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ABSTRACT Smart devices equipped with various sensors enable the acquisition of users’ behavioral
biometrics. These sensor data capture variations in users’ interactions with the devices, which can be
analyzed to extract valuable information such as user activity, age group, and gender. In this study,
we investigate the feasibility of using gait data for gender detection of users. To achieve this, we propose a
novel gender detection scheme based on a deep learning approach, incorporating synthetic data generation
and continuous wavelet transform (CWT). In this scheme, the real dataset is first divided into training and test
datasets, and then synthetic data are intelligently generated using various techniques to augment the existing
training data. Subsequently, CWT is used as the feature extraction module, and its outputs are fed into a
deep learning model to detect the gender of users. Different deep learning models, including convolutional
neural network (CNN) and long short-term memory (LSTM), are employed in classification. Consequently,
we evaluate our proposed framework on different publicly available datasets. On the BOUN Sensor dataset,
we obtain an accuracy of 94.83%, marking a substantial 6.5% enhancement over the prior highest rate of
88.33%. Additionally, we achieve 86.27% and 88.15% accuracy on the OU-ISIR Android and OU-ISIR
Center IMUZ datasets, respectively. Our experimental results demonstrate that our proposed model achieves
high detection rates and outperforms previous methods across all datasets.

INDEX TERMS Biometrics, continuous wavelet transform, convolutional neural networks, frequency
domain, gender detection, generative adversarial networks, human gait, motion sensors, smartphones.

I. INTRODUCTION
With the rapid advancement of technology, smart devices
such as smartphones, wearable watches, and tablets have
become an integral part of daily life. Consequently, studies
on users’ interaction patterns and usage habits with these
devices have significantly increased. Motion sensors, like
accelerometers and gyroscopes embedded in these smart
devices, have emerged as valuable sources of information
in such studies. The widespread utilization of these sensors
can be attributed to two primary factors: firstly, collecting
data from these sensors is both convenient and cost-effective.
Secondly, these sensors enable the extraction of various
characteristics and behavioral biometrics associated with the
users.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

Several studies have highlighted the diverse applications
of motion sensors, encompassing various domains such as
demographics, activity, behavior detection, user authentica-
tion, keystroke, and text inference. For instance, in [1], the
authors successfully determined user gender by analyzing
smartphone accelerometer sensor data. Accelerometer sensor
data have also been leveraged to detect behaviors associated
with individuals’ stress levels in [2]. Additionally, smart-
phonemotion sensor data has been utilized inmultiple studies
to recognize and classify human daily activities [3], [4],
[5]. On the other hand, the authors have employed sensor
data from smart devices to enhance user identification and
authentication systems in [6] and [7].

Gait analysis is a significant biometric feature that
facilitates human identification and provides insights into
physical and medical conditions. Due to the unique nature
of an individual’s gait, which reflects their walking style
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and physical abilities, it becomes challenging to mimic
the gait pattern of others [8]. Thus, gait analysis finds
applications across various domains, including security,
sports, surveillance, and the medical field [9], [10]. For
instance, in [11], the authors underscored using sensor-based
gait analysis in clinical applications for monitoring and
diagnosing conditions such as Parkinson’s disease.

Sensor data originating from touchscreen interactions and
device handling style can be utilized to extract behavioral
biometrics when the user is stationary. However, their
effectiveness diminishes when the user is in motion due to
the impact of movement [12]. Hence, gait data analysis is a
promising candidate for biometrics extraction, like age group
and gender in mobile scenarios.

The identification of gender holds significant importance
in various usage scenarios [13]. For instance, customizing
screens or applications on a device based on the user’s
gender can enhance user interaction and experience [14],
[15]. Gender information can also improve personalized
recommendations, enable more relevant search results, and
facilitate targeted advertisements by applying gender-specific
filters to users. In healthcare, knowledge of a user’s gender
can contribute to more accurate and tailored health support
[16]. Furthermore, authentication mechanisms can leverage
soft biometric traits, such as gender, to enhance performance
[17], [18].

In this study, we propose a model for gender detection
by analyzing the sensor data derived from users’ gait
patterns. Our primary objective is to explore the distinct gait
characteristics between female and male users, which can be
effectively captured through sensor data processing. Recent
studies show that the utilization of deep neural network
(DNN) models as classifiers yields superior performance
compared to traditional machine learning (ML) algorithms
when analyzing sensor data [19]. This excellent performance
is attributed to the enhanced capability of DNN models to
learn complex and nonlinear relationships from data. Thus,
we train a DNN model to discriminate between female and
male users.

Specifically, we employ deep learning models like convo-
lutional neural network (CNN) and long short-term memory
(LSTM) as the DNN classifier. In these models, the CNN
layers extract dimensional relationships within input data
samples, whereas LSTM performs sequence prediction [20].
Furthermore, we explore and compare various CNN, LSTM,
and hybrid models and compare their performances. Our
results indicate that the 3-Layer CNN + LSTM hybrid model
outperforms the alternatives, with superior performance in
detecting gender with sensor data.

During gait analysis, both time-domain and frequency-
domain analyses are commonly utilized. Time-domain anal-
ysis helps us understand how data changes over time, but
it has limitations in identifying underlying patterns and
causes of gait behavior. On the other hand, frequency-domain
analysis breaks down time-series data into its frequency

components, revealing the frequencies where gait vibrations
are most prominent. Gait consists of sequential cycles, each
comprising a series of events. In addition, studies [21] and
[22] show that age and gender affect movement styles and
various gait parameters like walking speed, step length, cycle
frequency, and toe-off angle. Changes in walking patterns
also impact the frequency content of gait data. For example,
older individuals may show noticeable vibrations at lower
frequencies in their walking, while younger individuals tend
to have vibrations at higher frequencies. These reasons make
frequency analysis useful for capturing distinct movement
patterns during walking.

Subsequently, we adopt a feature engineering approach
rather than directly feeding raw sensor data into the DNN
model. This approach enhances the detection performance
and captures the distinctive patterns inherent in the sen-
sor data. In this context, we employ continuous wavelet
transform (CWT) as a feature extraction technique to
reveal frequency domain characteristics. Unlike the Fourier
transform (FT), which primarily focuses on identifying
energy distribution in different frequency bands, CWT
offers a more comprehensive analysis by revealing the
frequency content and their respective occurrence times in
the corresponding time-series. Therefore, given the temporal
nature of our data, we position the CWT before the
classification. The primary objective in employing CWT is
to extract trends, periodicities, and temporal changes within
time-series sensor data that may not be readily apparent in the
time-domain.

In DNN frameworks, the classification model’s perfor-
mance may be hindered by overfitting, especially when the
dataset is limited. To mitigate this problem, we employ data
augmentation techniques to expand the existing datasets.
Specifically, we utilize traditional data augmentation, syn-
thetic minority oversampling technique (SMOTE), and
auxiliary classifier generative adversarial network (AC-
GAN) approaches. Traditional data augmentation involves
applying transformations such as jittering and scaling to the
sensor data. In contrast, SMOTE and AC-GAN estimate
the underlying data distribution and generate synthetic
data accordingly. Our experimental results indicate that the
synthetic data generated using AC-GAN closely resemble the
original dataset.

Furthermore, we employ two strategic approaches in the
synthetic data generation process. Firstly, we balance the
data of different age groups within the two gender classes,
improving performance. Secondly, we validate the generated
synthetic data and exclude samples that belong to the opposite
gender class.

Moreover, we evaluate the proposed model on multiple
datasets and compare its performance against previous
methods. Whereas k-fold cross-validation (CV) is commonly
employed in gender detection studies, its results can be
misleading due to the large number of data samples from
each user in the dataset. Thus, to ensure robust evaluation and
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avoid any group leakage [23], we use the leave-one-group-out
CV (LOGOCV) method in performance evaluation.

The major contributions of the paper are as follows:

• We introduce a novel approach to gender detection based
on gait data, employing advanced signal processing and
deep learning techniques.

• We incorporate CWT as a pre-processing step, enhanc-
ing the system’s performance by extracting detailed time
and frequency domain information.

• To expand real datasets and eliminate overfitting,
we apply various synthetic data generation techniques to
time-series data and compare their performance.We also
emphasize balancing age groups within each class and
verification of generated data.

• Wedesign and evaluatemultipleDNNmodels, including
a hybrid architecture combining the CNN and LSTM
layers.

• We implement LOGOCV to ensure reliable performance
assessment, highlighting its significance in this field.

• We evaluate our proposed model on three diverse
datasets, including the largest gait databases based on
sensor data, and provide a comprehensive evaluation.
The experimental results indicate that our proposed
model achieves high detection rates and performs better
than previous methods.

The rest of this paper is structured as follows. Section II
provides the literature review. Section III presents a brief the-
oretical background on synthetic data generation and CWT.
Section IV introduces the methodology of our proposed
gender detection scheme. The performance evaluation of our
model on various datasets is presented in Section V. Finally,
Section VI concludes this paper.

II. LITERATURE OVERVIEW
In previous studies, gender prediction on smart devices often
relied on voice recordings and facial images [24], [25].
Furthermore, studies in the literature explore age and gender
estimation using image-based gait information [26], [27],
[28]. For instance, the authors investigated the application of
computer vision and gait analysis in gender classification for
forensics in [28]. The study employed video sequences cap-
tured through various modalities. Then, gender classification
was performed using body keypoints extracted from these
video sequences. However, these approaches require explicit
user consent for camera or microphone usage, and their
performance can be compromised by external factors, leading
to inaccurate estimation of gait characteristics. In contrast,
sensor-based gait approaches mitigate these limitations and
offer implicit and more robust detection models that operate
in the background [8], [29], [30].

As discussed in [31], floor sensor-based and wearable
sensor-based techniques can be used in gait analysis. Floor
sensor-based methods involve equipping the floor with
specialized pressure and weight sensors to collect gait data.
However, due to the implementation complexity and limited

performance, this approach is rarely employed in gait analysis
studies. On the contrary, wearable sensor-based techniques
have gained popularity in recent years, mainly because
of their widespread availability in smart devices and ease
of use. Accelerometers are among the most commonly
used sensors in this approach. They are preferred for their
high sensitivity, minimal susceptibility to external factors,
and accurate data output. Conversely, studies employing
gyroscopes for gait analysis have reported inconsistent
results. Therefore, gyroscopes are considered supplementary
information sources to enhance accelerometer-based gait
analysis.

Studies that detect gender using gait analysis yields diverse
findings [16]. For instance, in [21], the authors investigated
the impact of age, gender, and walking speed on adults.
They observed that gender differences in gait performance
were significant, whereas age-related effects varied for both
genders across different parameters. Additionally, a study
by [22] examined the gait characteristics of 112 adults and
concluded that the aging process affects males and females
differently.

In their study [32], the authors presented a methodology
for gender recognition by utilizing behavioral biometrics on
smartphones. This research focused on gender identification
using gait data extracted from the smartphone’s embed-
ded accelerometer and gyroscope sensors. The proposed
approach involved calculating the curvature of the gait
signals. The data collection phase involved subjects walking
with the smartphone placed in their trouser pocket, acquiring
252 gait data samples from 42 individuals. In performance
evaluation, a 5-fold CV was used, and the bagging classifiers
yielded accuracy rates ranging from 73% to 77% across
different walking scenarios. Another study [33] explored
gender classification by analyzing the human gait cycle based
on accelerometer signals. The authors utilized the OU-ISIR
dataset, comprising data from 744 users, and divided it into
a 70% training set and a 30% test set. The study reported
68.2% and 65% accuracy rates using a logistic regression
(LR) classifier for different walking sequences.

In a research study focusing on gender detection using
a deep learning approach, the model’s effectiveness was
evaluated across distinct age groups [34]. With data from
640 users, the study achieved an overall accuracy of 82.8%
using the inter-subject monte-carlo CV technique. Another
study [35] demonstrated the feasibility of recognizing gender,
age, and height attributes using a single inertial sensor with
a sample size of 26 subjects. The classification utilized a
random forest (RF) classifier, achieving accuracy rates of up
to 85.5% for gender prediction in a subject-wise CV scenario.

Furthermore, in a comprehensive analysis of gait-based
age and gender estimation approaches conducted by [16],
it was demonstrated that the most promising outcome for
gender estimation, with an accuracy rate of 75.8%, was
achieved using a temporal convolution network. In this
study, the OU-ISIR dataset was utilized for training data,
whereas a distinct and separate test set was employed
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for evaluation. Another work [36] introduced a method
for gender prediction based on activity, utilizing a dataset
collected from smartphones carried in users’ pockets. The
authors attained accuracy rates of up to 95% using various
classifiers on the MotionSense dataset, encompassing data
from 24 users. However, their dataset’s age range needed to
be expanded, and no information was provided regarding the
potential overlap of user samples between the training and
test sets. Similarly, [37] explored gender recognition using
gait data of 109 subjects and reported the highest accuracy
of 96.3% using the bagged tree classifier with CV. However,
CV may not reflect real-world performance, as the training
and test sets can contain data from the same user.

Several works in the literature utilize motion sensor data
and gait analysis for gender estimation. However, these
works are subject to certain notable limitations. Typically,
the gait data are examined in small groups of subjects,
often lacking a balanced representation of both females and
males and focusing on narrow and specific age ranges [38].
Due to using private datasets, it becomes impractical to
compare the findings or validate the models using related
datasets. Furthermore, performance evaluation often relies on
non-robust assessment methods, and more details should be
provided regarding the separation of training and test datasets.

Moreover, certain studies aimed at analyzing gait data
first involve identifying gait cycles, then extracting features
from each cycle. This complex approach yields precise
outcomes solely when gait cycles are accurately identified.
Nevertheless, factors such as varying walking speeds among
users and utilizing large datasets spanning diverse age
ranges can impose challenging limitations on gait cycle
identification.

To overcome these limitations, we develop a robust
gender detection scheme and evaluate it using publicly
available datasets characterized by a large number of subjects,
balanced gender distributions, and diverse age ranges.We aim
to ensure a more robust and comprehensive performance
evaluationwhen comparing differentmodels by utilizing such
datasets and suitable evaluation methods. To the best of our
knowledge, our work is the first to employ a hybrid approach
for gender detection, integrating well-established techniques
such as synthetic data generation, CWT, and DNN models.
Whereas CWT and CNN have been utilized in previous
studies for time-series classification tasks, such as human
activity recognition [39], our research uniquely applies these
methodologies in sensor-based gender detection.

III. BACKGROUND INFORMATION
This section provides the theoretical background of the
proposed gender detection scheme. Initially, we describe
synthetic data generation techniques, followed by a compre-
hensive explanation of the CWT.

A. SYNTHETIC DATA GENERATION
The performance of ML models is significantly influenced
by the quality and size of the dataset utilized [40]. Deep

learning models, in particular, require substantial amounts
of high-quality data to train effectively, as inadequate data
can lead to overfitting. However, real-world datasets are
often constrained in size and diversity due to the inherent
challenges and costs associated with data collection.

To overcome this challenge, researchers often utilize data
augmentation and synthetic data generation techniques to
expand the size of the dataset by generating additional
samples. Although these two methods are sometimes eval-
uated under the umbrella term of data augmentation, they
differ in the approach used to create the additional data.
Data augmentation involves applying transformations, such
as adding noise or rotating, to existing data samples to
form further examples. On the other hand, synthetic data
generation entails creating entirely new artificial data samples
that exhibit similar characteristics and statistical properties to
the original data.

Consequently, the expansion of time-series datasets using
these techniques enhances the performance of deep learning
models through improved generalization, reduced overfitting,
facilitated feature learning, and increased robustness. By pro-
viding a more diverse and representative training set, these
techniques enable the model to learn and generalize more
effectively to unseen data.

In the subsequent subsections, we provide a concise
overview of data augmentation and synthetic data generation
techniques employed in our study.

1) TRADITIONAL DATA AUGMENTATION TECHNIQUES
This section provides an overview of traditional augmentation
techniques commonly employed in various fields, such
as image processing, and adapted for use in time-series
data [41].

Jittering, which involves adding noise to data, is one of the
most widely used augmentation techniques in the time-series
context. As sensor data often exhibit noise, jittering leverages
the existing noise in the data to simulate and generate new
samples. Typically, Gaussian noise is added to each time step
during the jittering process.

Scaling involves altering the magnitude of a time-series
signal while preserving its overall shape.Magnitude Warp-
ing is a scaling technique that applies variable scaling to
different samples within the time-series.

Another scaling technique, known as Time Warping,
involves stretching and shortening the time intervals of the
time-series signal. Unlike magnitude warping, which alters
the magnitude of the time-series, time warping modifies
the temporal location of the time-series. On the other hand,
Rotation can be applied to time-series data by utilizing a
rotation matrix with a specified angle.

These techniques and their definitions and parameters
are summarized in Table 1. Applying these techniques
to time-series sensor data can enhance its robustness and
introduce various interpretations. For example, jittering can
be regarded as a means of simulating additive sensor noise,
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whereas scaling can simulate walking motions of different
sizes. Since the placement of sensors and smart devices can
impact the obtained sensor readings, rotation can be seen as
a way to simulate different sensor placements.

One crucial consideration when applying these techniques
to time-series data is carefully selecting parameters and
probabilities for each method. Excessive manipulation of the
data may distort the time-series information to the extent that
the class information is lost. Additionally, other augmentation
techniques, such as cropping and permutation, are not
considered in this work. These techniques can significantly
disrupt the gait patterns in the time-series data, potentially
resulting in the generation of invalid synthetic samples.

2) SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
SMOTE is a widely used approach to address class imbalance
in ML datasets. It mainly aims to increase the representation
of the minority class by generating synthetic data [42]. The
fundamental process of SMOTE involves selecting a random
data sample from the minority class and identifying its k
nearest neighbors. Subsequently, one of these neighbors is
randomly chosen, and a synthetic data instance is created by
interpolating between the selected sample and its neighbor.
Mathematically, SMOTE can be defined as follows:

xnew = xi + r(xi − xj) for r ∈ [0, 1], (1)

where xnew is the generated synthetic sample, xi is the sample
from minority class, xj is the chosen nearest neighbor, r is a
random number between 0 and 1.

The procedure mentioned above can generate the desired
number of synthetic data samples for the minority class.
This approach proves effective as it develops new synthetic
samples near existing instances of the same class in the
feature space. However, in scenarios where the minority
class exhibits significant overlap with the majority class,
the performance improvement achieved by SMOTE may be
limited, as synthetic data are generated without considering
the majority class. Thus, modified versions of SMOTE,
including Borderline-SMOTE and ADASYN, are proposed
to increase SMOTE performance.

Borderline-SMOTE specifically targets the generating
synthetic samples near the decision boundary between classes
[43]. Focusing on these boundary regions aims to enhance
the discriminatory ability of the generated synthetic data.
On the other hand, Adaptive Synthetic Sampling (ADASYN)
dynamically adjusts the number of synthetic samples to be
generated based on the density of different regions in the
feature space to provide a more balanced representation of
the data [44].

3) AUXILIARY CLASSIFIER GENERATIVE ADVERSARIAL
NETWORK
Generative adversarial networks (GANs), introduced in [45],
are a prominent deep learning approach widely used for
generating synthetic data in various domains. The primary
objective of GANs is to replicate a given data distribution by

synthesizing new data samples that closely resemble the input
data distribution. GANs have two main network components:
the Generator (G) and the Discriminator (D) networks.

The generator network aims to generate synthetic (fake)
data samples that closely resemble the actual data distri-
bution. In contrast, the discriminator network distinguishes
between real and synthetic data. These two networks are
trained in an adversarial manner, where the G tries to
deceive the discriminator, and the D aims to classify the data
accurately. This training process involves iterative updates to
the weights of both networks using backpropagation to reach
an equilibrium point. Ideally, the generator should be able to
generate synthetic samples that follow the same distribution
as the real data, and the discriminator should no longer be
able to differentiate between real and synthetic samples.

From a mathematical perspective, G and D engage in a
zero-sum game inspired by game theory to generate entirely
new data. TheD is trained tomaximize the log-likelihood cor-
responding to the real data and minimize the log-likelihood
corresponding to the generated data, as defined in (2). On the
other hand, the G is trained to minimize the second term in
(2), aiming to increase the probability of the generated data
being classified as real.

L = E[logD(x)] + E[log(1 − D(G(z)))], (2)

where z represents randomly generated noise vector that
serves as input to G and Xgenerated = G(z) is a generated
sample byG. On the other hand,D(x) denotes the probability
that the input x originates from the real data rather than being
generated.

AC-GAN is a class-conditional extension of the GANs
framework that incorporates an additional auxiliary classifier
in the discriminator network [46]. This modification allows
AC-GAN to generate synthetic data samples that capture
the real data’s statistical properties and follow the class
distribution. The objective function of AC-GAN consists of
two components: the log-likelihood of the correct data source,
LS , and the log-likelihood of the right class label, LC . These
components are defined as follows:

LS = E[logD(x)] + E[log(1 − D(G(z)))] (3)

LC = E[logD(x, c)] + E[log(1 − D(G(z, c)))] (4)

In the AC-GAN, the G takes a random noise vector z
and a class label c as input, generating a synthetic sample
Xgenerated = G(z, c). The discriminator network is trained to
maximize LC + LS , whereas the generator network is trained
to maximize LC − LS . Fig. 1 shows the typical AC-GAN
architecture.

The advantages of AC-GAN include the following:
• The potential to learn more discriminative representa-
tions.

• The ability to generate diverse and high-quality syn-
thetic data.

• The capability to control the class distribution of the
generated samples.
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TABLE 1. Some traditional augmentation techniques and the corresponding definitions and parameters.

FIGURE 1. AC-GAN architecture.

However, it is essential to note that AC-GAN models
require substantial data for practical training, and ensuring
stability during the training process can be challenging. Our
study employs the AC-GAN model and carefully fine-tunes
its parameters to achieve practical training and generate
diverse synthetic time-series data.

B. CONTINUOUS WAVELET TRANSFORM
The analysis of time-series data typically involves two
distinct approaches: time-domain and frequency-domain
analysis. Time-domain analysis examines data variation over
time, allowing for an understanding of how the time-series
changes or evolves. On the other hand, frequency-domain
analysis transforms the data into its frequency components,
providing insights into the specific frequencies in the time-
series. By decomposing the time-series into its frequency
components, frequency domain analysis reveals additional
information that may not be readily apparent in the time-
domain.

FT is a widely used transformation method that converts
a time-series into its frequency components [47]. However,
FT treats time and frequency as fixed entities, disregarding
any temporal information about the frequency components.
Whereas FT accurately reveals the frequency content of
stationary signals whose frequencies stay the same over
time, it falls short when analyzing non-stationary time-series
data with frequency characteristics that vary over time. This
limitation becomes particularly relevant when examining
signals with dynamic frequency behavior.

CWT serves as an alternative analysis method to FT by
offering a simultaneous representation of time and frequency
information. This capability allows for a time-frequency
localization of the time-series, providing a more comprehen-
sive understanding of its characteristics [48]. The CWT of a

signal x(t) can be mathematically defined as follows:

CWT (τ, s) =
1

√
|s|

∫
x(t)ψ∗(

t − τ

s
)dt, (5)

where τ and s are the transition and scale parameters,
respectively. The ψ(t) is the wavelet function, also called the
mother wavelet, and the symbol (*) denotes the operation
of the complex conjugate. The transition parameter, τ ,
is associated with shifting themother wavelet across the time-
series, enabling the movement of differently-scaled wavelets
from the beginning to the end of the time-series. On the other
hand, the scale parameter, s, determines the extent of scaling
applied to the time-series and is inversely proportional to
frequency. Smaller scales correspond to compressed time-
series, capturing high-frequency components, whereas larger
scales correspond to stretched-out time-series, highlighting
low-frequency components.

In calculating the CWT, the process begins by selecting the
mother wavelet. The analysis starts with s = 1 and proceeds
by incrementing s, moving from high to low frequencies.
The mother wavelet is initially positioned at the beginning
of the time-series, corresponding to time t = 0. The wavelet
function at scale s = 1 is multiplied by the time-series and
integrated over all time points. Subsequently, the wavelet is
shifted by τ units to the right, and this process is repeated
until the wavelet reaches the end of the time-series. Finally,
the CWT of the time-series is obtained by repeating this
procedure for each value of s.

In CWT, choosing a suitable mother wavelet is crucial,
as it directly impacts the effectiveness of the analysis.
Various types of mother wavelets are available, and the
selection process is typically guided by the similarity
between the time-series signal under investigation and the
mother wavelet [49]. Based on this, our study aims to
identify the most appropriate mother wavelet for our specific
data by considering different options and comparing their
performance.

Consequently, the CWT offers a comprehensive analysis
of non-stationary time-series by examining the relationship
between time and frequency through wavelets of different
scales. Given that motion sensor data captured by smart
devices exhibits dynamic changes, making it non-stationary,
we employ CWT in our study. Our proposed method involves
utilizing CWT to transform the one-dimensional (1D) sensor
data into two-dimensional (2D) scalogram images, which
in turn allows for improved results due to the enhanced
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predictive capacity of 2D neural networks. Subsequently, the
outputs derived from the CWT are employed in deep learning
algorithms for classification.

IV. GENDER DETECTION SCHEME USING SYNTHETIC
DATA GENERATION AND CWT
This section presents a gender detection scheme based on
synthetic data generation and CWT. The overall architecture
of the proposed method is depicted in Fig. 2. The proposed
approach comprises three main components: (i) the data
generation module, (ii) the feature extraction module, and
(iii) the gender detection module.

Synthetic data are generated in the data generationmodule
to augment the existing dataset. The feature extraction
module employs CWT on the expanded dataset to extract
relevant features. Subsequently, the 2D outputs from the
feature extraction module are fed into a DNN model within
the gender detection module to classify the gender as either
female or male accurately.

A. DATA GENERATION
After acquiring the raw sensor data, the real-world dataset
is initially divided into training and test datasets. Then, syn-
thetic data are generated to enhance the overall performance
of the training process. For this purpose, a data generation
module is utilized.

Given that the class distributions in the datasets utilized in
this study are balanced, we initially generate an equal amount
of synthetic data for each class to expand the training data.
Subsequently, we conduct a sensitivity analysis to examine
the impact of different age groups on overall performance.
This analysis shows that age groups with limited data,
referred to as minority classes, exhibit lower performance
than overall performance. This disparity can be attributed
to the insufficient representation of these groups in the
dataset, hindering the DNNmodel from effectively capturing
their distinctive characteristics. Consequently, to address this
problem, we modify the synthetic data generation method to
make it more intelligent and targeted.

The new data generation method operates based on
Algorithm 1. Initially, female and male users are categorized
into specific age groups based on their age. For instance,
if there are n age groups, we obtain 2n distinct subclasses
by treating each age group within the female and male
data as a separate class. Next, we assess the data available
for each subclass and generate additional data until an
equal distribution is achieved. We successfully balance
the age group distributions within the female and male
classes by generating more synthetic data for subclasses
with limited data. We anticipate that this approach, which
ensures equal representation of each subclass in the dataset,
will yield improved performance, particularly for datasets
encompassing a wide range of age groups.

One of the common challenges in synthetic data generation
is the possibility of the generated samples belonging to
incorrect classes. If time-series is distorted excessively, it can

Algorithm 1 Data Generation
Input: Real training dataset Xreal ;
Output: Augmented training dataset Xaugmented ;
1: Categorize users into specific sub_classes based on their

age;
2: Calculate the amount of data for each sub-class c, and

set the maximum value to Kmax ;
3: Import the pre-trained classifier C , which is trained on

real training dataset Xreal ;
4: for i = 1 to len(sub_classes) do
5: Set the quantity of data for ith sub-class ci to Ki;
6: while Ki ≤ Kmax do
7: Generate a synthetic data sample x ig for ci;
8: Utilize classifier C to predict the class of x ig as
cp;

9: if ci = cp then
10: Add the synthetic sample x ig to the generated

dataset Xgenerated ;
11: Ki ++;
12: else
13: Exclude the synthetic sample x ig;
14: end if
15: end while
16: end for
17: Concatenate Xreal with Xgenerated to obtain Xaugmented ;
18: return Xaugmented

lead to a loss of class information, or a newly developed
data sample from one class in the AC-GAN model may
be closer to the distribution of another class. Although we
carefully adjust and fine-tune the parameters of the data
generation algorithms, we also employ another mechanism to
address this problem: the verification of generated synthetic
data. Following the generation of synthetic data, each newly
developed sample is subjected to a verification process.
A pre-trained classifier is utilized to predict the class label
of the generated samples. If the predicted class does not
match the class assigned to the generated data, the sample
is discarded, and a new sample is generated. This approach
ensures that the dataset does not include poor-quality
synthetic samples, which can negatively impact training and
performance. This verification process continues until an
equal number of data samples is achieved for all subclasses.

Following the data generation step, we augment our
training dataset by combining the newly produced data with
our existing training dataset. The block diagram in Fig. 3
illustrates this procedure. The resulting augmented training
dataset is then passed to the subsequent module for feature
extraction.

B. FEATURE EXTRACTION
This section presents the feature extraction module, which
is responsible for extracting features from the augmented
time-series dataset. In our previous work [50], we explored
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FIGURE 2. Overall architecture of proposed gender detection scheme.

FIGURE 3. Block diagram of data generation module.

different approaches for gender detection from walking data:
a traditional ML approach and a CNN-based approach.

In the traditional ML approach, we extracted statistical
features from the sensor readings and applied various
traditional ML algorithms for gender detection. In the CNN-
based approach, we directly used the raw sensor data without
any feature engineering and trained a CNN model for gender
detection.

In this study, we take raw sensor data and extract specific
features from them, whichwe then input into the DNNmodel.
To achieve this, we prefer using frequency-domain features
over time-domain ones, as time-domain features alone might
not be enough to understand the patterns and reasons behind
gait data fully. Additionally, since the sensor data in our
study are non-stationary and follow a repeating pattern, they
are well-suited for frequency-domain analysis. While FT is
commonly used for frequency analysis, it cannot show the
timing of the frequency components. On the other hand,
the CWT provides a more complete analysis by revealing
both the timing and frequency components. Utilizing CWT
enables the localization of power variations, breakpoints, and
transient peaks within gait data attributed to distinct walking

behaviors, which can be challenging to discern in the time-
domain.

Therefore, we adopt the CWT as the feature extraction
method before classification. The pseudo-code for the feature
extraction process is presented in Algorithm 2.

Motion sensors like accelerometers and gyroscopes pro-
vide readings of three dimensions (x, y, z). Acknowledging
that the sensor’s orientation influences these sensor readings,
any device rotation can impact these readings [31]. To address
the effects of rotation, we utilize the magnitude vector
obtained by computing the sum of squares of the sensor
vectors. This approach helps minimize the impact of external
rotations and enables a better capture of the corresponding
changes in sensor readings. For example, in the case of
the accelerometer, we calculate the sum of accelerations as
follows:

Asum = |A|
2

= A2x + A2y + A2z , (6)

where, Ax , Ay, and Az represent the acceleration values in
the x, y, and z dimensions, respectively. If there are other
sensor readings, such as those from a gyroscope, we similarly
calculate their sum. We then add this as a fourth dimension
to the sensor readings and normalize each attribute vector
before further processing. A representative example of the
accelerometer sensor readings is given in Fig. 4.
While specific studies first identify gait cycles and then

extract features from each cycle, inaccurate identification
caused by varying walking speeds and step sizes can lead to
suboptimal performance. Hence, we opt for an approach that
utilizes fixed-time windows for feature extraction, ensuring
consistent and reliable results. For this purpose, we employ
the sliding window technique to segment the sensor readings
collected from different types of sensors into time windows.
By using this technique, the time-series is divided into
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Algorithm 2 Feature Extraction
Input: Time-series data X , sliding window size w, overlap

ratio overlap_ratio;
Output: 2D feature matrix X2D;
1: Calculate the sum of squares of the attribute vectors on

the x, y, z axes for each sensor and add it as a fourth
dimension;

2: Normalize each attribute_vector ;
3: Initialize an empty data variable Xwindowed ;
4: for each attribute_vector do
5: for i = 0 to len(attribute_vector) − w do
6: Extract a time-series segment xi by applying

sliding window with w and overlap_ratio;
7: Add xi to Xwindowed ;
8: i = i+ (w× (1 − overlap_ratio));
9: end for

10: end for
11: Apply CWT on Xwindowed to obtain X2D;
12: return X2D

FIGURE 4. A typical example of the sensor readings.

FIGURE 5. Block diagram of feature extraction module.

segments of uniform length using a predetermined window
size and a specified overlap ratio.

Subsequently, CWT is applied to each segmented
time-series to extract features within each sliding win-
dow. The output of the feature extraction module is a
four-dimensional variable for each sensor type. It is important
to note that this output is in the form of 2D data, resembling
image data, and is well-suited for classification using 2D
DNN models such as 2D CNN. The block diagram of the
operations conducted in the feature extraction module is
depicted in Fig. 5.

C. GENDER DETECTION
In the last module of the proposedmethod, gender recognition
is conducted. Instead of relying on traditional ML algorithms
that heavily rely on handcrafted feature extraction, which
is limited by human domain expertise, recent studies have
turned to deep learning approaches for their capability
of automatically extracting features from raw sensor data
[51]. Deep learning models offer multiple layers that can
simultaneously learn various patterns in the data and handle
complex problems. Hence, we employ DNN models as a
classifier in our proposed method.

This module follows the procedure outlined in Algorithm
3. For each windowed time-series, the 2D feature data
extracted by the feature extraction module is inputted into
the DNN classifier. The DNN classifier is trained using
labeled data from each gender class to learn the patterns
associated with gender. Subsequently, the classifier outputs
the probability of the time-series sample belonging to a
female or male user. Finally, we employ a soft voting
approach to determine the final gender prediction based
on the overall input data from the user. In the soft voting
approach, we calculate the cumulative probabilities for each
class label and select the class label with the highest
cumulative probability. The block diagram of the gender
detection module is illustrated in Fig. 6.

Algorithm 3 Gender Detection
Input: 2D feature matrix X2D includes coefficients for n

time-series segments;
Output: Gender prediction gender ∈ {female,male};
1: Load trained DNN classifier model modelDNN from

training phase;
2: for each segment ∈ X2D do
3: Utilize modelDNN to predict the class probabilities

pfemale and pmale;
4: Add pfemale and pmale to the prediction set Ppredictions;
5: end for
6: Sum up the prediction probabilities in Ppredictions as∑

(pfemale) and
∑

(pmale);

7: if
∑

(pfemale) >
∑

(pmale) then

8: gender = female;
9: else
10: gender = male;
11: end if
12: return gender

Our proposed method involves utilizing CWT to transform
the 1D sensor data into 2D scalogram images, which
enhances the predictive capacity of 2D neural networks.
Thus, in this module, we employ 2D DNN models. For the
DNN classifier, we explore different deep learning models,
including CNN and LSTM. CNN is well-suited for capturing
dimensional relationships within input data samples, whereas
LSTM is capable of sequence prediction and temporal feature
extraction [20]. We design hybrid architectures combining
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FIGURE 6. Block diagram of gender detection module.

CNN and LSTM layers to achieve a robust classifier. The
different DNN models used in our study can be summarized
as follows:

2-Layer CNN: This base architecture comprises two
stacked CNN layers that facilitate learning patterns in the
data.

CNN-LSTM: This architecture combines the CNN layer
for the feature extraction process of input data with the LSTM
layer to support sequence forecasting (1-Layer CNN +

LSTM).
ConvLSTM: This model extends the CNN-LSTM

approach by integrating the convolutional operations within
the LSTM layer. This combination, known as Convolutional
LSTM or ConvLSTM, effectively captures spatial and
temporal dependencies in the data.

3-Layer CNN + LSTM: This is a more complex
CNN-LSTM model incorporating three convolutional layers
for extracting features from the input data.

In all DNN architectures above, a dropout layer is
employed to mitigate overfitting, a fully connected layer
interprets the learned features, and an output layer is used for
making predictions.

V. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of
the proposed scheme. Firstly, we conduct a complexity
analysis of the algorithms utilized in this study. Subsequently,
we introduce the datasets employed for testing our proposed
method. Furthermore, we define the performance metrics
and evaluation methods used for assessing the system’s per-
formance. Finally, we present and discuss the experimental
results.

A. ALGORITHM COMPLEXITY ANALYSIS
This section provides a brief overview of the compu-
tational complexity analysis of the proposed algorithms.
The proposed model consists of three main modules, each
comprising various algorithms. For instance, when traditional
data augmentation techniques are employed in the data
generation module, the complexity is O(n). This is because
traditional methods typically involve a constant number of
operations, each performed n times. On the other hand, the
computational complexity of SMOTE is O(n log n), whereas
Borderline-SMOTE and ADASYN have a complexity of
O(n2) [52].
Additionally, when the AC-GAN model is used for data

generation, the complexity depends on various operations in

neural network architecture, such as matrix multiplication,
convolution, and pooling. To assess the overall complexity
of the model, we can focus on the convolution operation,
as it typically exhibits the highest computational complexity.
Since 1D convolution is utilized for time-series data, its
complexity is approximately O(nk), where n is the length of
the data, and k is the kernel size.

In the feature extractionmodule, we utilize CWT to obtain
a 2D feature matrix, which has a complexity of O(n log n)
[53]. The gender detectionmodule involves a DNN classifier
and soft voting. Our proposed model incorporates a 3-Layer
CNN + LSTM architecture. Since the CNN utilized in this
module is 2D, its computational complexity is approximately
O(n2k2), where nxn represents the image dimensions and kxk
is the kernel size. Conversely, the LSTM layer is local in
space and time, resulting in a complexity of O(w), where w
is the number of weights [54]. Additionally, the soft voting
algorithm has a O(n) complexity. Consequently, the overall
complexity of this module is approximately O(n2), which is
naturally higher than the computational complexity of a 1D
CNN model.

B. DATASETS
Although several datasets available for gait analysis consist
of sensor data, they exhibit certain limitations. Firstly, many
of these datasets involve a limited number of subjects [9].
Secondly, data distribution between female and male gender
classes is often unequal in these datasets. Lastly, the age
ranges represented in these datasets can be narrow.

To address these limitations and evaluate the performance
of our proposed method, we utilize publicly available
datasets that do not possess the drawbacks mentioned above.
Specifically, we employ the BOUN Sensor dataset [55] and
the OU-ISIR dataset [56].
A mobile application was developed in BOUN Sensor

dataset to collect data from smartphone users. The data
collection process involved users walking and playing games
while holding their smartphones. The application recorded
accelerometer data on the x, y, and z axes to capture
the users’ movements. This way, data were collected from
each user for approximately two minutes. During the data
collection phase, the users had complete freedom regarding
holding the phone and walking styles, and no specific
guidance was provided. Commonly used Samsung and LG
smartphones were employed in the experiment, and the
sampling frequency was set to 100 Hz.

This dataset includes data from 60 female (average
age=35.6, min=18, max=57), and 60 male (average
age=30.3, min=17, max=57) users aged 17-57. The distri-
bution of users in terms of age and gender is illustrated in
Fig. 7. Whereas the gender distribution is evenly balanced
in this dataset, there is variability in the age distributions for
both genders. Specifically, the 20-24 and 35-39 age ranges
exhibit more male users, whereas the 25-29 age range shows
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FIGURE 7. Age and gender distribution of users in the BOUN Sensor
dataset.

the highest number of female users. Remarkably, no female
users are in the 35-39 age range.

On the other hand, the OU-ISIR dataset, collected by
the Institute of Scientific and Industrial Research (ISIR) at
Osaka University (OU), is the largest available dataset based
on inertial sensors. This dataset consists of two subsets:
OU-ISIR Center IMUZ and OU-ISIR Android. In the first
subset, level walk data from 744 subjects aged between
2 and 78 years were captured using the center IMUZ (Inertial
Measurement Units) sensor. 355 of the subjects in this
subset are female (average age=27.1, min=3, max=77),
and 389 are male (average age=24.8, min=2, max=78).
Fig. 8 visually represents the age and gender distribution
of users in this dataset. Upon analysis, it is evident that
the gender distribution between males and females is fairly
consistent. However, the age distribution displays significant
variation for both genders. Age ranges of 5-14 and 35-44
encompass a larger number of users. Conversely, there are
fewer participants in the age groups of 0-4 and those over
55 years old.

The IMUZ sensors positioned at the center back waist
of the subjects were used for obtaining the inertial signals.
Each IMUZ sensor includes a triaxial accelerometer and a
triaxial gyroscope and operates at 100Hz. Within this subset,
two different walk sequences were extracted for each subject.
In other words, data were collected while subjects walked the
same designed path and returned.

In the second subset, data were collected from 408 subjects
using the Motorola ME860 smartphone. In this subset, there
are 189 female (average age=28.6, min=6, max=77), and
219 male (average age=24.7, min=2, max=78) users. Fig. 9
depicts the age and gender distribution within this subset.
Similar to the first subset, the distribution concerning age
demonstrates considerable variation for both genders. There
is a notable concentration of subjects within the age ranges of
5-24 and 35-44. In contrast, the number of users is low in all
other age ranges.

This dataset includes only triaxial accelerometer data.
In this subset, there are four walk sequences with different
labels, two corresponding to walking on flat ground and two

FIGURE 8. Age and gender distribution of users in the OU-ISIR Center
IMUZ dataset.

FIGURE 9. Age and gender distribution of users in the OU-ISIR Android
dataset.

corresponding to walking on sloping ground. For our work,
we focus on two walking sequences on flat ground. In the
experiment, Motorola smartphones equipped with a 100 Hz
accelerometer sensor were positioned at the subjects’ lower
backmidsection. Subsequently, the sensor data were recorded
as the subjects were instructed towalk along a designated path
multiple times.

The non-uniformity observed in the age range of all
these datasets poses a significant constraint and introduces
a challenge. However, to mitigate this concern within our
model, we group specific age ranges and take measures to
balance the distribution among these groups.

C. PERFORMANCE METRICS
In classification problems, several commonly used perfor-
mance metrics exist, such as accuracy, precision, recall, and
F1-score. These metrics are derived from assessing correct
and incorrect predictions. Taking females as the positive
class, true positive (TP) and true negative (TN) denote
the accurate classification of female and male subjects,
respectively. False positive (FP) signifies male subjects
incorrectly identified as female, whereas false negative (FN)
represents female subjects misclassified as male. In our study,

VOLUME 11, 2023 108843



E. Davarci, E. Anarim: Gender Detection Based on Gait Data: A Deep Learning Approach

the evaluation metrics are computed as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1-score =
2TP

2TP+ FP+ FN
(10)

Accuracy mainly measures the proportion of correct
predictions made by the model. Precision quantifies the
proportion of correct positive predictions. Conversely, recall
quantifies the number of positive instances that the classifier
accurately predicted among all the positive instances. The
F1-score corresponds to the harmonic mean of precision and
recall.

Given that the datasets employed in this study exhibit
balanced classes, with each gender class holding equal
significance, we primarily utilize accuracy as the main per-
formance metric for assessing diverse models and optimizing
their components for gender classification. Furthermore,
we present the outcomes of our final model with all relevant
metrics. Reporting these metrics allows us to demonstrate the
variations in accuracy for each gender and enables potential
comparisons with other studies. It is important to note that,
as the positive class can be chosen as either female or male,
we report the metrics for females and males separately, apart
from accuracy.

D. EVALUATION METHODS
K-fold CV is a widely used method for evaluating the
performance of sensor-related studies. In k-fold CV, the
dataset is randomly divided into k equal-sized subsets or
folds. The model is then trained on k − 1 folds, with the
remaining fold used for testing. Leave-one-out CV (LOOCV)
is a particular case of k-fold CV where k equals the number
of samples in the dataset. In LOOCV, each sample is used
for testing, while the rest are used for training in each fold.
Although k-fold CV and LOOCV are commonly employed in
similar works, their results may be misleading because of the
possible overlap of data instances from the same user between
the training and test sets.

To address this problem, a modified k-fold CV, known as a
leave-one-user-out CV (LOUOCV) [57], has been proposed.
In LOUOCV, the classifier is trained using all but one
user’s data, repeating this process for each user. This method
evaluates the algorithm’s generalization capability for unseen
user data during training. However, when applying deep
learning models to datasets with many users, LOUOCV may
not be operationally efficient, as training a new deep learning
model for each user can be time-consuming.

To mitigate computational complexity, we employ the
LOGOCV method. In LOGOCV, the dataset is first divided

into groups, and then one group is left out while the remaining
groups are used for model training. The model is then
evaluated on the omitted group. This process is repeated
for each group in the dataset, and the evaluation results are
averaged to obtain the final performance score.

In our study, we use 5-fold LOGOCV and randomly
partition the users into five non-overlapping groups of equal
size, taking into account class information to ensure balanced
class distributions across groups. This means the training
dataset constitutes 80% of the entire dataset, whereas the test
dataset comprises 20%. For instance, when using the BOUN
Sensor dataset, which encompasses 120 users, the training set
includes 96 users, and the test set includes 24 users, evenly
split between females and males. In the OU-ISIR datasets,
the number of male users slightly outweighs female users.
Consequently, we randomly exclude the surplus male users
to establish balanced class distributions in these datasets.
Furthermore, each user is allocated an equal amount of data
during the testing phase. Consequently, both our training
and test datasets are balanced not only in terms of gender
labels but also in the quantity of data samples for each
gender.

Numerous studies in the literature employed the k-fold
CV and LOUOCV methods, comparing their respective
performances. For instance, in [58], researchers investigate
gender recognition from keystroke dynamics data and
touchscreen swipes. They evaluate classification outcomes
using 10-fold CV and LOUOCV, demonstrating that only
the latter method is suitable for classifying unseen user
data. Similarly, in [59], the authors explore the impact
of the subject CV on the performance of human activ-
ity recognition. Their findings indicate that k-fold CV
tends to overestimate system performance by approximately
16% when overlapping windows are utilized. To ensure
robust and reliable performance evaluation in our study,
we adopt and execute the LOGOCV method. In addition,
to ensure the generalizability of the results, we employ
the LOGOCV method five times. We then calculate the
average accuracy results from these iterations. All the results
presented in the following section are obtained using this
approach.

E. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed
scheme using three datasets: BOUN Sensor dataset and
two subsets of the OU-ISIR dataset. Firstly, we test the
proposed model and its subcomponents on the BOUN Sensor
dataset. We compare different methods for each module of
the proposed model and select the best one. For instance,
we choose the best model in the data generation phase
and tune its parameters. We also analyze the effects of
balancing the age group distribution across classes and
using validation. In the gender detection stage, we compare
various classificationmodels and select themost suitable one.
Subsequently, we evaluate the best end-to-end model on the
other two datasets step-by-step and analyze the results.
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First, we employ CWT as a feature extraction method and
a 2D CNN model as a classifier and compare our results
with the work [50]. We compare our results with the work
[50] because it also predicts gender using sensor data related
to gait behavior and utilizes the BOUN Sensor dataset.
In our approach, the time-series X is fed into the feature
extraction module to extract discriminative features using
Algorithm 2. For segmenting time-series data, we evaluate
different window sizes (w) and identify w = 128 as the
optimal choice, corresponding to a 1.28 seconds length of
sensor data. It was reported in [60] that the natural cadences
of human walking fall between 90 and 130 steps per minute,
with a gait cycle consisting of 2 steps. Therefore, we consider
an entire gait cycle in each window by setting w = 128.
Additionally, we apply a 75% overlap (overlap_ratio =

0.75) between consecutive time windows to comprehensively
capture the entire gait characteristics.

Then, CWT is applied to each segmented time-series
to obtain a 2D feature matrix X2D, which serves as the
input for the 2-Layer CNN model in the gender detection
module. Fig. 10 presents example scalograms obtained as
the output of the CWT for different genders and ages.
Upon examining these scalograms, it is evident that teenage
males exhibit more pronounced high-frequency components
compared to teenage females. When considering middle age,
males have slightly higher frequencies than females, with
differences in time location. Furthermore, both males and
females display decreasing frequencies with advancing age.
Therefore, we can say that these scalograms exhibit distinct
patterns that can be utilized for classification purposes.

Furthermore, in CWT operation, we explore various
continuous wavelets, including Gaussian derivative (Gauss),
complex Gaussian derivative (C-Gauss), Morlet, complex
Morlet (C-Morlet), Mexican Hat, Shannon, and frequency
B-spline (Fbsp), to select the most suitable mother wavelet
for our data. The accuracy results for the employed wavelet
functions in this study are summarized in Table 2.
As seen in Table 2, the frequencyB-splinewavelet achieves

the highest performance rate of 91.37%. Therefore, we use
the frequency B-spline wavelet in the subsequent steps.
In the study [50], both traditional ML methods and CNN
approaches were applied to the BOUN Sensor dataset for
gender detection, resulting in accuracy rates of 83.33%
and 88.33%, respectively. When comparing the performance
obtained here with the methods applied in [50], we see that
the 2-Layer CNN with CWT outperformed the other two
techniques.

This result is expected as CWT allows for detailed
information extraction from time-series data in both the time
and frequency domains. Furthermore, by providing a 2D
output, CWT enables us to utilize a 2D CNN model in the
classification stage, which has a higher classification capacity
than a 1D CNN model.

On the other hand, despite tuning the parameters of
the utilized 2D CNN model, we observe that overfitting
occurs when we try to improve the model’s performance

TABLE 2. The accuracy results for continuous mother wavelets.

by trying more iterations. This is because the 2D CNN
has a higher capacity but requires more data for efficient
training. To address this problem, we introduce a data
generation module before applying CWT to expand the
dataset. We experiment with different synthetic data gen-
eration methods in the data generation module, including
traditional augmentation techniques, SMOTE methods, and
the AC-GAN approach.

Firstly, we apply various traditional augmentation tech-
niques to the dataset, such as jittering, scaling, magnitude
warping, time warping, rotation, and different combinations
of these methods. Fig. 11 illustrates the original version of
an example time-series segment and its augmented versions
obtained by applying these techniques. As an alternative
to traditional augmentation methods, we explore commonly
used versions of the SMOTE technique: SMOTE, Borderline-
SMOTE, and ADASYN. Whereas SMOTE methods are
typically employed to address class imbalance situations,
in this study, we utilize them to expand the already balanced
dataset further.

Subsequently, as a third alternative, we employ the
AC-GAN model to generate synthetic data and augment our
dataset. AC-GAN is a well-known deep learning approach
used in various domains. The fundamental idea behind
AC-GAN is to learn and mimic the distribution of the existing
dataset, thereby generating new data examples that closely
resemble the realized distribution.

In addition to the 2-Layer CNN with CWT approach used
in the previous step, we apply these three data generation
methods to the dataset and compare the results with those
obtained in the last step. Table 3 illustrates the impact of
synthetic data generation on the results. As shown in Table 3,
expanding the dataset by generating new data samples
synthetically generally enhances the overall performance.
The primary reason for this improvement is that deep
learning models, especially 2D deep learning algorithms,
require high-quality data for efficient training. Therefore,
augmenting the dataset prevents the model from overfitting
and enhances its generalization and robustness.
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FIGURE 10. Example scalograms of female and male users with different ages.

FIGURE 11. Examples of different traditional augmentation techniques.

Upon analyzing the results, we observe that the AC-GAN
model outperforms the other two primary methods. The
reasons for this superiority can be explained as follows.
Traditional methods typically involve certain transformations
to augment the training data without improving the data
distribution determined by high-level features. Therefore,
a technique is needed to estimate the data distribution
and generate new data, not solely to augment the training
set. Whereas SMOTE and its variations can be employed
as oversampling techniques to produce new data samples
close to existing instances in the feature space, they may
not be as successful in high-dimensional datasets where
extracting featuresmay be challenging [61]. In this regard, the
AC-GAN model excels at mimicking the distribution of the
current training dataset, thereby offering better performance
improvements.

When analyzing data distributions from different genders
and age groups, we notice that some groups have fewer data
samples than others. This imbalance could lead to insufficient

learning of the characteristics of age groups with limited
data during the classification. To address this problem,
we apply synthetic data generation to balance the number
of data samples across different age groups as described in
Algorithm 1. For this purpose, we divide the users into seven
distinct age groups commonly used in the literature (age: <12,
12-17, 18-24, 25-34, 35-44, 45-54, >54). Then, we identify
the age group with the most data and balance the data sizes
of other age groups to match it. Fig. 12 and Fig. 13 display
the original and generated synthetic data distributions for an
example training dataset from BOUN Sensor and OU-ISIR
Center IMUZ datasets, respectively.

For instance, the age range of the sample training dataset
from the BOUN Sensor dataset in Fig. 12 is 18-57 and
therefore includes five different age groups. This training set
from the BOUN Sensor dataset initially contains 11.750 data
samples, with the highest data belonging to the 25-34
age range female subclass, consisting of 2.097 samples.
Subsequently, 9.220 synthetic data examples are generated
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TABLE 3. The effects of different data generation techniques.

FIGURE 12. Balancing the data distribution for different age groups in the
BOUN Sensor dataset. Solid bars represent the original data, whereas
translucent bars represent the generated synthetic data.

FIGURE 13. Balancing the data distribution for different age groups in the
OU-ISIR Center IMUZ dataset. Solid bars represent the original data,
whereas translucent bars represent the generated synthetic data.

to balance the data distribution among subclasses. Through
a verification step, approximately 11.9% of the produced
synthetic data is discarded, and new data is generated to
replace them.

In addition, we employ a verification process on the
generated synthetic samples. For verification, we utilize a
pre-trained 2-Layer CNN model as a classifier to predict
the class label of the generated samples. We then ignore the
generated samples if the predicted class does not match the
class assigned to the generated data. The impact of balancing
age group distribution and using verification on the overall

TABLE 4. The effects of the additional steps in data generation.

TABLE 5. The effects of the different deep learning models in
classification.

TABLE 6. The layers and parameters of 3-Layer CNN + LSTM architecture.

performance is provided in Table 4. Balancing the age group
distribution by representing all age groups equally in the
dataset enhances the learning process during classification,
resulting in improved performance. Furthermore, removing
poor-quality synthetic samples through the verification pro-
cess contributes to performance improvement by mitigating
adverse effects on the training process.

In the classification, in addition to the 2-Layer CNN
model, we explore other DNN models such as CNN-
LSTM, ConvLSTM, and 3-Layer CNN + LSTM. Table 5
presents the performance results of these models. We observe
that incorporating LSTM layers with CNN improves the
performance. This enhancement can be attributed to LSTM’s
sequence prediction and temporal feature extraction capabil-
ities. A typical gait encompasses sequential phases such as
stance and swing, so utilizing LSTM enhances the learning
procedure. Whereas the single-layer CNN and LSTM did
not achieve satisfactory results, increasing the number of
CNN layers improved the performance. The ConvLSTM
architecture also outperformed the 2-Layer CNN model, but
the highest success rate of 94.83% is achieved with the
3-Layer CNN+ LSTMmodel. The layers and corresponding
parameter numbers of the utilized 3-Layer CNN + LSTM
model are provided in Table 6.
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TABLE 7. Comparison of accuracy (%) results for gender detection frameworks using different datasets.

TABLE 8. Classification results for gender detection frameworks with all metrics.

TABLE 9. Classification results of gender detection frameworks for the age range 17-57.

When we evaluate the results obtained so far, we achieve a
success rate of 94.83%, with a significant improvement of
6.5% with our proposed method, compared to the highest
success rate of 88.33% achieved with the 1D CNN model in
the study [50].

In addition, we test our model and its subcomponents on
the OU-ISIR datasets. For comparison, we also implement
support vector classifier (SVC) and 1D CNN approaches
used in the study [50] for the OU-ISIR datasets. Table 7
summarizes the results for all three datasets. Upon analyzing
the results, we observe that our proposed model performs
successfully on the other two datasets. The steps such as
generating synthetic data, applying CWT, and using the
3-Layer CNN + LSTM model for classification similarly
improve the results on these two datasets.

Furthermore, Table 8 provides an overview of the results
obtained from our final model, encompassing all relevant

metrics. The table illustrates that our proposed model
consistently performs well across all three datasets. Specif-
ically, when examining recall, which signifies the correct
classification of subjects within a positive class, our model
exhibits slightly higher recall values for male users. This
observation suggests our model makes slightly more accurate
predictions for male users. Additionally, we achieve high F1-
scores across all datasets, indicating the robust predictive
capability of our model.

When comparing our proposed method to the 1D CNN
model used in the work [50], we observe an improvement
of approximately 11% on the OU-ISIR Android dataset and
around 9.5% on the OU-ISIR Center IMUZ dataset. When
comparing the results of these two datasets, we notice that
the OU-ISIR Center IMUZ dataset, which includes both
accelerometer and gyroscope sensor data, performs slightly
better than the OU-ISIR Android dataset. On the other
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TABLE 10. A comparison of the existing gender detection methods using the OU-ISIR Center IMUZ dataset.

hand, the relatively higher results obtained from the BOUN
Sensor dataset can be attributed to its somewhat narrower
age range and lower number of subjects compared to the
OU-ISIR datasets. Since the OU-ISIR datasets cover a much
more comprehensive age range, from 2 to 78, extracting
distinguishing features for gender using our proposed method
becomes more challenging.

At this point, we aim to eliminate the influence of different
age groups and test our proposed model on the three datasets
using the same age range. To achieve this, we remove users
aged 0-16 and 58 years and older from the OU-ISIR datasets,
aligning themwith the age range of the BOUN Sensor dataset
(17-57 years). Table 9 presents the results of this identical
age range across all metrics. We achieve 91.94% and 93.87%
accuracy on the OU-ISIR Android and OU-ISIR Center
IMUZ datasets, respectively. Comparing these results to the
previous ones, we observe an improvement in accuracy of
approximately 6% for both datasets. These outcomes, which
closely align with the 94.83% accuracy on the BOUN Sensor
dataset, underscore the generalizability of our findings.

Additionally, we compare the performance of our proposed
method with other works that utilized the OU-ISIR Center
IMUZ dataset. Table 10 summarizes these exemplary studies,
their methods, and their performances. We observe that deep
learning models outperformed traditional ML methods when
analyzing the results. For instance, in [33], using statistical
features and LR classifier, they achieved an accuracy rate of
68.2%, consistent with our SVC results. An accuracy rate of
70.4% was obtained using the autocorrelation function and
CNN in [62].

On the other hand, works [16] and [34] obtain higher
accuracy rates by employing CNN. In [16], a completely
different set of users is used as the test set, whereas in [34],
the inter-subject monte-carlo validation method is applied.
The inter-subject monte-carlo validation ensures that data
from the same user are prevented from appearing in the

training and test sets, leading to a more reliable performance
evaluation. In contrast, other works [8], [63] achieved high
accuracy rates as well, but their evaluation methods may need
to be more accurate due to the possibility of the same user’s
data appearing in both the training and test sets. Considering
all these factors, our proposed method outperforms previous
approaches applied to the same dataset.

As a result, we can summarize the analysis and findings of
our experimental results as follows:

• Applying CWT as feature extractor and utilizing 2D
CNN model as classifier yields superior performance
compared to using raw sensor data and 1D CNN
architecture. There are two main reasons for this
observation. Firstly, CWT provides 2D output, capturing
detailed information in both the time and frequency
domains. Secondly, 2D DNN models exhibit higher
learning capacity in classification tasks than their 1D
counterparts.

• Generating synthetic data to expand the training dataset
enhances overall performance by addressing overfitting
problems and improving the generalization capabilities
of classifier models. The AC-GAN model demonstrated
superior performance among various techniques for
synthetic data generation. This is attributed to its ability
to mimic the existing dataset’s distribution effectively.

• Additionally, we explore two additional steps further
to improve the performance of the data generation
process. Balancing the age group distribution ensures
that all age groups are equally represented in the dataset,
allowing for a more effective learning process during
classification. Moreover, implementing the verification
step enables removing poor-quality synthetic samples,
thus fine-tuning the overall model performance.

• In classification, integrating LSTM with CNN and
increasing the number of CNN layers in the hybrid
model yields improved results. This can be attributed
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to the sequence prediction capability of LSTM, which
enhances the learning process.

• Finally, we evaluate our proposed method on three dif-
ferent public datasets using LOGOCV. The results show
that our proposed method consistently outperforms
the baseline models on all datasets. Additionally, our
approach demonstrates superior performance compared
to other studies that used the same datasets.

VI. CONCLUSION
In this paper, we demonstrate the possibility of gender
detection based on analyzing motion sensor data from smart
devices. Specifically, we propose a novel gender detection
scheme based on DNN architecture, employing synthetic
data generation and CWT. The proposed method analyzes
the gait characteristics of users by processing sensor data,
enabling accurate gender detection. The scheme comprises
three main modules: data generation, feature extraction, and
gender detection. In the data generation module, synthetic
data are generated using various techniques to expand the
existing training dataset. Subsequently, CWT is applied for
extracting 2D feature matrices from time-series data in the
feature extraction module. In classification, a hybrid DNN
architecture combining CNN and LSTM layers is employed
to accurately classify the gender of users as either female
or male. The proposed method is evaluated on various
public datasets and compared to similar works’ performance.
The experimental results show that our proposed model
achieves high detection rates, outperforming the performance
of previous methods.

Besides gender detection, this developed model can be
applied inmultiple domains relying on sensor data from smart
devices, including activity recognition, age group estimation,
user identification, and authentication. In future works,
we will focus on applying this model to different purposes
and deploying it for real-time detection on smart devices.
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