTM architecture (right). We maintained same experimental
configuration for both architecture and ran validation on four datasets,
our collected flood image dataset, MNIST, CIFAR10, STL10. As evident
from figures side by side, deeper feature extraction base in VGG16-LSTM
gives better accuracy.

we built prior to VGG16-LSTM, namely VGG16-DENSE,
VGG-GAP, CNN-LSTM and state-of-the-art, Vision Trans-
former, ViT. All datasets were partially downsampled to bring
down the dataset size as to deliver fair results. Benchmark
results are illustrated in Fig. 8. To demonstrate the difference
of using shallower vs. deeper convolutional feature extraction
base of classification model, we put both CNN-LSTM and
VGG16-LSTM benchmark results side by side in (a) and
(b). It is apparent that both models perform best using the
MNIST dataset. However, keeping moderate and consistent
performance for our custom flood dataset, we can declare
with strong conviction that our VGG16-LSTM model with
deeper feature extraction base and pretrained weights are able
to yield better result compared to the CNN-LSTM across all
4 datasets.

G. INTERPRETABLE VISUALIZATION FOR FLOOD IMAGE
CLASSIFIER
Gradient attributes derived from three attribution models are
illustrated in Fig. 9, in the clockwise order. We demonstrate
the original image in (a), then the image gradients extracted
and visualized by gradient magnitudes in (b), the integrated
gradients in (c), and DeepLift in (d). Visualizations highlight
the gradients VGG16-LSTM model used to decide image
being related to flood. As we can see, the model focused
learning pixels around the water boundaries and in few places
of the blue skyline.

H. FLOOD SCENE ROADSIDE OBJECT DETECTION
With the help of Tenorflow object detection API, we imple-
mented custom object detection models for roadside object
detection. Ensembles of two models, one based on the Faster
R-CNN and one based on the Mask R-CNN were custom
implemented and installed in the object detection module
of DX-FloodLine. Images labeled as flood related by the
VGG16-LSTM and corresponding annotations for objects
inside those images are fed into both models. Faster R-CNN
being a region proposal network-based model required
rectangular shaped bounding box annotation of objects while
Mask RCNN works with custom polygonal shape binary
mask of objects.
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FIGURE 9. (a) Original image with houses submerged in water (b) image
overlayed with gradient magnitudes to show gradients around
submerged region (c) Image overlayed with attributed visualized by
integrated gradients and smoothgrad squared method (d) Image
overlayed with attribute visualized by DeepLift method.

FIGURE 10. Different vehicles and pedestrians detected with bounding
box with estimated confidence score.

1) COMMON SHAPE ROADSIDE OBJECT DETECTION WITH
FASTER RCNN
As illustrated in Fig. 10, vehicles and people were detected
within a rectangular bounding box with the confidence score
on the precision of the detected object category. We observed
that clearer objects have higher confidence scores while
some of the object being detected incorrectly albeit with a
significantly lower confidence score to indicate that those
should be disregarded for final inference. The detection
scores varied among different objects depending on the
clarity of the objects and the depth of flood. For example,
the model detected people object with a score ranging from
38% to 100% and vehicles with average score of 68%.

FIGURE 11. Bridge shape estimated with green colored polygonal shape
using Mask R-CNN and displayed with confidence score on the
estimation. The image also displays the predicted bounding box around
persons detected over the bridge.

FIGURE 12. Mean average precision of the Faster RCNN progression with
the Monte Carlo-dropout applied at the testing period.

2) ROADSIDE OBJECT DETECTION WITH MASK RCNN
Since bridges vary in shapes and structures, we manually
created custom polygonal shaped annotations to segment
bridges that have common physical attributes like uncovered
top, arched pillars, etc. Training images included bridges
from different locations, angles, and distance to incorporate
variation into the dataset and made it more robust and
generalize better during inference. Annotations and the
corresponding mask images were fed into pre-trained Mask
RCNN with Inception V2 as feature extractor. Fig. 11
demonstrates bridge shape detection results with filled
polygon showing the regions of structure being detected using
Mask RCNN.

I. UNCERTAINTY ASSESSMENT OF ROADSIDE OBJECT
DETECTION MODEL
Capturing uncertainty in the proposed object detection
module can provide insights into the error and uncertainty
in detection tasks [43], [44]. Bayesian models lay the
groundwork for moderately reasoning on how a model would
behave in production, albeit the associated computational
cost may dissuade the developer from proceeding. Intro-
ducing Bayesian uncertainty into neural networks involves
randomness in weights and for the object detection model
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this technique helps with estimating the uncertainty in
bounding box regressor output. Bayesian methods captured
the epistemic uncertainty which often occur due to lack of
good observational data. For the nonlinear neural network,
dropout in all its variant forms can be strategically applied
before layers which helps to approximate probabilistic
Gaussian process in otherwise ordinary neural network
[45], [46]. In this research, uncertainty was introduced in
the form of dropout during training of a two-stage region
proposal network (RPN) base of scene object detection
model. By comparison, Monte Carlo-dropout is applied
during testing while Monte Carlo sampling was used to
drop out neurons from models [47]. Mean average precision
is conventionally formulated to make use of Precision and
Intersection over Union (IoU). IoU is the ratio of area
of intersection and union for predicted and ground truth
bounding box. IoU has the task to figure out whether
predicted bounding box is TP (True positive), FP (False
Positive) or FN (False Negative). As long as the model
achieves IoU over a certain threshold we can consider
the prediction is TP. We used mean average precision of
the model against increasing dropout rates as a metric
for uncertainty measurement. Fig. 12 shows mean average
precision of the Faster RCNN progression with Monte Carlo
dropout applied during testing period. Results revealed that a
range of 0.4-0.6 drop-out rate was sufficient to improve the
modeling precision.

V. CONCLUSION AND FUTURE WORK
Imminent disaster response systems have continued to
advance with plethora of technological innovations over the
years to counter ongoing climate and landscape across the
globe. Live monitoring video cameras, satellites, and social
media, all contribute to the collection of real time data and
advances in computer science makes timely, precise response
possible. A system that encompasses multi-faceted detection
features without compromising the detection accuracy and
response time is continuously sought after by the researchers.
In this paper, we proposed DX-FloodLine, an explainable,
robust, end-to-end flood detection pipeline deployed to take
action at near real time of a flooding event. We built
our own dataset with custom annotations to account for
historic events and wide range of multimedia image features,
such as continuous changes in roadside objects occurred
over the duration of flooding event. During urban flooding,
risks to human and damages to house, transportation, and
landscape are of utmost concern and thus we implemented
a robust object detection model to capture object state in
urban setting. DX-FloodLine has several modules embedded
with neural networks for different tasks. We gradually built
and experimented with multiple, stacked combinations of
feature extraction and classification layers to find the best
ensemble, named VGG16-LSTM to identify images with
flood evidence, such as a house submerged in water or
underwater road partially obstructed in view. We compared
all proposed models with state-of-the-art model on the same

benchmark and VGG16-LSTM came on top. As evident
by consistent good scores of accuracy, F1-score, and NMI,
it is clear that the VGG16-LSTM works best for image
feature extraction compared to the simple convolutional
network. For upper network layers to connect extracted
features for classification, LSTM works well as middle
layer to connect extracted features and classification layer,
although a dense or a global average pooling did the same
job with lesser accuracy. our knowledge, the VGG16-LSTM
ensemble is unique for large scale flood image classification.
DX-FloodLine can be adapted to suit any disaster monitoring
task where large amount of multimedia images is available.
One of the pitfalls of disaster monitoring is the high execution
latency caused from progressing through data collection to
disaster prediction. DX-FloodLine lowers latency by using
trained model inference to provide trustworthy prediction
near real time. DX-FloodLine is robust to size inconsistency
of gathered images as models were trained invariant to
image resolution. When we consider the fact that impending
hurricane and subsequent floods loom around the corner
every couple of months, models need to consider the most
recent urban scenery changes. We incrementally trained
models on latest images and utilized interpretable attribute
visualizations to improve the model’s future performance and
stability for near real time inference. The object detection
module were able to find objects visible or partially hidden
around the flooded scene. The Faster RCNN detected stan-
dard objects found in urban areas with high confidence score
while the Mask RCNN worked better for irregular and larger
shaped objects such as bridges and buildings. By including
variations of object detection models, the proposed pipeline
can provide a well-round narrative of the casualties around
a developing flood scene. Uncertainty of the flood scene
object detection model were captured and explained by
Bayesian neural network approximation that involved adding
dropout in the region proposal network contained by the
Faster-RCNN model. Dropout were used as a regularization
during training and test time as well with varying values
of dropout probabilities. Because we faced challenges in
detecting objects from partially obscured or poor-quality
images, we wish to tackle the hidden shape estimation of
submerged projects as our next task. We are expanding the
category of objects to annotate to provide better assessment
of damaged surroundings. Detectors also suffered from
mis-classification errors introduced by noisy annotations.
To rectify this, we propose a joint objective detection
framework that detects objects and refines the bounding box
annotations based on detection error margin. We are planning
to add attention mechanism to the backbone network of Mask
RCNN for bridge shape and instance segmentation, which
will also help detecting multiple instances from the same
sample. Emergency flood related decision-making system
often fall under the criticism of unfair decision due to the
hasty nature of response delivery in the face of high input
load. We aim to thoroughly evaluate our flood detection
pipeline on its ability to deliver fair prediction in near real

VOLUME 11, 2023 110653



N. Humaira et al.: DX-FloodLine: End-To-End Deep Explainable Pipeline

time regardless of input data frequency. In future, we plan
to modify and adapt DX-FloodLine so it can be utilized for
other image data domain where prompt response is crucial.
We are working towards better scalability and stability of
the pipeline when dealing with large volume of images
in near real time. With distributed training and inference,
it is possible to achieve better scalability. By persisting the
incrementally trained models on cloud service, we can ensure
stable execution. We plan to containerize our application in
the future so it works in any system.
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