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ABSTRACT The ovarian cyst is a prevalent disease among women of childbearing age. Early detection of
ovaries can effectively prevent the risk of large cysts leading to torsion, infertility, and even progression to
ovarian cancer. Ultrasonography is a common method for screening ovarian cysts. However, as the demand
for ultrasound has exploded in recent years, doctors’ workloads have undoubtedly increased. The ultrasonic
image analysis of ovarian cysts using deep learning is aimed at assisting doctors in rapid diagnosis and
providing a good diagnostic decision for patients. We proposed a deep learning network for the classification
and diagnosis of ovarian cysts, namely Ocys-Net. This method incorporates a reverse bottleneck design
strategy and makes full use of global information to improve its feature extraction ability. Meanwhile, the
efficient channel attention (ECA) module is used to realize local cross-channel interaction, which pays
sufficient attention to pathological information features and effectively makes up for the defects caused
by channel dimension reduction. As a lightweight network, the proposed method takes into account the
efficient learning performance of the model and is evaluated on our ovarian cyst dataset with high accuracy.
The classification accuracy of this network is 95.93%, which has certain practicability in clinical application.

INDEX TERMS Deep learning, ovarian cyst, image classification, lightweight, ultrasound.

I. INTRODUCTION the world have suffered from symptomatic ovarian cysts [1].

The ovaries are one of the critical female reproductive
organs. They help to maintain female characteristics, reg-
ulate metabolism, promote ovum generation, and regulate
endocrine. The ovarian cyst is a structure formed inside or on
the surface of an ovary. It is a common clinical gynecological
condition that is usually caused as a consequence of a
disturbance in the hormone levels. This disease is highly
prevalent in women of childbearing age and often leads to
infertility. The statistics show that around 7% of the women in
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As this disease progresses, ovarian tumors may develop.
Therefore, early detection and treatment of cysts are a dire
need. Early ovarian cysts are usually detected by ultrasound,
computed tomography (CT) scan, and magnetic resonance
imaging (MRI) [2]. The examination can determine the
status of a cyst by looking at the boundary of the ovarian
mass, whether there are clutters of light, spots, and blood
flow signals within the mass, and even fluid in the pelvic
cavity. Among them, ultrasonography is widely used in
the field of gynecology for estimating the size, location,
shape, and nature of the mass. It is the best non-invasive
diagnostic approach for evaluating the ovarian cysts and other

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by/4.0/

110681


https://orcid.org/0000-0001-6484-5457
https://orcid.org/0000-0001-7573-6053
https://orcid.org/0000-0002-9194-3236
https://orcid.org/0000-0002-6941-2236
https://orcid.org/0000-0003-1688-5424
https://orcid.org/0000-0001-7249-1257

IEEE Access

J. Fan et al.: Accurate Ovarian Cyst Classification With a Lightweight Deep Learning Model

types of ovarian abnormalities. During the ultrasonography
process, the doctors rely on their professional knowledge
and experience to observe whether the ovarian tumor is a
simple fluid area. This helps in determining if the mass is
an ovarian cyst or an impure ovarian cyst [3], [4]. As a
result, the examination process is extremely subjective and
is significantly influenced by the expertise of the doctor.
Additionally, the manual examination increases the burden on
the doctors. Recently, the contradiction between the increas-
ing demand for ultrasound examination and the shortage of
medical resources has led to a heavy workload for ultrasound
examination [5], which isn’t conducive to the patient’s
condition and also increases the medical cost.Therefore, the
main focus of this study is on the auxiliary diagnosis of
the three categories of “‘normal pelvic”, “ovarian cyst” and
“impure ovarian cyst”, aiming to assist medical staff in
making rapid diagnostic decisions.

Medical imaging in the age of big data marked the
beginning of a new trend in data management and sharing
[6], [7]. The development of medical aid diagnostic systems
for analyzing the existing medical image datasets has
become a hot trend for clinical and research institutions.
However, medical image analysis is still obstructed, mainly
due to the lack of theoretical understanding of medical
images, which results in limited visual feature extraction
and processing. Furthermore, due to the specificity and rigor
of medicine, cross-domain solutions are often unable to
achieve satisfactory results in the medical field. Recently,
deep learning has been advancing at a rapid pace. Some
valuable challenges in the medical field have emerged, such
as the classification of optical coherence tomography (OCT)
scans of retinal diseases [8], the diagnosis and evaluation of
corona virus disease 2019(COVID-19) [9], histopathological
image classification of liver cancer [10], and classification of
breast cancer [11]. Please note that a few alternative methods
have also been presented for the automatic detection and the
classification of ovarian cysts to lessen the stress on doctors
and accelerate the diagnostic procedure.

There are various algorithms presented in the literature
for automatically detecting ovarian cysts based on ultra-
sound images. The authors [12] classified three types of
ovarian cysts by using a technique based on the strength
of histogram moments and the grayscale co-occurrence
matrix, combined with fuzzy mathematics and K-nearest
neighbor (KNN) analysis. Rihana et al. [13] achieved a
classification accuracy of 90% with the linear support vector
machine (SVM), and Nabilah et al. [14] adopted watershed
segmentation and contour analysis for distinguishing two
different types of ovarian cysts. The researchers [15] used
fuzzy logic to distinguish simple and complex types of
cysts. Rajendran etal. [16], the authors proposed a new
dove-inspired optimization (PIO) for obtaining the optimal
threshold of automatic cyst detection and feature extraction
and developed an automatic cyst detection system. After that,
Akter and Akhter [17] further implemented the screening
of ovarian cysts and predicted the ovarian cancer based on
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machine learning (ML) approaches, such as random forest,
KNN, and eXtreme Gradient Boosting (XGBoost). Although
these methods improve the accuracy of ovarian cyst identi-
fication to varying degrees, they are all based on traditional
techniques with low generalization ability and are unable to
match the accuracy achieved by the prevailing popular deep
learning methods. In addition, the author [2], [18] proposed
a deep reinforcement learning framework to classify ovarian
cysts. Professional researchers [19] integrated neural network
algorithms for migratory learning have been devised to
accurately predict polycystic ovarian syndrome form tiny
amounts of ovarian ultrasound images. The authors [20]
used supervised machine learning algorithms to classify
multicellular ovarian syndrome, and the key was to design
the GIST-MDR technology to extract features. This type
of reinforcement learning approach is more difficult to
model the environment and requires a lot of time and
effort.

In today’s world, a large number of medical images are
generated each day. However, it is difficult to use these
medical images due to privacy and security concerns [21].
Please note that there are no publicly available datasets
comprising ultrasound images of ovarian cysts. In addition,
a huge number of clinical ultrasound images are often differ-
ent in different conditions. The histopathological morphology
of individual patients shows a variety of shapes, sizes,
textures, and color distributions. Moreover, the confusion
among symptoms also increases the difficulty of identifying
cysts. For the study of ovarian cysts, the current problem is,
on the one hand, the classification accuracy deficit faced by
automatic diagnosis. On the other hand, is the difficulty of
deployment due to the high complexity of the model. This
study mainly attempts to use a lightweight deep learning
model to automatically extract key features and obtain a high
classification accuracy, which makes the detection of ovarian
cysts more accurate and reliable, while using a lightweight
model significantly reduces the computational and storage
costs [22], and is more convenient to deploy on mobile, which
can contribute to the diagnosis and treatment of ovarian cyst-
related diseases.

Key contributions to this work are outlined below.

o A lightweight classification and diagnosis network is

proposed, and the reverse bottleneck design strategy has
a major impact on the feature extraction ability, with the
network performance effectively improved.

o Integrated with the efficient channel attention mecha-
nism module, with effectively extract the major patho-
logical characteristics of ovarian cysts. It can provide a
good solution for the task of embedded medical image
analysis.

« We constructed three types of ovarian cyst datasets based
on medical images obtained from professional medical
institutions, and used this framework to achieve effective
classification of normal pelvic cavity, ovarian cyst and
impure ovarian cyst. It provides a good solution for
performing medical image analysis.
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The remainder of the manuscript is structured in the
following way. The associated image classification methods
are described in Section II. It is followed by the account
of the Ocys-Net in Section III and Section IV presents the
experimental results and compares them with other methods.
Lastly, Section V brings this work to a conclusion.

Il. RELATED WORKS

Due to the particularity and rigor of medicine, it is very
important to improve the accuracy and precision of the
automatic diagnosis of ovarian cysts, while considering a
lightweight and highly efficient network. There are various
networks proposed in the literature for achieving this,
such as SqueezeNet [23], MobileNet [24], GhostNet [25],
ShuffleNet [26], and MixNet [27]. Please note that group
convolution (GC) and depthwise separable convolution effec-
tively solve the mobile deployment problems of deep learning
models. These methods provide substantial technological
support for deep learning model deployment in the medical
industry. Throughout this section, we introduce two kinds
of architectures that are particularly relevant to the proposed
work, i.e., the ShuffleNet model and attention mechanisms.

A. ShuffleNet MODEL

ShuffleNet, a lightweight mobile terminal convolutional
neural network (CNN), adopts pointwise and depthwise
(DW) convolutions, thus significantly decreasing the com-
putational costs and ensuring accuracy. One of the core
ideas of this network is the use of channel shuffling to
design a more powerful architecture comprising multi-set
convolution layers, i.e., for the feature map created at
the preceding layer, each group’s channels are subdivided
into multiple subgroups. Subsequently, the following layer
provides different subgroups for each group. Its functional
realization is presented in Figure 1.
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FIGURE 1. The channel shuffling process, GConv, is a shortened form for
group convolution.

In ShuffleNetV1, designed based on the channel shuffling
design concept, 1 x 1 pointwise convolutions are adopted to
replace the ordinary convolutions. Afterwards, the channel
shuffling operation is performed. The pointwise convolutions
used for the second time aim to recover the shortcut path
of channel dimension matching. In order to improve the
memory-intensive operations in ShuffleNetV1, the proposed
ShuffleNetV2 [28] effectively balances the relation between
the recognition accuracy and computation speed. Please note
that ShuffleNetV2 no longer uses pointwise convolutions.
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Instead, it uses ordinary 1 x 1 convolution operations again.
In order to keep the number of channels constant, these two
branches are concatenated rather than added. In the end,
the channels are shuffled to realize the information flow
between the two branches. Figure 3(a) and (b) depict the
ShuffleNetV?2 architecture. Ghosh et al. [29], ShufflenetV2
was used to realize the recognition and classification of
organic products among 41 independent categories, and the
test accuracy reached 96.24%. Gomes et al. [30] apply the
ShuffleNet unit to a semantic segmentation network. This
increases the network’s lightness and accuracy of semantic
segmentation of remote sensing images. The authors [31] use
improved ShuffleNetV2 for designing a GCNet household
garbage classification system, which effectively promotes
academic research and technological implementations in the
realm of resources and the environment. It is evident that the
ShuffleNet has achieved positive outcomes in various fields
of research, and its application in medical research should
also have a potential application value. household garbage
classification system, which implements mechatronics in
realms of environmental and resource management.

B. ATTENTION MECHANISM IN MEDICAL IMAGE
ANALYSIS

The attention mechanism (AM) [32] originated from the
RNN model commonly used in natural language processing
(NLP) and has since been applied to other fields as well. The
basic idea is to emphasize the effect of a key input on the
output by calculating the weight of the input data [33]. As a
general idea, the attention mechanism can be connected to
each model for improving performance.

In medical image analysis, people are particularly inter-
ested in two forms of attention mechanisms, namely saliency
detection and the visual attention model. The well-known
detection methods include gradient-weighted class activa-
tion mapping (Grad-CAM) [34], class activation mapping
(CAM) [35], and saliency mapping (SM) [36]. These methods
confirm the basis of judgment by applying them to the
learned models. However, they do not directly contribute
to improving the performance. The other visual attention
model pays more attention to the important features and
less attention to the unimportant features. Therefore, the
visual attention model significantly improves performance.
Currently, the most popular channel attention mechanisms
include the compression and excitation (SE) [37] model, and
the concurrent spatial and channel ‘squeeze & excitation’
(scSE) [38] model inspired by this model. In addition,
there is a lightweight convolutional block attention module
(CBAM) [39], which is compatible with any CNN architec-
ture and conducts end-to-end training by using CNN.

Recently, the research community has presented the
effects of different visual attention mechanisms on medical
tasks. The authors [40] observe that the addition of an
attention mechanism to each convolution block before
residual connection in the ResNet improves the accuracy
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FIGURE 2. The architecture of the proposed Ocys-Net: composed of the design of the Block unit and the ECA layer.

of medical vision tasks in skin melanoma images, chest
X-ray (CXR) images, brain magnetic resonance imaging
(MRI) images, and COVID-19 computer tomography (CT)
scans. In the study [41], to effectively improve the perfor-
mance of abdominal CT image segmentation, the authors
integrated the attention mechanism with the classic U-Net.

In the study [42], the researchers improved the accuracy of
tumor image segmentation by adding a parallel mixed atten-
tion mechanism. The authors [43] added a series of attention
gates to jump connections for improving the segmentation
performance of brain tumor MRI. The researchers [44]
introduced channel attention in a dense upsampling network
for detecting tumors in breast X-ray images. In terms of
improving the performance of deep convolutional neural
networks, the channel attention module has shown enormous
promise.

The channel attention module, on the other hand, necessi-
tates channel compression of the input feature graph, and such
compression dimension reduction usually adversely affects
the dependence between the learning channels. By combining
the advantages of ShuffleNetV2 and ECA, the method
proposed in this work captures the local cross-channel
interaction information on the shortcut branch, adopts a
reverse bottleneck design strategy on the main branch,
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and realizes information flow between two branches based
on channel shuffling, thus achieving good classification
performance.

lll. METHODS

We created a deep learning network that can automatically
extract the shape and texture characteristics of normal pelvic
cysts, ovarian cysts, and non-pure ovarian cysts in order to
accomplish correct classification. Experts use their profes-
sional expertise and experience to diagnose ovarian cysts by
observing ultrasonic pictures. To ensure the model’s accuracy
and dependability, we use clinical specialists’ diagnosis
results as the gold standard. Meanwhile, the model’s output
will be professionally assessed by clinical professionals. This
effectively secures the model’s availability. In this section,
we offer a detailed description of the proposed ovarian cyst
classification network, including network architecture, basic
network components, and design methodologies.

A. OVARIAN CYST CLASSIFICATION NETWORK
(OCYS-NET)

Figure 2 depicts the proposed Ocys-Net architecture. The
input ultrasound images of the ovaries are 224 x 224 x 3.
In this work, the whole network operates in a feedforward
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TABLE 1. A comparison of Ocys-Net architecture.

Layer Output size K_size Stride Repeat Output channels
Image 224x224 - - - 3
Convl 56x56 4x4 4 1 24
Maxpool 28x28 3x3 2 1
14x 14 - 2 1
Stage2 l4x 14 . 1 4 48
77 - 2 1
Stage3 7%7 ) 1 4 96
4x4 - 2 1
Stage4 dxd ) | 4 192
Conv5 4x4 Ix1 1 1 1024
Globalpool Ix1 Tx7 - - -
Fc - - - - 3
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FIGURE 3. The building blocks of the ShuffleNetV2 and the network proposed in this work. (a) A basic ShuffleNetV2 unit. (b) The ShuffleNetv2
unit for spatial down sampling. (c) The basic unit of the proposed network. (d) The proposed unit for spatial down sampling. Depthwise

convolution is denoted by the symbol DWConv.

mode, and the features extracted from the previous layer are
fed to the middle layer by convolutional operation, and then
the results are transmitted to the next layer.

For feature extraction, a standard convolution is first
employed with a stride of 4 and a convolution kernel of size
4 x 4. This is followed by a downsampling operation based
on maximum pooling. In addition, a group normalization
layer (GN) is added to prevent overfitting of the network.
Subsequently, in the second stage, five block units are used
consecutively with 24 feature maps. This block unit is
inspired by the improved ShuffleNetV2. In the third stage,
five block units are continuously used, and the number
of channels is expanded to 48. The fourth stage continues
with five block units and expands the number of channels
to 96. After these three stages, a convolution layer with a
convolution kernel of 1 x 1 and a stride of 1 is connected
to ensure the accuracy of classification. Afterwards, a global
average pooling layer and layer normalization (LN) are also
used to fuse the spatial information, prevent overfitting,
and enhance the network’s generalization ability Finally,
1024 convolutions with 1 x 1 kernels are used to expand the
number of channels. Please note that the large channels and
large convolutions used in the aforementioned design were
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used to obtain the characteristic information of ovarian cysts
for performing classification. Most importantly, the design of
block units is crucial for this network architecture.

Table 1 summarizes the entire network architecture of
the proposed Ocys-Net. The main difference between the
proposed networked and the ShuffleNetV2 0.5 x is that the
first feature extraction convolution layer uses a 4 x 4 large
convolution kernel with a step size of 4. The output size
caused by the downsampling effect also changes accordingly
in stages 2,3, and 4. Each stage is repeated 5 times. This is
beneficial to model optimization and achieving the effect of
model lightweight.

B. BLOCK UNIT

Figure 3 depicts the block unit structure of the proposed
Ocys-Net presented in this work. The inverted bottleneck
design is used in comparison to ShuffleNet V2 0.5x,
and the ordinary convolution is replaced by the depthwise
convolution. In the main branch, we use a large 7 x 7
DW convolution, followed by a 3 x 3 DW convolution
in order to reduce dimensions, followed by a 7 x 7 DW
convolution. Please note that we abandon the operations
performed using a 1 x 1 small convolution kernel to first
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reduce the dimension and then increase it. This design
maintains the same shape of the eigenmatrix output on the
main and shortcut branches. This was inspired by the work
presented [45] that the Convnext block units would be similar
to those in Transformers [46], with a reverse bottleneck
design that was thin in the middle and thick at both ends
to boost the network’s performance. It is noteworthy that we
added an ECA attention module in the block unit to assist the
process of extracting key features. In addition, the GN layer
is more prevalent to avoid overfitting. The GeLU activation
function [47], i.e., a smooth variant of ReLU, is replaced by
the ReLU activation function to strengthen the effectiveness
of the network.

C. ECA LAYER

The ECA attention mechanism [48] employs 1-dimensional
convolution for realizing the local cross-channel interaction
strategies and extracting the channel dependencies, thus
effectively avoiding the defects caused by dimensionality
reduction. The size of the convolution kernel k is adaptively
chosen by the ECA module after the convolution features
are aggregated using global average pooling (GAP) without
dimension reduction. Afterward, it performs 1-dimensional
convolution and uses the sigmoid function to learn the
channels, thus determining the extent of cross-channel
interaction coverage. In this work, the size of the adaptive
convolution kernel k is 3, and the ECA’s attention mechanism
layer is embedded in the shortcut branch of the block unit,
which helps to extract important elements of pathological
information while also avoiding the defect brought on by
dimensionality reduction, as shown in Figure 3 (c) and (d).

IV. EXPERIMENTS
In this chapter, we describe the dataset and training process,
analyze the proposed network and evaluate the results.

FIGURE 4. Three categories of samples from the ultrasound image
dataset. (a) normal pelvic. (b) ovarian cyst. (c) impure ovarian cyst. The
area outlined by the yellow box is the lesion area.

A. DATASET
We collaborated with relevant hospitals to obtain ultrasound
images of three types of ovaries. There are 750 images
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in total, including 250 normal pelvic ultrasound images,
250 ovarian cyst ultrasound images, and 250 impure ovarian
cyst ultrasound images. These data are collected from the
same machine by professional doctors from relevant hospitals
and manually annotated one by one. We process these images
to obtain three classification datasets, where each input image
is 224 x 224 pixels in size. Furthermore, since the data size
is small, we perform data augmentation, such as random
transformation, to augment the data. And normalize each
channel of the image. Scale the pixel value of each channel
from the range [0, 255] to the range [—1, 1] to facilitate model
training. Three categories of samples from the ultrasound
image dataset are shown in Figure 4.

B. EXPERIMENTAL SETUP AND CONFIGURATION

The hardware used for this experiment includes an Intel (R)
Core (TM) i7-10750H CPU and an NVIDIA GeForce
RTX2060 GPU. The proposed method is implemented on
top of the Pytorch framework. During the training process,
the adaptive moment estimation (Adam) optimizer is used to
dynamically adjust the parameters. The learning rate is set to
le-4, the batch size is 4, and the number of training epochs
is 300. The training loss is realized by the cross-entropy loss
function.

TABLE 2. Comparison of experimental results for ovarian cyst
classification.

Model Parameters FLOPs MAdds Accuracy
MobileNetV 1 12.29M 587.94M 1.16G 91.51%
MobileNetV2 8.50M 31896M  625.14M  93.61%
MobileNetV3 20.92M 22771M  448.69M  93.42%

EfficientNet 15.30M 398.02M  789.29M  94.64%
GhostNet 14.90M 149.11M  292.14M  92.25%

MixNet 15.77M 251.82M  497.23M  94.61%

ShufflenetV2 1.32M 42.63M 83.41M 92.12%
Ocys-Net (Proposed) 1.15M 13.25M 26.23M 95.93%

C. COMPARISON WITH OTHER ADVANCED MODELS
EXPERIMENT

In order to guarantee the dependability and stability in terms
of the performance of the proposed model, the following
comparative experiments are designed. During our training
process, except for the different network models, the rest
of the training parameters remain consistent. Including
data set, learning rate, optimizer, batch size, epochs, etc.
We compare the proposed Ocys-Net with seven classic
lightweight deep learning classification networks, Table 2
shows the comparison results.

We compared the proposed model with seven other
leading methods, including: MobileNetV1, MobileNetV2,
MobileNetV3, EfficientNet, GhostNet, MixNet and Shuf-
flenetV2 methods, as shown in Table 2. First, the proposed
network shows the effect of being lightweight. Please note
that the Params, Flops, and Madd parameters of the proposed
network are comparable with those of MobileNet, Efficient-
Net [49], MixNet, and other networks, with varying degrees
of advantage. This proves the high efficiency of network
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FIGURE 5. The training curve of different models. (a) Curves of training accuracy. (b) Curves of training loss.

operation. Furthermore, the results show that MobileNetV 1
has an accuracy of 91.51%, while the improved MobileNetV?2
and MobileNetV3 have an accuracy of about 93%. The Topl
accuracy of GhostNet is approximately 0.74% higher as
compared to MobileNetV 1, which benefits from GhostNet’s
taking advantage of cheap operations to get more feature
maps. Due to channel mixing, the ShuffleNetV2 model
enables multiple convolutional layers to build a more
powerful structure, which further improves the accuracy and
ensures the lightness of the network and achieves an accuracy
of 92.12%.

In addition, the EfficientNet and MixNet models achieve
accuracy rates of 94.64% and 94.61%, respectively. The
proposed method shows a big improvement over Shuf-
flenetV2, i.e., an improvement of 3.81%. It’s noteworthy that
the proposed network for this challenge achieves superior
performance, and its classification accuracy is the highest
among the aforementioned methods, i.e., 95.93%. In this
work, the large convolution kernel, reverse bottleneck design,
and attention mechanism are boldly adopted in the block
unit. According to the Table 2, this operation significantly
enhances the network’s classification performance.

Figure 5 (a) and (b) depict a visual comparison of
training accuracy and training loss among several related
classification models and the proposed Ocys-Net. The
network proposed in this work has lower loss and faster
convergence after 300 training epochs as compared to the
other models, and better results are obtained under the same
conditions.

D. ABLATION EXPERIMENT OF DIFFERENT MODULES

We designed the ablation experiment with two important
points. The first is the effect of the Block module developed
in this study on performance, the second is the influence of
the added effectiveness of the attention module (ECA).We
used the pre-trained ShuffleNetV2 0.5 x network as the
baseline and then test the training effect of adding different
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attention mechanism modules, such as SE, CBAM, polarized
self-attention (PSA) [50], and ECA. Please note that the
Baseline_block refers to the network that uses the block
proposed in this work, but removes the ECA layer. Table 3
presents the ablation results.

TABLE 3. The results of ablation experiment.

Model Params Flops Madd Accuracy
Baseline 1.32M 42.63M 83.41IM 92.12%
Baseline+SE 1.36M 42.64M 83.43M 91.94%
Baseline+CBAM 1.33M 42.73M 83.61M 92.68%
Baseline+ECA 1.32M 42.63M 83.41M 93.35%
Baseline+PSA 1.39M 44.69M 87.54M  92.79%
Baseline_block 1.ISM 4290M 84.72M 93.16%
Baseline_block+SE 1.19M 42.93M 84.81M 93.06%
Baseline_block+CBAM 1.16M 43.03M 84.99M 94.32%
Baseline_block+PSA 1.22M 44.99M 88.92M 94.51%
Baseline_block+ECA(Proposed) 1.15M 42.92M 84.78M 95.93%

As seen in Table 3, the baseline represents the Shuf-
flenetV2 backbone network with an accuracy of 92.12%,
whereas the Baseline_block represents the block layer
without our attention mechanism. It is evident from the results
that classification accuracy has improved. This demonstrates
that the large convolution kernel and the reverse bottleneck
design with a thin middle and two thick ends improve
the network performance, and the Topl accuracy increases
from 92.12% to 93.16%, i.e., an increase of 1.04%. Second,
the performance gains achieved due to the addition of
various attention modules are compared for both the baseline
backbone network and the baseline block network. The
results show that the use of SE attention module in this
challenge reduces the performance of the network, and the
precision reduces by approximately 0.1%. The network’s
performance is enhanced by 1.16% and 1.35%, respectively,
by the addition of CBAM and PSA. The results show that the
ECA attention mechanism performs better, and the accuracy
increases by 2.77%. Generally, the accuracy of the network
designed in this experiment has increased by 3.81%. The
results of this ablation experiment provide substantial and
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TABLE 4. Classification performance comparison results of various categories.

Normal pelvic Ovarian cyst Impure ovarian cyst
Methods — — —
precision  recall  fl-score | precision  recall fl-score | precision  recall fl-score
MobileNetV1 0.9357 0.8572  0.8948 0.8751 0.9126 0.894 0.8528 0.8858 0.869
MobileNetV?2 0.9586 0.9222  0.9448 0.8897 0.9637 0.9344 0.9345 0.9065 0.9299
MobileNetV3 0.9617 0.9261 0.9436 0.9087 0.9604  0.9338 0.9341 0.9182 0.9261
EfficientNet 0.9542 09142  0.9337 0.947 0.9797 0.953 0.9393 0.946 0.9427
GhostNet 0.9483 0.9162 0.936 0.8698 09776  0.9203 0.9551 0.8795 0.9157
MixNet 0.9652 0.9301 0.9569 0.9312 0.9898  0.9596 0.9548 0.9496 0.952
ShuffleNetV2 0.9571 0.8902  0.9224 0.8926 0.9797 0.9341 0.919 0.8975 0.9081
Ocys-Net(Proposed) 0.964 0.9621 0.9630 0.9505 0.9856  0.9629 0.9639 0.9548 0.9527
F1-Score
1.00
0.98
0.9630.963
0.96 0.953 005306 0.953 |
0.945 0.944 0.943
0.94 0-934 0.554 0.954 —0.936——— 0934 T
0.93 0.926 —
0.92 - — — 0926016 — - -
0.908
0.90 ~6:8950.804 —] — — i —1 . —
0.88 |- - — — — — — — —
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FIGURE 6. F1-Score evaluation index results of three categories.

compelling evidence that the inclusion of an ECA layer in
the Block module, as designed in this experiment, is indeed
the correct and optimal choice.

E. DIFFERENT CATEGORIES OF CLASSIFICATION
EXPERIMENTS

This experiment is mainly used to evaluate the performance
of the classifier for each category, including classification
accuracy, recall rate, F1-Score, and confusion matrix. The
evaluation indicators used in this work are shown as follows:

Accuracy = TP+ TN /(TP + TN + FP+ FN), (1)
Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), 3)
Flescore — 2 x Precision x Recall @

Precision + Recall’

where TP and FP represent the quantity of true and false
positives, respectively, and and represent the quantity of true
and false negatives, respectively.

As presented in Table 4, the MixNet approach demon-
strates the highest precision of 0.9652 for the normal
pelvic category. Comparatively, the precision of the proposed
method is measured at 0.9416, indicating a marginal decrease
of 0.0236 in comparison to the MixNet approach. Similarly,
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the recall rate of the proposed method reaches 0.9621,
surpassing MixNet by 0.032. Turning to the ovarian cyst
category, it is noteworthy that MixNet achieves the highest
recall rate, while the proposed method exhibits superior
precision and F1-Score. In the context of impure ovarian
cyst instances, the proposed methodology attains the highest
levels of precision, recall, and F1-Score outcomes. In terms
of performance metrics holistically, the method introduced
in this study demonstrates a substantial advantage over
alternative approaches, manifesting balanced accuracy across
all three recognition categories. Moreover, the F1-Score,
as an evaluation metric, stands as a more representative
measure than the other two, given its nature as a weighted
amalgamation of recall rate and accuracy. Significantly,
as depicted in Figure 6, this study achieves the highest
F1-Score across all three categories, underscoring the robust-
ness of the proposed methodology.

The confusion matrices obtained by various methods are
depicted in Figure. 7. The normal pelvic cavity, ovarian
cyst, and impure ovarian cyst are represented by 17,
“2” and ““3”, respectively. The diagonal line shows the
classification accuracy of each category. According to the
confusion matrix, the classification accuracy of ovarian cysts
was relatively high, while the classification accuracy of
normal pelvic and impure ovarian cyst was low. This is
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FIGURE 7. The confusion matrices of different models, including
ShuffleNetV2, EfficientNet, MixNet and Ocys-Net models.
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FIGURE 8. The ROC curves for three different categories in Ocys-Net
model.

because there is less difference in the presentation of
symptoms between the normal pelvic category and the
non-pure ovarian cyst category in the image, so there is
more potential for confusion. In this work, 3% of normal
pelvic cavities are mistaken for impure ovarian cysts, and
4% of impure ovarian cysts are mistaken for normal pelvic
cavities. The MixNet method misclassified 4% of normal
pelvic cavities as impure ovarian cysts, and the EfficientNet
and ShuffleNetV2 error rates are as high as 6% and 7%,
respectively. In general, the classification accuracy of the
proposed method for each category is higher and more
balanced.

This study further evaluates the performance of the
proposed algorithm and draws the receiver operating char-
acteristic (Receiver Operating Characteristic, ROC) curve.
This curve is widely used to evaluate the performance of
classifiers and reliably distinguish between positive and
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FIGURE 9. The ROC curve comparison of four major lightweight models.

negative classes. The ROC curve of the Ocys-Net model
proposed in this chapter is shown in Figure 8, and the
performance is evaluated by the area index (AUC) of the
curve. In the ovarian cyst detection task, the algorithm has
the best recognition effect on the category of ovarian cysts,
and its AUC value reaches 0.92, indicating that the algorithm
has high accuracy and sensitivity. This was followed by
the normal pelvis category with an AUC of 0.89, and the
worst classifier was the non-pure ovarian cyst category with
an AUC of 0.85. In addition, this study also calculated
the AUC values of the micro-average (micro-average) ROC
curve and the macro-average (macro-average) ROC curve,
which were 0.87 and 0.89, respectively. This shows that the
algorithm performed well in terms of overall classification
ability and can effectively distinguish different ovarian cyst
types. Therefore, the Ocys-Net model has great practical
application value and provides a useful exploration for the
development of the field of medical image recognition.

Figure 9 displays the microscopic average ROC curve
comparison results of four different classification models
used in ovarian cyst recognition tasks. The performance of
each classifier was evaluated based on the area under the
curve (AUC) metric. The results showed that MobileNetV3
had the poorest performance, with an AUC value of 0.78.
ShuffleNetV2 and EfficientNet had slightly better AUC
values of 0.80 and 0.85, respectively. However, the Ocys-Net
proposed in this paper stood out with an AUC value of 0.87,
indicating its stronger classification ability and robustness.
Therefore, the Ocys-Net model has greater potential for prac-
tical applications and provides strong support for research and
practice in the field of medical image recognition.

V. DISCUSSION AND CONCLUSION

In this paper, an efficient and lightweight classification and
diagnosis network for ovarian cysts, Ocys-Net, is proposed to
realize the automatic classification of normal pelvic, ovarian,
and non-pure ovarian cysts. This method can help doctors
make quick decisions and greatly reduce the risk of missed
diagnoses and misdiagnoses. Firstly, the model improves
the performance of the block cell network by adopting the
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inverse bottleneck design with a large convolution kernel,
a thin middle, and two thick sides. Second, ECA focuses
on modules that extract key characteristics more efficiently,
thereby further improving performance. In order to ensure
the accuracy and reliability of the model, clinical experts
make use of their professional knowledge and experience to
diagnose ovarian cysts by observing ultrasound images, with
the diagnosis results of clinical experts as the gold standard.
At the same time, the model output is also professionally
evaluated by clinical professionals, thus effectively ensuring
the usability of the model. This method can effectively reduce
the workload of doctors and is of great significance for the
diagnosis and treatment of ovarian cyst-related diseases.
A large number of experiments have verified the effectiveness
of this model, which not only improves the engineering
practicability of ovarian cyst classification but also introduces
a new way of thinking about medical image analysis.
Despite initial success in identifying ovarian ultrasound
images, the method’s use is confined to three specific
types of ovarian cysts, and the dataset size is limited.
This suggests that we still need to broaden the research to
include more forms of cysts. Furthermore, given the need for
both doctors and patients to fully understand the rationale
behind model diagnosis or classification decisions, the issue
of explainability is of critical importance in the medical
field. Although the accuracy of the model in identifying
ovarian cysts is excellent, its interpretability remains a great
challenge. Therefore, we will work on solving this problem to
ensure that the decision-making process of the model can be
clearly explained and understood. In the future, our research
direction will focus on developing more robust systems
designed to identify more types of ovarian cysts while
improving the interpretability of the model. We believe that
this will help drive the practical application of smart medical
technology and improve the accuracy and safety of medical
diagnostics to better meet the needs of patients and doctors.
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