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ABSTRACT Since the thermoelectric generation (TEG) sheets will be placed in places with different
temperature gradients, it leads to multiple peaks in the duty-power (D-P) characteristic curve of a centralized
TEG system under non-uniform temperature distribution (NTD). For this reason, this paper proposes an
ENN-ISSA control algorithm, which combines the Elman neural network (ENN) with the sparrow search
algorithm (SSA) by adding firefly perturbation. The ENN obtains the centralized TEG system’s single-input
and single-output fitting curves, after which the firefly perturbation is introduced into the SSA algorithm.
Then the improved SSA algorithm is used to realize the maximum power point tracking (MPPT) control
based on the fitted curves. Based on building a centralized TEG system Simulink model and analyzing
the output characteristics of the TEG module, temperature constancy experiments, temperature change
experiments, and accuracy analysis were conducted. The results of these simulation experiments all show
that the algorithm can track the global maximum power point (GMPP) quickly and accurately in the duty-
power (D-P) curve with multiple peaks compared with the perturbation observation method and particle
swarm algorithm.

INDEX TERMS Centralized thermoelectric generation system, sparrow search algorithm, thermoelectric
generator, Elman neural network, centralized maximum power point tracking.

I. INTRODUCTION
Fossil fuels produce a large amount of greenhouse gases
during the combustion process, which not only cause global
warming but also jeopardize human health [1], [2]. To alle-
viate the energy crisis and reduce environmental pollution,
we should seek cleaner and renewable energy sources [3].
Thermoelectric Generation (TEG) is a new energy genera-
tion technology using semiconductor materials as the power
generation carrier, which can convert medium and low-taste
industrial waste heat into electricity without polluting the
environment during the energy conversion process. Also,
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it has the advantages of being renewable, noiseless, easy
to maintain, and climate independent [4]. Since the output
voltage of a single TEG module is only a few volts and the
output power is only a few tenths of a watt, TEG systems
usually comprise multiple TEG modules connected in series
and parallel to meet the load requirements [5]. A centralized
TEG system needs to control only one maximum power point
tracking (MPPT) controller, reducing hardware costs and
making it easier to control the output voltage. However, the
centralized TEG system has multiple peaks in the duty-power
(D-P) characteristic curve at non-uniform temperature (NTD)
and leads to a reduction in output power [6]. To improve the
power output of the centralized TEG system, in this case,
an adequate MPPT algorithm needs to be designed [7].
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Traditional maximum power point tracking algorithms,
in the form of Perturb and Observe (P&O) [8] and Incremen-
tal Conductance (INC) [9], have been used for a long time
in temperature generation systems. However, the traditional
MPPT algorithm has the disadvantage that it can easily fall
into a local maximum power point (LMPP) with multiple
power peaks. They are susceptible to environmental changes,
with low reliability, which reduces the system’s output power
and will be limited in practical applications [10]. In addition,
open-circuit voltage (OCV) and short-circuit current (SCC)
methods are also commonly used in TEGs due to the approx-
imately linear relationship between the open-circuit voltage
Voc, and the maximum operating voltage VMPP, at a constant
temperature [11], [12]. However, the relationship between
Voc and VMPP is not linear, and the circuit requires periodic
short-circuit or disconnect operations; these two methods
cannot accurately track the MPP point and incur additional
power loss [13].

In contrast, swarm intelligence algorithms have the advan-
tages of simplicity and flexibility. Thankakan uses the particle
swarm optimization (PSO) algorithm for MPPT control,
which can efficiently find the global maximum power point
(GMPP) under NTD. However, it is not easy to meet the TEG
system to achieve fast MPPT requirements [14]. Compared
with other swarm intelligence algorithms, Sparrow Search
Algorithm (SSA), as an emerging intelligence algorithm,
has higher convergence accuracy and better stability in test
functions with multiple peaks [15].
In recent years, neural networks have become a research

hotspot in artificial intelligence, which can simulate the
human brain’s response to the external environment and
process complex information for modeling [16]. Currently,
neural networks have been successfully applied in fields
such as power forecasting [17] and pattern recognition [18].
Among them, Elman Neural Network (ENN) adds a connec-
tion layer to the BP neural network structure (input, hidden,
and output layers), thus enhancing the global stability of the
network, with short-term dynamic memory, which can be
used to solve the fast optimization problem [19].

Based on the above discussion, this paper proposes an
improved sparrow search algorithm with the Elman neural
network for the maximum power point tracking of centralized
thermoelectric generation systems under NTD. The algorithm
fits the duty cycle and power curves by training samples and
then uses the improved sparrow search algorithm to force
the GMPP. Finally, we verify the effectiveness of the method
through simulation experiments.

II. MODELING AND OUTPUT CHARACTERIZATION OF
CENTRALIZED TEG SYSTEMS
A. TEG MODULE MODELING AND OUTPUT
CHARACTERIZATION
The TEGmodule is one of the core components of centralized
TEG systems, and establishing an accurate model of the TEG
module is crucial for the performance analysis of the system.
Due to the Seebeck effect formed by the difference between

FIGURE 1. Equivalent circuit of the TEG module.

FIGURE 2. Experimental measurement platform.

the hot end temperature Th and cold end temperature Tc of
the TEG module, the output of the TEG module generates
a temperature difference electromotive force Voc. The series
connection of the voltage source Voc with the internal resis-
tance Rin is used to represent the ideal TEG module, whose
value varies with the difference between Th and Tc, as shown
in Fig. 1.

This paper uses the TEP1-09656-0.5 TEG module pro-
duced by Jiangxi Nanometer Thermoelectric Electronic Co.
Ltd. of China as the research object. It is a Bi-Te based
TEG module that can operate continuously at heat source
temperatures up to 310◦C. In order to make the simulation
model closer to reality, this study uses water chiller to keep
the cold end temperature of the TEG module at 30◦C, 40◦C
and 50◦C, respectively, and then uses the high temperature
air generated by Hot air blower to make the temperature of
the hot end of the TEG module increase gradually, and mea-
sure its open-circuit voltage Voc and resistance Rin. and the
experimental measurement platform is shown in Fig. 2. The
characteristic curves of Voc and Rin versus the temperature of
Th are shown in Fig. 3.
We obtained the expressions of the corresponding Voc and

Rin fitting curves from the above characteristic curves of
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FIGURE 3. Thermoelectric module output characteristic curve.

the open-circuit voltage and resistance versus the hot end
temperature. We realized the dynamic correction of the sim-
ulation model parameters simultaneously, which creates the
conditions for the subsequent verification of the property of
the MPPT algorithm.

The expression for the fitted curve of the voltage source
Voc versus the internal resistance Rin for the TEG module at
a cold end temperature of 50 ◦C is:

Voc = −3.23499 × 10−5T 2
h + 0.0369Th − 1.84137 (1)

RTEG = 9.05762 × 10−7T 2
h +5.79473 × 10−4Th + 0.80749

(2)

The expression for the fitted curve of the voltage source
Voc versus the internal resistance Rin for the TEG module at
a cold end temperature of 40 ◦C is:

Voc = −2.87021 × 10−5T 2
h + 0.03568Th − 1.46384 (3)

RTEG = 9.31885 × 10−7T 2
h +5.58762 × 10−4Th+0.7838

(4)

The expression for the fitted curve of the voltage source
VOC versus the internal resistance Rin for the TEG module at

FIGURE 4. Thermoelectric module simulation model.

FIGURE 5. Centralized TEG system.

a cold end temperature of 30 ◦C is:

Voc = −2.5522 × 10−5T 2
h + 0.03475Th − 1.11001 (5)

RTEG = 9.39697 × 10−7T 2
h +5.44558 × 10−4Th+0.75922

(6)

Based on the equivalent electrical model of the thermoelec-
tric module and the expression of the parameter fitting curve,
we built a simulation model in Simulink, and the simulation
model is shown in Fig. 4.

B. TEG SYSTEM MODELING AND OUTPUT
CHARACTERIZATION
The centralized thermoelectric generation system shown in
Fig. 5 can be divided into three parts: the TEG array, the Boost
circuit, and the MPPT controller. Among them, the TEG
array consists of 40 TEG modules of model TEP1-09656-
0.5 in 8 columns, with every two columns in a group and at
the same temperature, and each column consists of 5 TEG
modules connected in series. Under non-uniform temperature
distribution, each TEG module also needs to be connected in
parallel with a bypass diode to prevent the TEG module from
operating at a reverse voltage; and a blocking diode is added
at the end of each series to prevent reverse current from being
generated by the voltage mismatch when the TEG series are
connected in parallel. Since the internal resistance on the TEG
array keeps changing with temperature, for load matching,
we need to keep changing the duty cycle of the boost circuit.

The centralized TEG systemmodel constructed usingMat-
lab2020b/Simulink software is shown in Fig. 6. Among the
parameters of the Boost circuit are: switching frequency
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FIGURE 6. Centralized TEG system model.

FIGURE 7. P-V curves of TEG arrays.

f = 10 kHz, input capacitance Cin = 70 µF, Cout = 330 µF,
L = 1.25 mH, and load R = 30 �.
To simulate and study the effect of NTD on the output of

the TEG array, the hot and cold ends of four groups of TEG
strings are set to different temperatures in the simulation. The
cold end temperatures of the four sets of TEG arrays are
50◦C, 50◦C, 40◦C, and 30◦C, and the hot end temperatures
are 290◦C, 140◦C, 95◦C, and 85◦C, among others. Under the
above working conditions, the P-V output curve of the whole
TEG array is shown in Fig. 7 when the P-V output curve is
multi-peaked.

III. MPPT CONTROL METHOD FOR TEG SYSTEM BASED
ON ENN-ISSA ALGORITHM
A. ELMAN NEURAL NETWORK DESIGN
Different TEG system output powers can be obtained in a
centralized TEG system by setting different boost converter
duty cycles to get TEG system power output at any duty cycle.
For the MPPT problem of the centralized TEG system, the
output power of the TEG system is controlled by adjusting
the duty cycle of the PWM signal of theMPPT controller. The
relationship between the power output of the TEG system and
the duty cycle of the MPPT controller cannot be represented
by a simple function, so we can utilize the powerful nonlinear
approximation capability of the Elman neural network to fit
the complex functional relationship between the power output
of the TEG system and the duty cycle of theMPPT controller.
To realize the MPPT of the centralized TEG system, the input
vector of the Elman neural network is set to the duty cycle of
the MPPT controller, represented by D, and the output vector

FIGURE 8. Elman neural network structure.

is set to the output power of the TEG system denoted by P.

D =


D1
D2
...

Dn

 P =


P1
P2
...

Pn

 (7)

where D is the MPPT controller duty cycle vector, i.e., the
ENN input layer input vector; P is the TEG system output
power vector, i.e., the output layer output vector; and n is the
number of training samples.

For the selection of the number of neurons in the hidden
layer of the Elman neural network, we first derive an approx-
imate range of the number of neurons in the hidden layer
using the empirical formula commonly used to determine the
number of neurons in the hidden layer, which is shown in (8).
In this example, no = ni = 1, and the nh value ranges from
a constant between 2 and 12. When the number of hidden
layer neurons is 5, the mean square error MSE of the Elman
neural network reaches the minimum value, and the number
of hidden layer neurons is finally determined to be 5.

nh <
√
(no + ni) + α (8)

where nh is the number of nodes in the hidden layer; no is the
number of nodes in the output layer; ni is the number of nodes
in the input layer; and a is a constant between 0 and 10.
The Elman neural network can take the duty cycle of

the MPPT controller and the power output from the TEG
system and train a network to establish amapping relationship
between the duty cycle and the output power and the structure
of the constructed Elman neural network is shown in Fig. 8.
Because the function Sigmoid is continuous and smooth

everywhere, it is easy to derive, the transfer function of the
hidden layer selects hyperbolic tangent Sigmoid function
fh(z) = 2/(1+e−2z)−1, and the transfer function of the output
layer adopts the linear function Purelin. The mathematical
model of the Elman neural network is as follows:

H (t)
k = fh

(
wchkC

(t)
k + wihkD(t−1)

+ b1
)

C(t)
k = H (t−1)

k

P(t)
=

∑
whokH

(t)
k + b2

(9)
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where H(t)
k is the kth hidden layer neuron output vector at

moment t; k = 1,2, - - -,5; wchk is the weight between the kth
connection layer and the kth hidden layer neuron; C(t)

k is the
kth connection layer neuron output vector at moment t; wihk
is the weight between the input layer and the kth hidden layer
neuron; D(t−1) is the t-1 moment input layer input vector; b1
is the threshold of the kth hidden layer neuron; P(t) is the
output vector of the output layer at moment t; whok is the
weight between the kth hidden layer neuron and the output
layer; b2 is the threshold of the output layer.

The Elman neural network is used to fit the output power
of the TEG system to the duty cycle of the boost converter.
Its accuracy is not only related to the structure of the Elman
neural network but to increase the representativeness and
diversity of the initial samples, ten sets of data were uniformly
selected within the range of DC/DC converter duty cycle
variations [0, 0.95] to serve as the initial training samples for
the duty cycle:

Di =
0.95
10

i i = 1, 2, · · · , 10 (10)

where Di is the initial duty cycle of the ith training sample.
The duty cycles of these initial training samples are fed into

the MPPT controller, where we can collect the corresponding
voltage and current data from the TEG system and then
normalize the output power of the TEG system for neural
network pre-training. The training method is the Levenberg-
Marquardt method.

By constantly updating each weight and threshold, the
maximum number of training times of the Elman neural
network is set to 50 times so that the mean square error
between the expected power and the actual power of the
training samples meets the predetermined error accuracy. The
target mean square error of Elman neural network training is
0.001, and the formula for the prediction error accuracy is as
follows:

E =
1
N

N∑
i=1

(
Pi − P′

i
)2 (11)

where N is the number of duty cycles in the training samples;
Pi is the output power of the TEG system corresponding to
the ith duty cycle sample; P′

i is the power corresponding to
the ith duty cycle sample predicted by the neural network.

B. BASIC SPARROW SEARCH ALGORITHM
The Sparrow Algorithm is a novel population intelligence
algorithm proposed by the foraging and anti-predator behav-
ior of sparrows. In this algorithm, the sparrow population is
divided into discoverers and joiners. The discoverers search
for food for the whole population and provide foraging direc-
tions for the joiners. The position update formula of the
discoverer is:

X
t+1

i,d =

X
t

i,d · exp(
−i

α ∗ G
), R2 < ST

X
t

i,d + Q · L, R2 ≥ ST
(12)

where t denotes the current number of iterations; X ti,d rep-
resents the value of the d th dimension of the ith sparrow at
the tth iteration; G is a constant that denotes the maximum
value of the number of running iterations; α is a random
number between (0,1]; R2 takes values in the range of [0,1],
and ST takes matters in the field of [0,5.1], which represent
the warning value and safety threshold, respectively; Q is a
random number that obeys a normal distribution; L denotes
a 1×d matrix with 1 in each element. When R2<ST means
that the warning value is small and the predator is not nearby,
indicating no risk of predation,R2 ≥ ST implies that thewarn-
ing value is significant, meaning that some of the sparrows
detect the predator and there is a risk of predation. All other
sparrows need to go to different places to forage for food.

The position update formula for joiners is as follows:

X
t+1

i,d =

Q · exp(
X
t
worst−X

t
i,d

i2
), i > n

2

X
t+1

P +

∣∣∣X t

worst − X
t

i,d

∣∣∣ · A+
· L, i ≤ n

2

(13)

where XP is the location of the finder that found the optimal
food source; Xworst denotes the worst area of the current spar-
row population; and A+ represents a 1×d matrix where each
element is randomly assigned a value of 1 or −1, and A+

=

AT(AAT)−1. When i > n/2, it indicates that the ith accession
with the lower fitness value will need to fly elsewhere to
forage.

To reduce the risk of sparrow predation, 10% to 20% of
the sparrows from the sparrow population were selected as
vigilantes with the following position update formula:

X
t+1

i,d =


X
t

best + β ·

∣∣∣X t

i,d − X
t

best

∣∣∣ , fi > fg

X ti,d + K ·

∣∣∣X ti,d − X
t

worst

∣∣∣
(fi − fg) + ε

, fi = fg
(14)

In the formula, Xbest is the current optimal position of
the sparrow population; Xworst denotes the worst part of the
current sparrow population; β is a random number obeying
the standard Gaussian distribution; K ∈ [−1,1] is a lucky
number; fi and fg denote the global optimal and worst adap-
tation values, respectively; and ε is a very small constant
avoiding the denominator to be 0. When fi> fg, it means that
the sparrow is located in the edge position of the population
and is easy to predate; when fi = fg, it means that the sparrow
should approach other sparrows to get rid of the danger at this
time.

C. FIREFLY PERTURBATION
Firefly perturbation is introduced to update the sparrow posi-
tion and prevent the sparrow algorithm from prematurely
falling into the local maximum power point. The firefly
algorithm is a meta-heuristic algorithm proposed by Yang.
This British scholar achieves the purpose of optimization
through the idealized behavior of mutual attraction between
individual fireflies in summer in the tropics. In the firefly
algorithm, each firefly has a different brightness of the firefly
at the location because of the different size of the fitness of
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FIGURE 9. Solution for MPPT via ENN-ISSA.

its location, and the greater the brightness of the firefly, the
greater the attraction, which attracts other fireflies with lower
intelligence and causes the fireflies with lower brightness to
approach it [20].

The attraction update formula between firefly individuals i
and j is defined as:

β = β0e
−γ r2ij (15)

where β0 is the maximum attraction, i.e., the appeal of the
firefly at the light source (at r = 0); γ is the light intensity
absorption coefficient; and rij is the Cartesian distance from
firefly i to firefly j.

The firefly individual i is attracted to j and moves toward
it with the position update equation:

Xi = Xi + β(Xi − Xj) + α0ε0 (16)

where Xi is the position of firefly i; Xj is the position of
firefly j, i.e., the part of the brightest firefly; α0 is usually a
constant between 0 and 1, which is called the step-size control
parameter; and ε0 is a random number obeying a Gaussian
distribution in the interval [0,1].

D. IMPLEMENTATION OF MPPT IN TEG SYSTEM
The scheme of realizing MPPT through ENN-ISSA in the
TEG system is shown in Fig.9. First, the initial training
samples’ duty cycles are sent to the Boost converter. Then,
the TEG system’s voltage and current are measured, and the
TEG system’s power is normalized and used for pre-training
the neural network. Second, ISSA searches the D-P curves
that fit the initial training samples three times. Then, the three
optimal duty cycles found by ISSA are added to the first
training samples to reduce the mean square error between
the desired power and the actual power of the ENN near the
maximum power point. ISSA then looks for the best duty
cycles to realize the MPPT.

The specific steps of the control process of the whole
ENN-ISSA based MPPT control algorithm are as follows:

Step 1: Initialize the sparrow search parameters.

Step 2: Initialize the Elman neural network structure
according to (9).
Step 3: The duty cycle samples used for training are initial-

ized according to (10), and real-time voltages and currents are
collected to calculate the output power corresponding to each
initial duty cycle sample.

Step 4: Train the neural network using the
Levenberg-Marquardt method and set the objective function
for training according to (11).

Step 5: Start performing the sparrow search, calculate the
power of each sparrow, that is, each duty cycle, and then sort
the power magnitude to find the ‘‘sparrow’’ with the highest
current power and the tiniest sparrow.

Step 6: Sparrows are ordered in order of power from largest
to smallest, with a certain percentage of sparrows in front of
them acting first as discoverers, whose positions are updated
according to (12), and sparrows with less power working as
joiners, whose positions are updated according to (13).
Step 7: A percentage of sparrows were randomly selected

from the flock to act as vigilantes and their positions were
updated according to (14).
Step 8: Introduce the firefly perturbation into the sparrow

algorithm, update the position of the sparrows according to
(16), and calculate the fitness value.

Step 9: If the termination condition is reached, obtain the
current output best duty cycle Db with the highest fitness
value.

Step 10: The best duty cycle Db input boost converter at
the current moment in time is obtained by ISSA search.

Step 11: The corresponding voltages and currents are col-
lected for each duty cycle of the TEG system, and the current
power is calculated.

Step 12: Repeat steps 5 through 11 twice to add three new
data samples to the neural network.

Step 13: Train the Elman neural network with the new
training samples.

Step 14: Again, perform steps 5 through 10 to output the
final optimal duty cycle Db.
Step 15: The algorithm restarts when the output power of

the TEG system changes 1P > 4%.

IV. SIMULATION ANALYSIS
Since the algorithm parameters will impact the algorithms
to find the optimal duty cycle, to ensure the fairness of the
algorithm comparison, the standard parameters of different
algorithms are set to be the same in this paper. The control
period time of all algorithms is set to 0.02 s. We set the
population of the ENN-ISSA algorithm and PSO algorithm
to 5, and the initial positions of the individuals in the pop-
ulation are [0.1; 0.3; 0.5; 0.7; 0.9], respectively, and the
maximum number of iterations is 10; when the number of
algorithmic iterations reaches the set value, or the geometric
positions of the two individuals in the population are is less
than 0.1, or the maximum number of iterations is called. The
distance between each individual in the population is less
than 0.1, or the maximum number of iterations is reached.
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FIGURE 10. Temperature constant experiment MPPT effect.

In addition, we set the P&O parameter to a fixed step size
of 0.01, the PSO parameter to an inertia weight w = 0.72,
and an acceleration coefficient C1 = C2 = 1.52; and we put
the ENN-ISSA parameters to β0 = 1, γ = 1, α0 = 0.41,
discoverers proportion PD = 0.6, and vigilantes proportion
SD = 0.2.

Change the size of the hot-side temperature in the Hot-side
Temp module of Fig. 4, and substitute the expression of the

TABLE 1. Comparison of algorithm simulation results.

fitted curve of the voltage source Voc and the internal resis-
tance Rin from the TEG module into the Voc Fitting Equation
module and the Rin Fitting Equation module, so this system
can realize the maximum power point tracking at different
temperatures.

A. TEMPERATURE CONSTANCY EXPERIMENTS
The cold end temperatures of the four sets of TEG arrays
are 50◦C, 50◦C, 40◦C, and 30◦C, and the hot end temper-
atures are 290◦C, 140◦C, 95◦C, and 85◦C, among others.
The simulation results of the MPPT performance of the three
algorithms under NTD are shown in Fig. 10.
From Fig. 7, the centralized TEG system’s local maxi-

mum power point power at this temperature is 97.33 W. The
global maximum power point power is 101.064 W. From
Fig. 10, the P&O algorithm gets stuck in the LMPP, which
results in the lowest output power of 97.66 W. Except for the
P&O algorithm, both the ENN-ISSA algorithm and the PSO
algorithm are less prone to fall into LMPP. As a result, the
Elman neural network’s nonlinear fitting function helps the
ENN-ISSA algorithm shorten the algorithmic search time,
significantly improves the convergence efficiency, and out-
puts a stable power of 101.037 W at 0.285 s. In the case of
constant temperature, the ENN-ISSA algorithm realizes a fast
and steady control of the maximum power point, and there are
fewer oscillations during the search process.

B. SUDDEN TEMPERATURE CHANG EXPERIMENTS
In practice, the temperature of the hot end of the TEG array
may change abruptly, so we set up four sets of temperature
mutation experiments to observe whether the ENN-ISSA
algorithm can track the GMPP quickly and accurately in
the case of temperature mutation. The temperature mutation
curve of the hot end of the TEG is shown in Fig. 11. The
P-V output curves of the whole TEG array in the four sets of
temperature sudden change experiments are shown in Fig. 12.
The performance simulation results of the three MPPT

algorithms under temperature plunge are shown in Fig. 13.
The simulation results show that the P&O algorithm quickly
falls into the LMPP. The PSO algorithm can not obtain
convergence speed and precision in the tracking process.
At the second and fourth temperature plunges, it will fall
into the local power point, although the convergence speed
is fast. At the first and third temperature plunges, the PSO
algorithm must go through a long time searching during
the optimization process before it can finally approach
the GMPP. In contrast, the ENN-ISSA algorithm can
quickly track the GMPP when sudden temperature changes
occur.
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FIGURE 11. Temperature change at the hot end of a TEG string.

FIGURE 12. P-V curves of TEG arrays.

C. TIME-VARYING TEMPERATURE EXPERIMENT
In practical applications, the hot end temperature of the TEG
string may change in real time in addition to sudden changes.
The cold end temperatures of the four sets of TEG arrays
are 50◦C, 50◦C, 40◦C, and 30◦C, and the hot end tempera-
tures are 270◦C, 110◦C, 75◦C, and 65◦C, among others. The
hot-side temperature of each group of TEG crossties started
to increase at a rate of 2◦C/s on top of the initial temperature
at 1s and then began to decrease at a rate of 2◦C/s at 6s until
it remained unchanged after 9s.

The performance simulation results of the three MPPT
algorithms under temperature time variation are shown in
Fig. 14. Simulation results show that when the temperature
changes in real-time, the P&O algorithm also stays around
the LMPP, decreasing output power. The PSO algorithm has
the slowest response, although it has a higher output power
when the temperature changes in real time. The ENN-ISSA
algorithm responds quickly to temperature variations and has
the highest output power.

FIGURE 13. MPPT effect of temperature sudden change experiment.

D. ACCURACY ANALYSIS
Because the algorithms are randomized, 19 groups of dif-
ferent temperatures are set to test the tracking accuracy of
different algorithms. The cold end temperature is maintained
constant, and the hot end temperature is changed to ensure the
temperature difference between the hot end and cold end is
increased by 5% every time within the range of [10%, 100%]
of the temperature difference set in the temperature constancy
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FIGURE 14. Temperature time-varying experiment MPPT effect.

experiments. The rated temperature settings of the cold end
and hot end of each group of the TEG series are the same
as those of the temperature constancy experiments. Fig. 15
shows the MPPT effect of the three methods for different
temperature ratio experimental cases.

To quantitatively evaluate the tracking accuracy of each
MPPT method in the set, the error evaluation indexes RMSE,
MAE, and MAPE are introduced, and the results of the

FIGURE 15. Accuracy analysis results.

TABLE 2. Calculation of error evaluation indicators.

calculation of the error evaluation indexes of each MPPT
method are shown in Table 2.

MSE =
1
19

19∑
i=1

(
PiGMPP − PiTrack

)2
(17)

MAE =
1
19

19∑
i=1

∣∣∣(PiGMPP − PiTrack
)∣∣∣ (18)

MAPE =
100%
19

19∑
i=1

∣∣∣∣∣PiGMPP − PiTrack
PiGMPP

∣∣∣∣∣ (19)

where PiGMPP is the power at the GMPP at the ith temper-
ature difference, and PiTrack is the power output from the
TEG arrays after tracking by the MPPT algorithm at the ith
temperature difference.

As seen in Fig. 15, the power tracked by each algorithm
increases with the increase of the temperature difference
ratio. The PSO algorithm falls into the LMPP when the tem-
perature difference ratio is 75% and 90%. The PO algorithm
always falls into the local maximum power point at the
temperature difference ratio [65%,100%]. As can be seen in
Table 2, the ENN-ISSA achieves the minimum value in the
error evaluation indexes RMSE, MAE, and MAPE, which
proves that ENN-ISSA has higher tracking accuracy and
convergence stability than PSO algorithm and PO algorithm
under different temperature difference ratios.

V. CONCLUSION
In this paper, for the problem that standard MPPT algorithms
tend to fall into the LMPP or slow tracking speed under
non-uniform temperature distribution, we propose to design
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an algorithm based on the combination of the Elman neural
network and the sparrow search with the introduction of fire-
fly perturbation. ENN-ISSA utilizes Elman neural network
to shorten the time of sampling duty cycle and power during
the searching process of the MPPT algorithm and realizes
the real-time control of MPPT. Then the firefly perturbation
is introduced into the traditional SSA, which can effectively
avoid falling into local optimality. Simulation experiments
show that ENN-ISSA can track the GMPP under NTD fast
and stably and is not affected by sudden temperature changes
and real-time changes. Finally, the simulation results of accu-
racy analysis show that ENN-ISSA can effectively avoid
falling into local optimality under 19 different temperature
differences and has high tracking accuracy and convergence
stability.
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