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ABSTRACT Ensuring the promptly removal of foreign objects from transmission lines is crucial for
electricity safety. However, the existing object detection algorithms exhibit low precision and recall due
to factors such as uncertainty in the type of foreign objects, imbalance of positive and negative samples,
and the complexity of aerial photography backgrounds. Therefore, in this paper, an algorithm called
DF-YOLO (Deformable Faster-You Only Look Once) for transmission line foreign object detection is
proposed to resolve these problems. The algorithm is based on YOLOv7-Tiny and tailored to the dataset’s
characteristics to achieve high precision along with excellent recall. The Focal-DIoU loss function is utilized
to balance positive and negative sample proportions during training. Additionally, the algorithm incorporates
the deformable convolution (DCN) module and the SimAM attention mechanism to enhance model
performance, particularly in terms of foreign object recall and detection accuracy. Moreover, we optimized
the network inference speed with the improved SPPCSPC_S-F module. Experimental results demonstrate
that the improved DF-YOLO network achieves a 2.04% increase in mAP@.5 compared to the original
YOLOV7-Tiny network. The recall rate also improves from 89% to 91.51%. Additionally, the inference
speed of the network rises from 130 to 140 FPS, which enhances detection effectiveness and reduces the
frequency of transmission line leaks triggered by foreign object incursion.

INDEX TERMS DF-YOLO, focal-DIoU, SPPCSPC_S-F, DCN, SimAM.

I. INTRODUCTION

Electricity serves as the lifeblood of both modern civilization
and the national economy. As the smart grid construction
progresses, the scale of transmission lines-vital conduits
for electric energy-continues to expand. This expansion
poses significant challenges to ensuring the power grid’s
secure operation [1], [2], [3]. Prompt detection and removal
of foreign substance intrusions in transmission lines are
imperative to mitigate potential hazards like short-circuit
discharges, fault challenges, and other risks to the power
grid’s operational safety [4].

Traditional manual inspection labor intensity, low effi-
ciency, and inspection results are difficult to digitize does
not meet the development direction of the smart grid [5].
In recent years, with the improvement of GPU arithmetic,
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drone inspection has become a hot spot in the industry [6],
[7], [8], but how to make full use of the massive image and
video data, relying on manual defect finding is not ideal [9],
[10], [11].

The rapid advancement of deep learning in object detection
has led to the practical implementation of related technolo-
gies on the ground. Object detection algorithms can be
broadly categorized into two main types: two-stage networks
that utilize candidate frames, and one-stage networks that
rely on regression [12]. Representative two-stage networks
mainly include R-CNN [13], Faster R-CNN [14] and
Mask-RCNN [15]. Liang et al. [16], [17] introduced a
transmission line foreign object detection approach based on
Faster R-CNN. It’s noted that the current datasets exhibits
limitations in terms of limited categories and insufficient
sample size. Zhang et al. [ 18] introduced a novel transmission
line foreign object detection model, RCNN4SPTL. This
approach enhances both detection accuracy and speed in
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comparison to Faster R-CNN. Although the aforementioned
two-stage network achieves elevated detection accuracy and
a diminished leakage rate, its processing speed is sluggish,
rendering it unsuitable for real-time detection scenarios.
Representative one-stage networks mainly include SSD
[19], YOLOv3 [20], YOLOvS [21], YOLOX [22] and
YOLOvV7 [23]. Chen et al. [24] introduced a transmission
line foreign object detection method based on the YOLOv3
model, and proposed a new attention module E-CBAM
to make the model accuracy reach 88.79%. Li et al.
[25] replaced Darknet-53, the backbone of the original
YOLOvV3 network, with Mobilenetv2, and reduced the
network parameters using depth-separable convolution, and
the accuracy of the network reached 83.2%, but the leakage
rate of the network was larger for some foreign objects
with strange morphology. Song et al. [26], [27] introduced
a high-voltage line foreign object intrusion detection system
based on YOLOv4. They incorporated k-means clustering
and the DIoU NMS method to enhance YOLOv4’s perfor-
mance, resulting in an 8% average improvement in network
accuracy, reaching 81%. Huang et al. [28], [29] introduced
a transmission line foreign object detection algorithm based
on YOLOVS5s using Ghost lightweight convolution module
and KL scatter distribution loss function, and finally deployed
the model into the edge device, the model accuracy only
reached 84.75%. Liu et al. [30] presented a transmission
line foreign object detection model founded on the YOLOX
network. Their approach amplifies detection accuracy by
incorporating the attention mechanism and ASPP module.
This strengthens the model’s feature extraction capabilities
and enhances sensitivity to foreign objects across diverse
scales. However, there is a high rate of missed targets for
the trash category. Yu et al. [31] introduced a transmission
line foreign object detection model based on YOLOvV7. They
employed hyper-parameter optimization and depth-separable
convolutional SPD to enhance the accuracy of detecting small
targets. Additionally, they replaced the original CloU loss
with DIoU loss. As a result, the final average accuracy of the
network achieved 92.2%. But the detection speed is too slow.
Both the aforementioned one-stage and two-stage networks
exhibit superior performance in detecting foreign objects on
transmission lines. However, the one-stage network boasts
a swifter detection speed and heightened efficiency, signifi-
cantly curbing the utilization of computational resources and
aligning with the demands of real-time detection scenarios.
Through the above literature research, it is known that
YOLOvV7, as a newer network architecture in the one-
stage network, is more accurate and faster than object
detection networks such as YOLOVS5 under the same volume.
However, due to the existence of positive and negative sample
imbalance in the transmission line foreign object intrusion
dataset, in which the shape of the rubbish category is irregular
and the intra-class variance is large, resulting in a high
model leakage rate and the real-time performance needs to
be further improved, for this reason, this paper is based
on the improvement of YOLOv7-Tiny, and puts forward a
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FIGURE 1. YOLOv7-Tiny network structure.

transmission line foreign object detection model, DF-YOLO,
with the main contributions as follows:

1) In the underlying structure of the backbone network,
deformable convolutional DCN is used to replace some of
the standard convolutional layers to solve the problem of
large intraclass variance in the dataset, and to increase the
capability of feature extraction of invasive foreign objects
with large intraclass variance.

2) Drawing on the improvement idea of the SPPF module,
the SPPCSPC_S module of YOLOv7-Tiny is improved to
the SPPCSPC_S-F module, the parallel structure of the
pooling part is changed to serial structure, and the size of the
pooling kernel is uniformly set to 5, which retains the detail
information in the feature map, and improves the inference
speed of the network while ensuring that the accuracy is not
affected.

3) Added SimAM Parameter-free Attention to select
and aggregate informative features by maximizing the
information entropy in the feature graph. It improves
the expressiveness and performance of the network while
keeping the number of network parameters constant.

4) Based on the notion that the Focal Loss loss function
addresses the imbalance between positive and negative
samples during training through a penalty term, an enhanced
Focal-DIoU loss is devised to replace the original CIoU loss
in YOLOv7-Tiny. This modification effectively resolves the
issue of sample imbalance during training while concurrently
reducing computational complexity.

In Chapter 2, we present the original model of the network
as well as the proposed method and implementation. Chapter
3 elucidates a comparative analysis between the proposed
approach and the original method. Chapter 4 provides a
systematic summary of this research and concludes.

Il. MODELS AND METHODS

The YOLOV7-Tiny is a lightweight version of the YOLOv7
and consists of three main parts: the backbone network, the
neck structure, and the detection head section, as shown in
Fig 1.
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FIGURE 3. Deformable convolutional feature sampling method.

The 2 x CBL in Backbone denotes two normalized con-
volutions; ELAN-S as the main module for backbone feature
extraction is a lightweight version of the ELAN module in
the YOLOV7 model, replacing the SiLLU activation function
with Leaky ReLLU and cropping the six layers of convolutions
therein to four; the MP module constitutes a dual-channel
architecture comprising of maxpooling and convolutions,
which allows for the adjustment of the number of channels in
the network; SPPCSPC_S is also a lightweight version of the
SPPCSPC module in the YOLOv7 network, which utilizes
the spatial pyramid structure to achieve multi-scale sensory
fields and better capture feature information at different
scales in the input feature map. The Neck part uses down-up
and up-down bi-directional feature fusion and consists of
the ELAN-S module and the UpSample module as well as
the Concat module, which is also a kind of feature pyramid
structure that achieves a multi-scale object detection effect.
In this paper, the ELAN-S module and the SPPCSPC-S
module of the YOLOV7-Tiny network are improved in four
aspects concerning the characteristics of the transmission line
foreign object intrusion dataset.

A. ELAN-S_DCN STRUCTURE

Geometric variations caused by factors such as scale and
attitude have been the main challenge for object detection,
and in the transmission line dataset the rubbish class has
different shapes of attitude and variations, which makes
it difficult for the network to learn its features. To solve
this problem ELAN-S_DCN structure is designed and
deformable convolutional DCN is introduced in the ELAN-S
module in the backbone network as shown in Fig 2.

In this case, the second and third layers of convolutional
operations CBL are changed to deformable convolutional
(DCN). DCN can get the ability of geometric deformation
modeling by learning the position of sampling points for
better extraction of rubbish category features with irregular
shapes and large intra-class variance as shown in Fig 3.

In this case, the sample points for the standard convolution
operation are shown in Fig 3(a). The objective of achieving
deformable convolution is not to render the convolution
kernel deformable itself, but rather to introduce a trainable
offset to the sampling points of the convolution kernel. The
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convolution sampling points with offset are illustrated in
Fig 3(b, ¢).

For a standard convolutional kernel R the receptive field
size and dilation rate are defined. For example, a 3 x 3
convolutional kernel R = (—1,—1),(—1,0), ...,(0,1),(1,1).
For the standard convolution R, the Py output feature map
y on the input feature map x is defined as shown in Eq 1.

YPo) = D w(Pa) - x (o + ) ()

PneR

where P is a point on the feature map, P, is a pointin R, and
W is the feature point weight.

The DCN is added to the sampling process with an offset
Apn, {Apn, I n = 1,2, ... N}, N = IRl. Thus, DCN can be
defined as shown in Eq 2.

YPo) = D wPn) - x (0 + Pu + Apn) ©)

meER

The process of extracting features by DCN is shown in
Fig 4, where offsets are obtained by adding a convolution
layer to the input feature layer, and the convolution kernel
and offsets used to generate the output features are learned
simultaneously during the training process. The information
about the sampled points after the offset is implemented
by bilinear interpolation. By introducing DCN, the network
can better learn and extract feature information of irregular
objects.

B. SPPCSPC_S-F MODULE

SPP(Spatial Pyramid Pooling) module can effectively avoid
the distortion problem after image cropping and scaling
and solves the problem of repeated extraction of features
by convolutional neural networks [32], which has attracted
much attention and several improvements since it was
proposed in 2015. SPPF is improved from the SPP module
by replacing the original CBL (Conv+BN+Leaky ReLU)
module with the CBS (Conv+BN+4SiLU) module and
changing the original Maxpools structure from a parallel
structure to a series structure, which improves the speed
of the network and reduces the computation of the model
[33]. The SPPCSPC_S-F module changes the three parallel
Maxpools similar to the inception block in SPPCSPC_S to a
series structure similar to the Resnet block, so that the deeper
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FIGURE 5. Comparison of SPPCSPC_S and SPPCSPC_S-F structures.

network is conducive to improving the feature representation
of the rubbish category (morphologically variable); and sets
the size of the pooling kernel to 5, which retains more detailed
information in the feature map. The module obtains a speedup
while keeping the sensory field unchanged, as shown in Fig 5.

C. FOCAL DIoU LOSS FUNCTION

The calculation of the CloU loss function used in the
original network is relatively complex, as shown in Eq 3, the
CloU loss adds the calculation of the bounding box aspect
ratio compared to the DIoU loss, however, thousands of
bounding boxes will be generated during the training process,
which leads to a large computational overhead during the
calculation. Therefore, we used the DIoU loss function
instead of the CIoU loss function as shown in Eqs 4-5 to
reduce the computational overhead of the loss process.

p? (b, b¥')
Lcioy =1 — 10U + —a + av 3)

where b,b%" denotes the centroid of the prediction frame
and ground truth, respectively, p> signifies the Euclidean
distance, while ¢ denotes the diagonal distance of the
bounding region capable of containing both the real and
prediction frames. Additionally, « serves as the weight
parameter, and v is utilized to quantify the similarity of aspect
ratios.
2 b, bt

% 4)

L_DIoU = 1 — DIoU 5)

DIoU = IoU —

During model training, the amount of negative samples
generated significantly surpasses the quantity of positive
samples, resulting in an imbalance in the ratio of positive and
negative samples, and a large number of negative samples
are involved in the calculation of the model loss during the
backpropagation process, which affects the decrease in the
value of the loss function. Based on this, we combine Focal
Loss with DIoU loss. As shown in Eq 6, Focal Loss adds
the adjustment factor (1 — p;)¥ balances the proportion of
positive and negative samples in the loss calculation process.
Introducing this method into the DIoU loss becomes the
Focal DIoU loss, as shown in Eq 7, adding a penalty term,
IoUY, to the DIoU loss function. As the confidence level
of the sample gets larger both the IoU value approaches 1,
the penalty term is infinitely close to 1, and the Focal DIoU
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loss becomes a DIoU loss that does not affect the positive
sample. When the confidence level of the sample is very small
both IoU value is close to 0, which means that the sample
is a negative sample of the possibility is extremely high, the
penalty term is infinitely close to 0, then the value of the Focal
DIoU is infinitely close to 0, which solves the problem of
low-quality samples caused by the loss of the value of the
violent oscillation of the problem of balancing the proportion
of positive and negative samples.

Lrocal = —oa; (1 _pt)y log (pr) (6)

where p_t denotes the probability of correct classification
and the modulation factor y is used to reduce the weight of
easily classified samples and increase the weight of difficult-
to-classify samples, taking the value of y = 0.5.

Locaipiou = IoU” Lppou @)

D. SimAM PARAMETER-FREE ATTENTION

In the field of neurology, neurons that are abundant in infor-
mation frequently exhibit distinct firing patterns compared to
the neighboring neurons, and they also exert inhibitory effects
on the surrounding neural population. Therefore, we should
assign higher weights to information-rich neurons. The core
idea of SImAM (Similarity Attention Module) is to compute
the similarity between different positions in the input feature
map to generate a vector of attentional weights for the
corresponding positions, i.e., to evaluate the importance of
each neuron. Compared to traditional attention such as the
SE channel attention and the CBAM spatial attention, the
SimAM model does not introduce additional parameters and
has a faster computational speed. The module structure is
shown in Fig 6.

E. IMPROVED NETWORK MODEL

In this paper, we mainly improve the backbone network of the
original YOLOvV7-Tiny model by adopting DCN convolution
in the last two ELAN_S modules, adding the SPPCSPC_S-F
module and SimAM parameter-free attention module in the
last layer, and proposing the Focal DIoU loss function. The
improved overall network structure is shown in Fig 7.
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Ill. EXPERIMENTS AND ANALYSES

A. DATA ENHANCEMENT

Given that there is no publicly available dataset on trans-
mission line foreign bodies and the complex environment
surrounding transmission lines, a total of 1,942 images were
obtained through manual collection and online collection
methods. As shown in Fig 8, the acquired dataset contains a
total of four categories: bird nests, balloons, kites, and trash.
The dataset contains 1,325 labels in the birds nest category,
344 labels in the kite category, 240 labels in the balloon
category, and 67 labels in the trash category. However, the
number of labels for the three categories of kites, balloons,
and trash is so small that the model can only be trained with
a large amount of data to fully learn the features of the target
to be detected. So, we augmented the data for these three
types of targets using cropping, flipping, rotating, greying out
with 10% probability, randomly increasing or decreasing hue,
saturation, exposure, and brightness with a 10% probability,
and mosaic enhancement. The final bird’s nest, kite and trash
categories were enhanced to 1,480, 935, and 766 labels,
respectively. The overall dataset reached 2,739 sheets.

The implementation of data augmentation serves to
mitigate the occurrence of model overfitting during the
training phase, subsequently enhancing the generalization
capacity and robustness of the model. By disrupting the order
of the dataset, 70% of the dataset is selected as the training
set and 30% of the dataset is selected as the validation set.

B. EVALUATION METRICS
mean Average Precision (mAP), Recall(R) and Precision(P)
are uniformly used as evaluation metrics during model
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TABLE 1. Experimental data of the DCN module.

Module Class Precision mAP@.5
YOLOV7-Tiny Trash 0.922 0.918
YOLOV7-Tiny+DCN Trash 0.941 0.924

TABLE 2. SPP, SPPF, SPPCSPC_S and SPPCSPC_S-F model inference speed
test.

Modules parameters Inference time (ms)
SPP 394240 82.30

SPPF 394240 43.46

SPPCSPC_S 657408 136.50

SPPCSPC_S-F (ours) 657408 99.70

training and validation. For target detection, mAP is usually
an important measure of model performance. The mAP is
subdivided into mAP@.5 and mAP@.5-.95, mAP@.5 is the
average of the APs for each category computed when the IoU
is set to 0.5. mAP@.5-.95 is the average of the APs for each
category computed when the IoU threshold is set from 0.5 to
0.95 with a step of 0.05. Assuming that there are K categories
and K > 1, the mAP is calculated as shown in Eq 8 and Eq 9.

n—1
AP = Z (rit1 = 1i) Pingerp (ri + 1) (8)

i=1
where rq, 12, .. .,r, is the Recall value corresponding to the
first interpolation at the first interpolation of the Precision
interpolation segment in ascending order.

Zszl AP;

X ©)
Although the recall rate is an important evaluation index
for anomaly detection, in transmission line foreign object
detection, once the leakage occurs it will cause serious
safety accidents, so the recall rate is equally important
for transmission line foreign object detection. Recall is
the proportion of all positive samples that are correctly
predicted, i.e., the coverage of correct predictions. Precision
is the proportion of all positive results that are truly

correct. The formulas for recall and precision are shown in
Eq 10 and Eq 11.

mAP =

TP
Recall = ——— (10)
TP + FN
. TP
Precision = —— (11
TP + FP

C. COMPARATIVE EXPERIMENTS AND ANALYSES

To verify the effectiveness of the DCN, SPPCSPC_S-F and
SimAM modules, the following comparison experiments
were done for these three modules respectively.

As depicted in Table 1, significant enhancements in
accuracy are witnessed for the ‘“‘trash” category, known
for its pronounced morphological feature variations, upon
the inclusion of the DCN module. This augmentation
elevates the accuracy of the “trash” category from 92.2%
to 94.1%, marking an improvement of 1.9 percentage points.
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TABLE 3. SimAM, CBAM, SENet Module Comparison Tests.

Modules parameters mAP@.5
YOLOV7-Tiny 6023106 0.9314
YOLOV7-Tiny+SimAM (ours) 6023106 0.9349
YOLOvV7-Tiny+CBAM 6031396 0.9303
YOLOV7-Tiny+SENet 6031297 0.9291

TABLE 4. Comparison of different model detection experiments for
transmission line foreign body datasets.

Module Input Precision Recall mAP@.5 mAP@.5-
size .95
YOLOV3 640%640 0.4150  0.7430 0.6070  0.2750
YOLOVS-s 640%640 0.9720  0.7510 0.8150  0.5410
YOLOv7-Tiny  640%640 0.9410  0.8900 0.9314  0.5630
YOLOVS-s 640%640 0.9600  0.7820 0.8190  0.5470
Ours 640*640 0.9584  0.9151 0.9518  0.5761

—— YOLOV7-Tiny
95} === Ours -

90
85
80

75

mMAP@.5

70

65

60

55

50

0 30 60 90 120 150 180 210 240 270 300
Epoch

FIGURE 9. Comparison of mAP value curves for DF-YOLO and YOLOv7-Tiny
models.

Moreover, mAP@.5 sees a marginal advancement of 0.06%.
Within Table 2, four modules (SPP, SPPF, SPPCSPC_S,
and SPPCSPC_S-F) undergo assessment. Notably, the
SPPCSPC_S-F model showcases an inference time 36.8ms
shorter than the SPPCSPC_S module in YOLOvV7-Tiny.
Meanwhile, Table 3 reveals that the addition of the SIimAM
attention mechanism has no impact on the number of
network model parameters yet enhances mAP@.5 by 0.35%.
Conversely, the integration of CBAM and SENet attention
mechanisms leads to parameter increases of 8290 and 8191,
respectively. However, these additions result in marginal
mAP@0.5 reductions of 0.11% and 0.23%.

To validate the efficacy of DF-YOLO, the enhanced model
was subjected to a comparative evaluation against the YOLO
series algorithm. To ensure the credibility and consistency
of the experimental findings, the identical dataset containing
transmission line foreign objects was utilized for training
and validating both models. The pre-training weights on the
COCO dataset were applied to all models using the migration
learning method, optimized using the SGD optimizer, the
network batch size was uniformly set to 32, the network
training epoch was set to 300, the learning rate was set to 0.01,
and the input image size for all the models was a 640 x 640
RGB image. The same validation set is used for validation
after each round of training. The experimental results are
shown in Table 4.
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TABLE 5. DF-YOLO model detection results for each category.

Class Precision Recall mAP@.5
Balloon 0.950 0.919 0.953
Kite 0.953 0.900 0.954
Nest 0.945 0.935 0.952
Trash 0.938 0.906 0.948

e

(a) YOLOv7-Tiny model feature map visualization results

(b) DF-YOLO model feature map visualization results

FIGURE 11. Comparison of feature visualization before and after model
improvement.

As can be seen from Table 4, the proposed model
outperforms the other models in terms of mAP and recall. The
mAP@.5 reaches 0.9518, which is 2.04 percentage points
higher than the original network. In terms of recall, our
network is also higher than all the other models, with a
2.51% increase in recall compared to the original network
and possesses a much lower miss detection rate. The overall
mAP@.5 plot for all categories is shown in Fig 9.

The dashed line indicates the mAP@.5 change curve of the
improved network, and the solid line indicates the mAP@.5
curve of YOLOvV7-Tiny. From the figure, it can be seen that
with the increasing number of training rounds, the mAP@.5
curves of the models between 200-300 epochs all tend to
be stable, indicating that the models have all converged, and
the average accuracy of the improved model is significantly
higher than that of the original YOLOvV7-Tiny model.

From the results of the above comparison experiments,
it can be seen that our proposed method has a better
detection effect, the recognition accuracy, recognition effect
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(a) YOLOvV7-Tiny test results
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FIGURE 12. DF-YOLO and YOLOv7-Tiny model detection results.

and detection speed have been improved, and it can well meet
the needs of transmission line foreign object detection.

D. ABLATION STUDY

Ablation experiments were conducted to verify the valid-
ity and optimization of each improvement point in the
DF-YOLO model. The experimental results are shown in
Fig 10.

108404

Due to the concentration of transmission line foreign
object intrusion detection data, there are very few intruding
foreign objects within the sample image, which is 1. A large
number of negative sample anchors will be generated during
the training process, resulting in an imbalance of positive
and negative samples, which makes the negative samples
dominate in the loss function and affects the model detection
accuracy. The change of the original network’s loss function
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to our proposed Focal DIoU balances the proportion of
positive and negative samples in the loss function, resulting in
a 0.46% improvement in the model’s mAP@.5, and the recall
rate also improved by 0.4%. The ELAN-S_DCN module,
which replaces some of the convolutional operations with
DCN, enables the network to fully learn the features for
samples with too large a gap within the class by adding
learnable offsets to the sampling points during training,
and the mAP@.5 and recall were also boosted by 0.82%
and 0.6% as a result. Our proposed SPPCSPC_S-F module
further increases the mAP@.5 by 0.41% and the recall
by 0.48% while keeping the number of sensing fields and
model parameters constant. The network mAP@.5 and recall
continues to increase by 0.35% and 1.03% with the addition
of the SimAM parameter-free attention module at the last
layer of the backbone.

Although target detection usually uses mAP@.5 as an
evaluation index, however, once a foreign object is missed
it may lead to phenomena such as partial discharge and fault
tripping, and the recall rate, as an evaluation index for defect
detection, is also very important for this task. The recall of
the improved model increases from 89% to 91.51%, which is
an improvement of 2.51 percentage points.

In conclusion, the improved network model DF-YOLO
achieves a mAP@.5 of 95.18% compared to the original net-
work model YOLOv7-Tiny, an improvement of 2.02%. The
inference speed of the model is also improved from 130 FPS
to 140 FPS, and the detection effect of the improved model
for each category is shown in Table 5.

The data in Table 5 demonstrates that the enhanced
model achieves a detection precision, recall, and mAP@.5
exceeding 90% for foreign objects on transmission lines.
Particularly, for garbage-like foreign objects with varying
shapes and postures, the mAP@.5 and Recall attain 94.8%
and 90.6%, respectively. This significantly mitigates the risk
of foreign object leakage in transmission lines.

For a comprehensive comparison between the DF-YOLO
and YOLOv7-Tiny models, as illustrated in Fig 11, visu-
alizations of their respective feature maps are presented.
Observing these visualizations, it becomes evident that
during feature extraction, the DF-YOLO model places height-
ened emphasis on the target itself. In contrast, the original
model directs its attention not solely to the foreground of the
feature maps, but also to their background, thereby impacting
the model’s accuracy.

Fig 12 displays the detection results of both the
YOLOV7-Tiny model and the improved model. The com-
parison of parts (a) and (b) in the figure reveals that
the DF-YOLO model successfully detects targets in the
kite, balloon, and trash categories, which were previously
missed by YOLOv7-Tiny due to their complex and low-
quality backgrounds. This detection improvement reduces the
leakage rate, and the confidence level of the detection results
surpasses that of the original model. In the case of foreign
objects such as bird’s nests, both YOLOv7-Tiny and the
improved model exhibit nearly identical target localization
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results for the bird’s nest category. However, the DF-YOLO
model displays higher confidence in identifying them as
bird’s nests compared to the original model, as depicted in
Fig 12(c) and (d).

IV. CONCLUSION

Aiming at transmission line safety, a transmission line foreign
object dataset was constructed according to the standard
of the COCO dataset, with a total of 2739 RGB images.
An improved network model based on YOLOv7-Tiny is
proposed to improve the detection performance of the model.
Deformable convolution is introduced into the backbone
network of the model, which improves the model’s learning
of the target feature information and solves the problem
of large intra-class gaps in some categories in the dataset.
The introduction of the SimAM parameter-free attention
module improves the expressiveness and performance of the
network while ensuring that the speed of the model does not
decrease. A new spatial pyramid structure, SPPCSPC_S-F,
is proposed to improve the detection speed of the network
while the number of parameters remains constant. Drawing
on the idea of using a penalty term in Focal Loss to
balance the proportion of positive and negative samples
in the training process, the Focal DIoU loss function is
designed to balance the proportion of positive and negative
samples in the training process, and to solve the problem
of oscillating loss values caused by low-quality samples.
The final network achieved a mAP@.5 of 95.18% and a
single image inference speed of 140 FPS. Compared to the
YOLOvV7-Tiny model, the DF-YOLO has improved in terms
of precision, recall, and speed. The mAP@.5 is improved
by 2.02%, the recall is improved by 2.51%, the leakage
problem of the model is improved, and the inference speed
of a single image is improved by 10 FPS. In conclusion,
the proposed model helps to improve the efficiency of
the transmission line inspection process, which is of great
significance in the inspection task of the environmental
conditions of transmission lines.
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