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ABSTRACT This paper considers device-to-device (D2D) communications overlaying cellular networks.
Combined with cooperative relay technology, a D2D user can serve as a relay for a cellular link and
gain the opportunity to access the corresponding cellular spectrum. Considering mobile terminals’ limited
battery capacity and motivated by green communication, we propose a resource scheduling scheme, which
comprises joint power and spectrum allocation, mode selection, and link matching. Unlike previous works,
to balance energy utilization and extend the network lifetime, this scheme sets a price for each node and
minimizes the system cost during each frame instead of energy efficiency (EE). Specifically, we investigate
the power and spectrum allocation problem to characterize the minimum cost of matched links. We prove it
to be nonconvex and obtain the optimal solution by the graphic method and Newton’s method with a small
number of iterations. We also discuss the energy pricing strategy. In order to reduce communication and
computation overhead, we propose a heuristic pricing strategy that involves no iteration and supposes nodes’
energy prices are inversely proportional to their residual energy. Through simulations under various cases,
we verify that the proposed scheme significantly improves network lifetime and suits real-time operations
while guaranteeing the quality of service (QoS) requirement. Moreover, the simulation results demonstrate
that the proposed scheme performs the same as the maximum EE scheme if the energy prices are equal at
each node.

INDEX TERMS Cooperative D2D communication, energy price, green communication, network lifetime,
resource scheduling.

I. INTRODUCTION
With the rapid development of wireless communications at
the industrial and technological levels, mobile terminals and
data traffic have shown explosive growth in the past twenty
years. As a result, spectrum resources are becoming increas-
ingly crowded and scarce. To improve the spectral efficiency
(SE) of wireless communication systems, a series of key
technologies have emerged, such as heterogeneous network
[1], massive multiple-input multiple-output (MIMO) [2],
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device-to-device (D2D) communication [3]. Among them,
D2D communication refers to the technology that allows
direct communication between user equipment (UE) with
or without the involvement of network infrastructures such
as a base station (BS) or an access point [4]. Since mobile
users’ high data rate services (e.g., video sharing, gaming)
in cellular networks are potentially in range for direct
communications, D2D communications can improve the
system SE. Moreover, D2D communication can also reduce
latency, improve energy efficiency (EE), and reduce cellular
data service load through direct communication, thereby
avoiding system congestion [5]. In general, D2D links reuse
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cellular spectrum resources, and there are generally two reuse
modes: underlay and overlay.

Cooperative relay technologies can improve the link
quality of wireless networks by achieving spatial diversity
advantages [6]. In the context of overlay D2D communica-
tions, D2D users can serve as relays for cellular users (CUs)
and gain a higher opportunity to access the cellular spectrum
band. On the other hand, CUs can improve their performance
by D2D users relaying their traffic. It will achieve a win-
win situation for both sides to cooperate. Based on the above
analysis, the authors of [7] first proposed a cooperative D2D
communi-cation framework for cellular networks, where
D2D receivers (DRs) served as relays.

Effective resource scheduling enables high performance
for both cellular and D2D links. As motivated, resource
scheduling in cooperative D2D communication has been
widely investigated towards different performance metrics
and under various mathematical frameworks. The authors in
[8] investigated the pairing problem among multiple CUs
and D2D links under the cooperative D2D communication
framework presented in [7], formulated it as a one-to-one
matching game, and then proposed a learning algorithm
to solve it. Further, in [9], they proposed a two-timescale
scheduling allocation scheme to reduce the overhead under
the previous matching model. In [10], Lee et al. investigated
cooperative D2D communication in an uplink cellular
network. They derived the optimal resource allocation
scheme to maximize the average achievable rate under the
outage probability constraint. Based on contract theory, the
authors of [11] proposed a cooperative spectrum-sharing
mechanism to increase transmission opportunities for the
D2D links while maximizing the profit of the cellular links.
The authors of [12] developed an optimal power allocation
scheme to maximize the sum rate of non-orthogonal multiple
access (NOMA)-based D2D communications with imperfect
successive interference cancellation (SIC) decoding. In [13],
Gao et al. investigated the optimal dynamic social-aware
peer selection with spectrum-power trading to maximize
the average sum EE of CUs in D2D-enabled uplink
orthogonal frequency division multiple access (OFDMA)
cellular networks. Most of the above literature focuses on
improving UEs’ transmission rate, ignoring their energy
consumption (EC). Some of them, e.g., [13], emphasize
maximizing EE for CUs or D2D users, not the entire
network.

Due to battery capacity limitations and the exponentially
increasing demand for mobile traffic, EE has become a
critical systemmetric that leads to green communication [14].
Considering that most wireless communication networks are
energy-limited, resource scheduling strategies that maximize
system throughput will lead to the rapid EC of network
nodes and the consequent frequent replacement of batteries,
contrary to the principle of green communication. Many
existing works have focused on designing and operating
energy-efficient D2D-enabled networks, including but not
limited to the cooperative D2D communication framework.
In [15], the authors investigated the SE and EE tradeoff

relationship and proposed a distributed energy-efficient
resource allocation scheme by exploiting the properties
of nonlinear fractional programming. In [16], considering
the limited computation resources, Cheng et al. proposed
a D2D-assisted computation offloading scheme, in which
the block coordinate descent method combined with the
successive convex approximation is employed to maximize
the EE of NOMA-enabled cognitive radio networks. The
authors of [17] derived an energy-efficient resource allocation
scheme for D2D communications underlaying NOMA-based
cellular networks with energy harvesting. The proposed
scheme could maximize the EE of a D2D link while
guaranteeing the quality of service (QoS) of CUs with
low complexity. In addition, deep learning applications on
resource scheduling have recently attracted much attention
because they handle nonconvex optimization problems with
a low computation time [18]. The authors in [19] applied
a learning-based method to maximize both SE and EE
for wireless-powered D2D networks. In [20] and [21],
reinforcement-learning methods addressed energy-efficient
resource allocation by making agents interact with unknown
wireless environments.

Green communication aims to explore sustainability
regarding environmental conditions and EC without com-
promising users’ QoS. Most of the literature, including the
ones mentioned above, currently focuses on improving the
EE of D2D-enabled cellular networks. However, compared
to solely maximizing EE, it is more important to minimize
the labor costs required for network maintenance and extend
the lifetime of these networks for green communication [22].
Therefore, to extend the network lifetime, it is necessary
to reduce the EC during each transmission period and
balance the utilization of each UE’s residual energy while
guaranteeing UEs’ QoS requirements.

According to price theory, the price of a commodity
reflects its supply and demand relationship. In short, if the
price of a commodity is relatively high, its supply/demand
ratio is relatively small, and vice versa [23]. Following this
idea, we price each UE’s residual energy and schedule system
wireless resources according to minimum cost criteria during
each frame. Guiding by a reasonable pricing mechanism,
the EC among different nodes will be balanced, and the
network lifetime will be extended. There are many existing
works related to price setting [8], [9], [11], [13], [24], [25],
[26]. According to our perspective, there are three issues
with them. Firstly, to the best of our knowledge, they have
rarely focused on balancing UEs’ EC in cooperative D2D
communications to prolong the network lifetime. Take [24] as
an example. It proposed a spectrum-power trading scheme to
maximize the weighted sum EE of D2D links for cooperative
D2D overlaying communications. However, the weights of
the D2D links were predefined and maintained constants
rather than dynamically adjusting according to their residual
energy. Besides, the EC of CUswas not considered. Similarly,
the author of [13] adopted the average EEs of CUs as the
utility function, which implied the weights of the CUs were
equal.
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Secondly, one user’s utility function comprises gain and
loss, usually measured by two performance metrics. How
to set prices to link them is a problem. Existing works
have designed various utility functions [27], introduced extra
auxiliary parameters, and set these parameters as constants
for simplicity to tackle this problem. For instance, [25]
formulated the joint bandwidth allocation and relay selection
problem in multi-homing cooperative D2D networks as a
two-stage Stackelberg game. Except for the charging price
vector P, the authors also introduced α as the unit cost
per bit into the utility in (11) to link the gain and loss.
Then, they set α = 1 for the benefit of simplicity. The
same situation also occurred in [26]. Besides the price
λi, the authors introduced transmission rate income and
payoff factors in users’ utility and set them as constants.
Some other works even set the prices as constants [9].
From an intuitive perspective, these assumptions and sim-
plifications differ from actual economic activities and lack
convincingness.

Lastly, most existing works set prices through iterative
methods, which would introduce additional communication
and computation overheads, such as the pricing algorithm in
[24] and [26]. Based on the above analysis, we are naturally
motivated to develop a pricing algorithm that does not require
iteration and is only related to UEs’ residual energy.

Meanwhile, many existing studies investigate resource
allocation problems between the cellular and D2D links
based on certain simplified conditions. For example, the
authors of [7] considered resource scheduling for coopera-
tive D2D communications with fixed spectrum allocation.
In [8] and [9], the authors assumed a D2D transmitter
(DT) forwards a CU’s data and communicates with a
DR with the same transmit power. However, these simpli-
fied conditions constrain these schemes to achieve better
performance.

This paper investigates the resource scheduling problem
based on energy price for cooperative D2D communications
overlaying cellular networks from the network-centric [28]
perspective. The main contributions of this work are summa-
rized as follows.

1) We present a resource scheduling scheme comprising
jointly power and spectrum allocation, mode selection, and
link matching. By introducing energy price, the proposed
scheme optimizes the system cost function during the
network lifetime instead of traditional EE to extend the
network lifetime of our system. Numerical simulation results
verify the superiority of the proposed scheme and show its
efficiency.

2) We propose an optimal algorithm for solving the
resource allocation problem without simplified conditions.
Unlike [29], we prove this problem is nonconvex and divide
it into two sub-problems, which can be solved by the graphic
method and Newton’s method, respectively. Furthermore,
we show that its solution is optimal and can be obtained with
low computational complexity through simulation.

3) We discuss the energy pricing strategy and propose
a heuristic scheme that can balance the utilization of each

UE’s energy and prolong the network lifetime. This scheme
does not involve iteration, which can reduce computation
overhead. Besides, if the energy prices are equal at each
node during each frame, the BS does not need the feedback
of energy state information. In this case, the simulation
results demonstrate that the proposed scheme minimizes
the overall system EC and performs the same as the
maximum EE scheme in terms of EE. Moreover, it has a
much lower computational complexity than the maximum
EE scheme.

The rest of this paper is organized as follows. In Section II,
we describe the considered system model. We study the
network-centric optimal resource scheduling problem and
the energy pricing strategy in Section III. Numerical results
are presented in Section IV to demonstrate the benefits of
our proposed schemes. Finally, we conclude this paper in
Section V.

II. SYSTEM MODEL
We consider D2D communications overlying an OFDMA-
based cellular network. As shown in Fig. 1, a BS is located
at the geographic center of a single cell and operates
over an authorized spectrum band. The OFDMA technique
divides the band into several orthogonal channels with equal
bandwidthW . An OFDMA frame lasts T in the time domain.
There are M cellular links and N D2D links in this cell.
M = {1, 2, . . . ,M} and N = {1, 2, . . . ,N } denote the
sets of the cellular links and the D2D links, respectively.
The BS supports operator-controlled D2D communications
[30], [31]. Due to the limited power budgets of mobile
terminals, we focus on the uplink transmission, although the
proposed system is also suitable for the case of the downlink
transmission.
Remark 1: Since the 3rd generation partnership project

(3GPP) release 15 was frozen, the fifth-generation (5G) new
radio (NR) has adopted the orthogonal frequency division
multiplexing (OFDM) for the enhanced mobile broadband
(eMBB) scenario [32]. For simplicity in the discussion,
we take the OFDMA-enabled D2D communication as an
example to introduce the proposed scheme. The proposed
scheme described in the next section can also be applied
in NOMA-based uplink cellular networks for the massive
machine-type communication (mMTC) scenario. Moreover,
it also has the potential to combine with technologies
beyond 5G, e.g., simultaneously transmitting and reflecting
reconfigurable intelligent surface (STAR-RIS) [33], which
we will explore in our future work.

At the beginning of each frame, the BS collects each link’s
channel status information (CSI) through channel probing
and feedback for resource scheduling [34]. During one frame,
each cellular link is assigned only one channel. The BS does
not assign dedicated spectrum resources to the D2D links and
allows them to share the channels of the cellular links through
cooperative or overlay mode. In the cooperative mode, one
D2D user serves as a relay for a cellular link. After the cellular
link completes data transmission, the BS allows the D2D link
to access the corresponding channel for its data transmission.
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FIGURE 1. An illustration of the transmission in the cooperative and
overlay modes.

TABLE 1. Summary of important notations.

Without loss of generality, we consider cases where DTs
act as relays. For the sake of simplicity, we assume that the
transmission directions of the D2D links remain unchanged
during each frame. Fig. 1 illustrates the transmission between
cellular link 1 and D2D link 1 in the cooperative mode, and
the transmission between cellular link 2 and D2D link 2 in
the overlay mode, respectively. Some important notations of
this paper are presented in Table. 1.
The transmission in the cooperative mode between cellular

link m ∈ M and D2D link n ∈ N during an ODFMA frame
is divided into three phases, as shown in Fig. 2. In phase one,
CUm broadcasts its data toward the BS and DTn with transmit
power pmb. In phase two, DTn forwards the received data
to the BS with transmit power pnb. The signals from CUm
and DTn are merged through the maximal-ratio combining
(MRC) method at the BS [35]. Both phase one and phase

FIGURE 2. Frame structure of the cooperative D2D communication.

two last θmn of the frame length, where θmn ∈ (0, 0.5) is
referred to as the spectrum allocation factor. Phase three lasts
1 − 2θmn of the frame length, where DTn transmits its data
with power pnn. The EC of CUm in phase one is θmnpmbT .
The EC of DTn in the last two phases are θmnpnbT and
(1 − 2θmn) pnnT , respectively. This paper takes the decode-
and-forward (DF) protocol as an example and ignores the
receivers’ EC.

Assuming that channel gains remain constant during one
frame, we denote hmb, hmn, hnb, hnn as channel gains of the
CUm → BS link, the CUm → DTn link, the DTn → BS link,
and the DTn → DRn link, respectively.We define parameters
λmb ≜ hmb

/
(Wn0), λmn ≜ hmn

/
(Wn0), λnb ≜ hnb

/
(Wn0)

and λnn ≜ hnn
/
(Wn0), where n0 denotes the Gaussian noise

power spectral density. Then, the achievable rates of cellular
link m and D2D link n during one frame can be written as

Rm = θmnW log2 (1 + min {pmbλmn, pmbλmb + pnbλnb}),

(1)

Rn = (1 − 2θmn)W log2 (1 + pnnλnn). (2)

In the overlay mode, the BS reserves a part of a frame for
D2D communication. Assuming that CUm transmits for αmn
of the frame length, the EC of CUm and DTn can be denoted
as αmnpmbT and (1 − αmn) pnnT , where αmn ∈ (0, 1). The
achievable rates of cellular link m and D2D link n during a
frame can be expressed as

Rm = αmnW log2 (1 + pmbλmb), (3)

Rn = (1 − αmn)W log2 (1 + pnnλnn). (4)

Remark 2: To schedule resources for M cellular and N
D2D links, the BS must gather the instantaneous CSI of
the links not directly involved with the BS through control
channels at the beginning of each frame. Suppose a CSI report
contains B bits. For the cooperative mode, the CSI of the
CUm → DTn link and DTn → DRn link is required, which
incurs an overhead size of 2MNB bits. Since only the CSI
of the DTn → DRn link is required for the overlay mode,
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the overhead size is MNB bits. Due to the need for the BS
to perform mode selection, the CSI overhead size over the
control channels for our system is 2MNB bits.

III. PROPOSED RESOURCE SCHEDULING SCHEME BASED
ON ENERGY PRICE
Green communication, which aims to reduce EC and
negative impacts on the environment without compromising
users’ QoS, is a trend that conveys sustainability for
the communications industry. Efficient wireless scheduling
allocation is an essential means to achieve green communi-
cation. For energy-constrained networks, prolonging the
network lifetime is more critical than maximizing system
throughput (Network lifetime may be defined in different
ways depending on the application. This paper defines it as
the time experienced from the initial status until any node in
the network runs out of energy.). Because the latter will lead
to rapid EC and frequent battery charging or replacement,
contrary to the principle of green communication. Currently,
the mainstream resource scheduling schemes for energy-
constrained networks aim to maximize system EE or
minimize system EC. However, these schemes may lead to
unbalanced EC among different nodes, resulting in some
nodes running out of energy more quickly.

To handle this problem, we design a resource scheduling
scheme based on energy price in this section. At the beginning
of each frame, the BS sets prices for the residual energy of
CUm and DTn. Based on price theory [23], a node with more
residual energy has a lower energy price, and vice versa.
The EC among different nodes in the network will become
more balanced through a reasonable pricing mechanism and
a resource scheduling scheme according to minimum cost
criteria. Thus, the network lifetime can be significantly
extended.

In the remainder of this section, we first focus on the
optimal power and spectrum allocation of cellular link m
and D2D link n in the cooperative and overlay modes; then,
we discuss the mode selection and link matching betweenM
cell links and N D2D links; finally, we propose a heuristic
pricing scheme which is suitable for real-time operation.

A. OPTIMAL POWER AND SPECTRUM ALLOCATION IN
THE COOPERATIVE MODE
Denoting µm and µn as the energy prices of CUm
and DTn, the cost paid by CUm and DTn within a
frame can be expressed as µmθmnpmbT + µnθmnpnbT and
µn (1 − 2θmn) pnnT , respectively. Denote C (m, n, i) as the
total cost of cellular link m and D2D link n when the latter
shares the channel of the former in mode i (i = 1 corresponds
to the cooperative mode, i = 2 corresponds to the overlay
mode). Therefore, we have

C(m, n, 1) = [µmθmnpmb+µnθmnpnb + µn(1−2θmn)pnn]T .

(5)

In order to extend the network lifetime, (5) needs to be
minimized during each frame. The optimization problem can

be formulated as

min
pmb,pnb,pnn,θmn

µmθmnpmb + µnθmnpnb + µn (1−2θmn) pnn,

s.t.



pmbλmb + pnbλnb ≥ 2Qm/(W θmn) − 1,
pmb ≥ plowmb ,
pnn ≥ plownn ,
pmb, pnb, pnn ≤ Pmax ,
0 < θmn < 0.5,

(6)

where the first three constraints correspond to the minimum
rate requirement of cellular link m and D2D link n,
which we denote as Qm and Qn, respectively. plowmb =[
2Qm/(W θmn) − 1

] /
λmn, plownn =

{
2Qn/[W (1−2θmn)] − 1

} /
λnn

are the lower bound of pmb and pnn to make effective CUm →

DTn link and DTn → DRn link guaranteeing the data
transmission at the rate of Qm and Qn. Moreover, the fourth
constraint corresponds to the limitations of the maximum
transmit power of CUm and DTn. Without loss of generality,
we assume they are equal and denoted by Pmax .
Proposition 1: Problem (6) is nonconvex.
Proof: Denoting the objective function of problem (6)

as 8(pmb, pnb, pnn, θmn), the Hessian matrix of 8 can be
calculated as

H =


0 0 0 µm
0 0 0 µn
0 0 0 −2µn
µm µn −2µn 0

 . (7)

The characteristic polynomial of H is given by

det (H − λI) = λ2
(
λ−

√
µ2
m + 5µ2

n

) (
λ+

√
µ2
m + 5µ2

n

)
,

(8)

where I is a 4 × 4 identity matrix.
By solving det (H − λI) = 0, we can get the eigenvalues

of H as λ1 = λ2 = 0, λ3 =
√
µ2
m + 5µ2

n > 0, λ4 =

−
√
µ2
m + 5µ2

n < 0. Thus, H is not positive semi-definite
in the domain of problem (6). Therefore, 8 is not a convex
function, and problem (6) is nonconvex [36].
In [29], the authors formulated a similar resource allocation

problem in a cooperative cognitive radio network. Their
optimization aimed to minimize the overall system EC,
corresponding to the case that µm = µn = 1 in problem (6).
However, theymistook the optimization problem for a convex
problem and then directly applied Karush-Kuhn-Tucker
(KKT) [36] conditions to obtain a unique global optimal
solution, which does not exist. In this paper, to simplify
problem (6), we divide it into two sub-problems. First,
assuming that θmn is fixed, the power allocation problem
can be transformed into a linear programming problem.
Then, with the power allocation solution, we can obtain the
spectrum allocation solution through Newton’s method [36].
In section IV, we use simulation to prove that the power and
spectrum allocation solution is optimal.

On the premise that θmn is fixed, it can be easily observed
that 8 is a monotonically increasing function of pnn.
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FIGURE 3. An illustration of the graphic method to find (p∗

mb,p∗

nb).

Therefore, pnn should take the minimum value in the domain
of problem (6), i.e., p∗

nn = plownn . How to find the optimal
power allocation solution

(
p∗
mb, p

∗
nb

)
is formulated as

min
pmb,pnb

µmpmb + µnpnb,

s.t.


pmbλmb + pnbλnb ≥ 2Qm/(W θmn) − 1,
plowmb ≤ pmb ≤ Pmax ,
0 < pnb ≤ Pmax .

(9)

Problem (9) is a linear programming problem involving
only two variables. By using x and y to represent pmb and
pnb, it can be solved through the graphic method [37] in the
xOy plane. For the sake of discussion, we define the following
auxiliary functions

f (x, y) ≜ θmnW log2 (1 + λmbx + λnby), (10)

g(y) ≜
1
λmb

[
2Qm/(W θmn) − 1 − λnby

]
, (11)

h (x) ≜
1
λnb

[
2Qm/(W θmn) − 1 − λmbx

]
. (12)

We also denote kc and ks as the absolute values of the slope
of isolines c: φ = µmx + µny and s: 2Qm/(W θmn) − 1 =

λmbx + λnby, where kc ≜ µm
/
µn, ks ≜ λmb

/
λnb, and φ

is the objective function of problem (9). Denoting kAC as
the absolute value of the slope of straight line AC, we find
that the relationship between ks and kAC is irrelevant to the
solving process of problem (9). Thus, we take the case that
ks < kAC for example to illustrate the solving process, as
shown in Fig. 3.
Isoline s divides the xOy plane into two half-planes. The

intersection of the upper half-plane and the rectangle ABCD
represents the feasible region of problem (9), illustrated as the
shaded region in Fig. 3. According to the different values of
Qm, there are three cases of s as follows.

1) s1 corresponding to f
(
plowmb ,Pmax

)
≤ Qm ≤

f (Pmax ,Pmax), denotes isoline s is below point B (Pmax ,Pmax)
(or passes through B) and above point A

(
plowmb ,Pmax

)
(or

passes through A);
2) s2 corresponding to f (Pmax , 0) < Qm < f

(
plowmb ,Pmax

)
,

denotes isoline s is below A and above point C (Pmax , 0);
3) s3 corresponding to f

(
plowmb , 0

)
< Qm ≤ f (Pmax , 0),

denotes isoline s is below C (or passes through C) and above
point D

(
plowmb , 0

)
.

On the other hand, if isoline c moves up, φ will increase.
Thus, the first intersection point of isoline c and the shaded
region corresponds to

(
p∗
mb, p

∗
nb

)
. WhenQm > f (Pmax ,Pmax)

or plowmb > Pmax , the feasible region is ∅. When Qm ≤

f (plowmb , 0) and p
low
mb ≤ Pmax , the feasible region is the entire

rectangle ABCD (when plowmb = Pmax , the feasible region is
the segment AD), and

(
p∗
mb, p

∗
nb

)
lies on point D

(
plowmb , 0

)
.

Since p∗
nb = 0, CUm will not select DTn as its relay in

this situation. Therefore, the following derivation is based on
the condition that f

(
plowmb , 0

)
< Qm ≤ f (Pmax ,Pmax) and

plowmb ≤ Pmax .
When kc < ks, isoline c corresponds to c1 in Fig. 3,

which indicates that the energy price of DTn is relatively
high. Thus, CUm should purchase energy from DTn as little
as possible, and DTn should utilize its energy as little as
possible. Conversely, when kc ≥ ks, isoline c corresponds
to c2. CUm should consume its energy as little as possible.
Combining the value of Qm, the optimal solution

(
p∗
mb, p

∗
nb

)
can be obtained as follows.
Case 1: When kc < ks and f (Pmax , 0) < Qm ≤

f (Pmax ,Pmax), the solution lies on the segment BC (except
C), such as point a1 or a2. We have

(
p∗
mb, p

∗
nb

)
=

(Pmax , h (Pmax)). The objective function of problem (6) can
be rewritten as

8(θmn) = µmθmnPmax

+
µnθmn

λnb

[
2Qm/(W θmn) − 1 − λmbPmax

]
+
µn (1 − 2θmn)

λnn

{
2Qn/[W (1−2θmn)] − 1

}
. (13)

The first and second derivatives of 8(θmn) are
represented as

ϕ (θmn)

= µmPmax +
µn

λnb

[(
1 −

Qm ln 2
W θmn

)
2Qm/(W θmn)

−1 − λmbPmax

]
−

2µn
λnn

×

{(
1 −

Qn ln 2
W (1 − 2θmn)

)
2Qn/[W (1−2θmn)] − 1

}
, (14)

ϕ′ (θmn)

=
µn

λnb

(Qm ln 2)2

W 2θ3mn
2Qm/(W θmn)

+
4µn
λnn

(Qn ln 2)2

W 2 (1 − 2θmn)
3 2

Qn/[W (1−2θmn)]. (15)
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TABLE 2. Four cases to obtain (p∗

mb, p∗

nb).

Case 2: When kc < ks and f
(
plowmb , 0

)
< Qm ≤

f (Pmax , 0), the solution lies on segment CD (except D), such
as point a3.

(
p∗
mb, p

∗
nb

)
= (g (0) , 0). Then we have

8(θmn) =
µmθmn

λmb

[
2Qm/(W θmn) − 1

]
+
µn (1 − 2θmn)

λnn

{
2Qn/[W (1−2θmn)] − 1

}
, (16)

ϕ (θmn) =
µm

λmb

[(
1 −

Qm ln 2
W θmn

)
2Qm/(W θmn) − 1

]
−

2µn
λnn

×

{(
1−

Qn ln 2
W (1−2θmn)

)
2Qn/[W (1−2θmn)]−1

}
,

(17)

ϕ′ (θmn) =
µm

λmb

(Qm ln 2)2

W 2θ3mn
2Qm/(W θmn)

+
4µn
λnn

(Qn ln 2)2

W 2 (1 − 2θmn)
3 2

Qn/[W (1−2θmn)]. (18)

Case 3: When kc ≥ ks and f
(
Plowmb ,Pmax

)
≤ Qm ≤

f (Pmax ,Pmax), the solution lies on segment AB, such as point
a4.

(
p∗
mb, p

∗
nb

)
= (g (Pmax) ,Pmax). There are

8(θmn)

=
µmθmn

λmb

[
2Qm/(W θmn) − 1 − λnbPmax

]
+ µnθmnPmax

+
µn (1 − 2θmn)

λnn

{
2Qn/[W (1−2θmn)] − 1

}
, (19)

ϕ (θmn)

=
µm

λmb

[(
1−

Qm ln 2
W θmn

)
2Qm/(W θmn)−1−λnbPmax

]
+µnPmax

−
2µn
λnn

{(
1 −

Qn ln 2
W (1 − 2θmn)

)
2Qn/[W (1−2θmn)] − 1

}
,

(20)

ϕ′ (θmn)

=
µm

λmb

(Qm ln 2)2

W 2θ3mn
2Qm/(W θmn)

+
4µn
λnn

(Qn ln 2)2

W 2 (1 − 2θmn)3
2Qn/[W (1−2θmn)]. (21)

Case 4: When kc ≥ ks and f
(
Plowmb , 0

)
< Qm <

f
(
Plowmb ,Pmax

)
, the solution lies on segment AD (except

A and D), such as point a5 or a6.
(
p∗
mb, p

∗
nb

)
=(

Plowmb , h
(
Plowmb

))
. There are

8(θmn)

=
µnθmn

λmn

(
λmn

λnb
+ kc − ks

) [
2Qm/(W θmn) − 1

]
+
µn (1 − 2θmn)

λnn

{
2Qn/[W (1−2θmn)] − 1

}
, (22)

ϕ (θmn)

=
µn

λmn

(
λmn

λnb
+ kc − ks

) [(
1 −

Qm ln 2
W θmn

)
2Qm/(W θmn) − 1

]
−

2µn
λnn

{(
1 −

Qn ln 2
W (1 − 2θmn)

)
2Qn/[W (1−2θmn)] − 1

}
,

(23)

ϕ′ (θmn)

=
µn

λmn

(
λmn

λnb
+ kc − ks

)
(Qm ln 2)2

W 2θ3mn
2Qm/(W θmn)

+
4µn
λnn

(Qn ln 2)2

W 2 (1 − 2θmn)
3 2

Qn/[W (1−2θmn)]. (24)

For all the four cases above, since θmn ∈ (0, 0.5), the
inequality ϕ′ (θmn) > 0 holds. ϕ (θmn) is monotonically
increasing. Note that

lim
θmn→0+

ϕ (θmn) = −∞ and lim
θmn→0.5−

ϕ (θmn) = +∞.

Hence, there exists a θ ′
mn which satisfies ϕ

(
θ ′
mn

)
=

0. When θmn ∈
(
0, θ ′

mn
)
, ϕ (θmn) < 0 holds. 8(θmn)

is monotonically decreasing. When θmn ∈
(
θ ′
mn, 0.5

)
,

ϕ (θmn) > 0 holds. 8(θmn) is monotonically increas-
ing. So 8(θmn) achieves a unique minimum at θ ′

mn,
i.e., θ∗

mn = θ ′
mn.

In this paper, we use Newton’s method to find the optimal
spectrum allocation strategy θ∗

mn as follows.
1) Take θ (1)mn ∈ (0, 0.5) as the initial value of the iterative

algorithm.
2) Denoting θ (k)mn as an approximate value of θ∗

mn after the
k-th iteration, an even better θ (k+1)

mn is given by

θ (k+1)
mn = θ (k)mn −

ϕ
(
θ
(k)
mn

)
ϕ′

(
θ
(k)
mn

) . (25)

3) If the termination criterion
∣∣∣θ (k+1)
mn − θ

(k)
mn

∣∣∣ ≤ ε0

satisfies, we have θ∗
mn ≈ θ

(k+1)
mn , where ε0 is a positive number

that is small enough.
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It is worth noting that the computational process to achieve(
p∗
mb, p

∗
nb, p

∗
nn, θ

∗
mn

)
is opposite to the above analysis process.

The optimal power allocation can be obtained only by using
Newton’s method to get θ∗

mn first. Moreover, if θ∗
mn is obtained

in case 2, we have p∗
nb = 0. The cooperative communication

between CUm and DTn will not be implemented.

B. OPTIMAL POWER AND SPECTRUM ALLOCATION IN
THE OVERLAY MODE
In the overlay mode, the cost paid by CUm and DTn within a
frame when D2D link n shares the channel of cellular link m
is given by

C (m, n, 2) = [µmαmnpmb + µn (1 − αmn) pnn]T . (26)

The optimal power and spectrum allocation problem, accord-
ing to the minimum cost criterion, is formulated as

min
pmb,pnn,αmn

µmαmnpmb + µn (1 − αmn) pnn,

s.t.


pmb ≥

[
2Qm/(Wαmn) − 1

] /
λmb,

pnn ≥
{
2Qn/[W (1−αmn)] − 1

} /
λnn,

pmb, pnn ≤ Pmax ,
0 < αmn < 1,

(27)

where the first and second constraints correspond to the
minimum rate requirementQm andQn, respectively. The third
constraint corresponds to the limitations of the maximum
transmit power of CUm and DTn.
We denote the objective function of problem (27)

as 9 (pmb, pnn, αmn). Noting that 9 is a monotonically
increasing function of pmb and pnn, when αmn is fixed,
we have p∗

mb =
[
2Qm/(Wαmn) − 1

] /
λmb and p∗

nn ={
2Qn/[W (1−αmn)] − 1

} /
λnn. Thus, substituting p∗

mb and p∗
nn

into 9, it can be rewritten as

9 (αmn) = µmαmn

[
2Qm/(Wαmn) − 1

] /
λmb + µn (1 − αmn)

×

{
2Qn/[W (1−αmn)] − 1

} /
λnn. (28)

The first and second derivatives of9 (αmn) are represented
as

ψ (αmn) =
µm

λmb

[(
1 −

Qm ln 2
Wαmn

)
2Qm/(Wαmn) − 1

]
−
µn

λnn

{(
1−

Qn ln 2
W (1 − αmn)

)
2Qn/[W (1−αmn)]−1

}
,

(29)

ψ ′ (αmn) =
µm

λmb

(Qm ln 2)2

W 2α3mn
2Qm/(Wαmn)

+
µn

λnn

(Qn ln 2)2

W 2 (1 − αmn)
3 2

Qn/[W (1−αmn)]. (30)

Since αmn ∈ (0, 1), we obtain inequality ψ ′ (αmn) > 0.
On the other hand, it is easy to verify that

lim
αmn→0+

ψ (αmn) = −∞ and lim
αmn→1−

ψ (αmn) = +∞.

Consequently, using Newton’s method, we can obtain
the optimal spectrum allocation strategy α∗

mn similarly as
described before.

FIGURE 4. The weighted bipartite graph corresponding to the mode
selection and link matching problem.

C. MODE SELECTION AND LINK MATCHING
In our proposed communication framework, the BS schedules
resources between the cellular and D2D links according to
the QoS requirements, energy prices, and collected CSI.
With {C (m, n, i) |m ∈ M, n ∈ N, i = 1 or 2} obtained above,
the mode selection and link matching strategy π , which
aims to minimize the overall system cost, is formulated
as a weighted bipartite matching problem. We can con-
struct the corresponding bipartite graph as Fig. 4 with
the weight

w (m, n) = V − v (m, n) , (31)

where v (m, n) = min {C (m, n, 1) ,C (m, n, 2)}, and V is a
constant which satisfies V ≥ max {v (1, 1) , . . . , v (M ,N )}.
If Qn cannot be guaranteed in either the cooperative mode

or overlay mode, D2D link n will not share the channel
of cellular link m. The optimal transmit power of CUm is
p∗
mb =

(
2Qm/W − 1

) /
λmb during the entire frame, and we set

C (m, n, 1) = C (m, n, 2) = V . Through the Kuhn-Munkres
algorithm [38], the optimal mode selection and link matching
strategy π∗ between M and N can be determined with the
time complexity of O

(
max {M ,N }

3).
D. ENERGY PRICING STRATEGY
The energy prices will significantly affect the EC of each
node in our system. The energy price of a node implies
its own willingness or that of its corresponding nodes
to consume or buy its energy. Thus, it is essential to
establish a reasonable energy pricing strategy. How to set
the optimal prices has been extensively investigated under
mathematical frameworks such as game theory [8], [9] and
general equilibrium theory [39]. Most existing works started
with designing utility functions. One user’s utility function
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comprises gain and loss, usually measured through two
performance metrics. For instance, if we refer to the problem
formulation section in [26], the gain of D2D link m in
the cooperative mode is its achievable rate given by (2),
and the loss is its average power consumption given by
(1 − 2θmn) pnn. The price µn links them. In order to set the
price, we need to design a utility function carefully [27].
Moreover, there is also a need to introduce extra auxiliary
parameters and make some assumptions or simplifications
[25], [26], which differ from actual economic activities and
may lack convincingness.

On the other hand, most pricing methods in these works
are based on iterative algorithms, which will introduce
massive communication and computation overheads. Take
general equilibrium theory as an example. The equilibrium
price is the only price where the supply and demand are
balanced. Achieving this price needs information sharing and
bargaining between each node in our system, which hinders
real-time operation [40].
In order to reduce communication overhead and make

our algorithm more efficient, we attempt to utilize a
heuristic pricing strategy that involves no iteration and
supposes the energy prices of CUm and DTn during the
t-th frame are inversely proportional to their residual energy
as follows.

µ(t)m = µ(1)m
E (1)m

E (t)m
, (32)

µ(t)n = µ(1)n
E (1)n

E (t)n
, (33)

where µ(1)m and µ(1)n denote the initial energy prices of CUm
and DTn. E

(1)
m and E (1)n denote the initial battery energy of

CUm and DTn. Moreover, E (t)m and E (t)n represent the residual
battery energy of CUm and DTn at the beginning of the t-th
frame, respectively.
Remark 3: To update the energy prices of CUm and DTn,

the value of their residual energy must be sent to the BS
through control channels at the beginning of each frame.
Thus, the size of the energy state information overhead
over the control channels for our proposed communication
framework is 2MND bits, where D indicates the size of an
energy state information report. If we make the energy prices
equal for all the nodes during each frame, the BS needs no
energy state information. In this case, problem (6) minimizes
the overall system EC.

IV. SIMULATION RESULTS
In this section, the performance of our proposed resource
scheduling scheme based on energy price is validated through
simulations. The channel gains are given by a simplified path
loss model h = ξd−γ , where ξ is the multipath fading gain
with a Rayleigh distribution, d is the distance between a
transmitter and a receiver, and γ is the path loss exponent.
Unless otherwise specified, simulation parameters are set as
shown in Table 3.We employ theMonte Carlo simulation and

obtain all the results based on 1000 simulation runs without
a specific illustration.

TABLE 3. Simulation parameters.

A. PERFORMANCE OF CELLULAR LINK m AND
D2D LINK n
First, we investigate the performance of the proposed scheme
when D2D link n shares the channel of cellular link m within
the first frame. In this subsection, we set the distance between
CUm and the BS as dmb = 1000 m, and the distance between
DTn and the BS as dnb = 500 m, respectively. dmn denotes
the distance between CUm and DTn. dnn denotes the distance
between DTn and DRn.
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FIGURE 5. The total EC of cellular link m and D2D link n versus dmn for
different initial energy prices and minimum rate requirements to verify
the optimality of the proposed scheme.

To verify the optimality of the proposed power and
spectrum allocation scheme, we compare it with the optimal
scheme implemented through an exhaustive search. Fig. 5
shows the total EC of cellular link m and D2D link n as
a function of dmn when dnn = 1000 m. Since the triangle
inequality |dmb − dnb| ≤ dmn ≤ dmb + dnb should be
satisfied, we set 500 m ≤ dmn ≤ 1500 m. It can be observed
that the curves of the two schemes overlap for different
initial energy prices and minimum rate requirements, which
means that the two schemes have the same performance. The
same phenomenon occurs under other simulation parameter
configurations, which implies that the proposed scheme is
optimal.

Next, we set µ(1)m = µ
(1)
n = 1, Qm = 10 kbps and Qn =

5 kbps. In this situation, the proposed scheme is equivalent to
the minimum EC scheme. We compare the proposed scheme
with the proposed scheme with fixed spectrum allocation
(αmn = 1

/
2, θmn = 1

/
4) and the maximum EE scheme.

In particular, the optimal power and spectrum allocation is
identified through an exhaustive search in the maximum EE
scheme. In Fig. 6, we show the achievable rates of cellular
link m and D2D link n versus dmn when dnn = 1000 m.
It can be observed that the considered schemes can guarantee
the minimum rate requirements of these two links, which are
equal to their achievable rates, i.e., Rm = Qm and Rn = Qn.
This result indicates that we can evaluate their performance
in terms of EE through EC.
Remark 4: The resource allocation problem to maximize

the EE of our system can be formulated by replacing the
objective functions of problems (6) and (27). For example,
in the cooperative mode, the EE of our system can be denoted
as follows, as shown in the equation (34) at the bottom of this
page.

FIGURE 6. The achievable rates of cellular link m and D2D link n versus
dmn.

FIGURE 7. The total EC of cellular link m and D2D link n versus dmn.

It is a nonconvex function, so its corresponding optimal
problem is nonconvex and hard to tackle. To the best of our
knowledge, existing studies have yet to give a solution to this
problem. Thus, our simulation identifies the maximum EE
scheme through an exhaustive search.

The computational complexity of the proposed resource
scheduling scheme, the proposed schemewith fixed spectrum
allocation, and the maximum EE scheme within one frame is
O

(
max {M ,N }

3
+ 2MNU

)
,O

(
max {M ,N }

3
+ 2MN

)
and

O
(
max {M ,N }

3
+ 2MNV

)
, respectively, where U and V

denote the time granularities of Newton’s method and the
exhaustive search.

Fig. 7 presents the total EC of cellular link m and D2D
link n versus dmn when dnn = 950 m. In addition to
the three schemes above, we consider the proposed scheme
in the cooperative mode and the proposed scheme in the
overlay mode. Since problem (27) is irrelevant to dmn, the
performance of the proposed scheme in the overlay mode is

η =
θmnW log2 (1 + min {pmbλmn, pmbλmb + pnbλnb})+ (1 − 2θmn)W log2 (1 + pnnλnn)

θmnpmb + θmnpnb + (1 − 2θmn) pnn
. (34)
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FIGURE 8. The total EC of cellular link m and D2D link n versus dnn.

FIGURE 9. The spectrum allocation factor of the proposed scheme versus
dmn.

invariable.We can observe that the proposed scheme switches
from the cooperative mode to the overlay mode at dmn =

840 m, and has the lowest EC. It is worth noting that the
EC of the proposed scheme in the cooperative mode takes no
value when dmn > 1000 m, which implies that the minimum
rate requirement of cellular link m cannot be guaranteed.
This figure also shows that the proposed scheme has the
same performance as the maximum EE scheme, and its EC is
reduced by about 13% compared with the proposed scheme
with fixed spectrum allocation. Combining the results shown
in Fig. 6, we conclude that the EE of the proposed scheme is
also optimal in this scenario. However, its complexity is much
lower than that of the maximum EE scheme.

Fig. 8 shows the total EC versus dnn when dmn = 840 m.
The proposed scheme switches from the cooperative mode to
the overlay mode at dnn = 950 m. Similar to Fig. 7, it is
clear that the proposed scheme has the same performance
as the maximum EE scheme and outperforms the proposed
scheme with fixed spectrum allocation. For instance, when
dnn is increased from 200 m to 500 m, the EC of the proposed
scheme is reduced by more than 30% compared with the
proposed scheme with fixed spectrum allocation.

FIGURE 10. The spectrum allocation factor of the proposed scheme
versus dnn.

FIGURE 11. The number of iterations versus ε0.

Fig. 9 shows the spectrum allocation factor of the proposed
scheme as a function of dmn when dnn = 950 m. For the
same reason explained in Fig. 7, αmn is a constant, and when
dmn > 1000 m, θmn takes no value. We can observe that
θmn increases as dmn increases from 500 m to 1000 m. The
explanation is as follows. When dmn increases, the channel
gain of the CUm → DTn link decreases. To guarantee the
QoS of CUm and minimize the total EC, the BS should
allocate more spectrum to CUm in the time domain. Similar
to Fig. 9, Fig. 10 shows the spectrum allocation factor of the
proposed scheme versus dnn when dmn = 840 m.

In Fig. 11, we show the number of iterations to achieve
the optimal spectrum allocation factors through Newton’s
method in the cooperative and overlay modes against ε0
when dmn = 840 m and dnn = 950 m. We can observe
from the simulation results that it takes five iterations for the
proposed scheme to converge when ε0 = 10−4. Even if ε0 =

10−12, it only requires twomore iterations to converge, which
indicates the proposed joint power and spectrum allocation
scheme is suitable for real-time operations.

In Fig. 12, we present the EC versus price ratio µ(1)n /µ
(1)
m

in the first frame when dmn = 840 m and dnn = 950 m.
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FIGURE 12. The EC versus µ
(1)
n /µ

(1)
m .

FIGURE 13. The network lifetime of cellular link m and D2D link n
versus Qm.

On the one hand, with the increasing µ(1)n /µ
(1)
m , the EC of

cellular link m increases and that of D2D link n decreases.
This phenomenon implies that CUm will purchase energy
from DTn as little as possible and utilize the energy itself as
much as possible to guarantee its minimum rate requirement
when the energy price of DTn is relatively higher than that of
CUm. For the same reason, DTn will consume as little energy
as possible if its minimum rate requirement is guaranteed.
On the other hand, ifµ(1)n /µ

(1)
m is too low or too high, the total

EC of cellular linkm andD2D link nwill increase. Then, D2D
link n will attempt to match with another cellular link. As a
result, with the price inversely proportional to the residual
energy of each node, the overall system EC will be controlled
at a low level, and each node’s ECwill be balanced in the final
matching.

Fig. 13 investigates the performance of the proposed
schemes in terms of network lifetime for varying Qm.
We compare the proposed scheme with the proposed scheme
with fixed spectrum allocation, the maximum EE scheme,
and the minimum EC scheme. The latter corresponds to the
proposed scheme withµ(t)m = µ

(t)
n = 1. We set dmn = 800 m,

dnn = 500 m, Qn = 5 kbps and µ(1)m = µ
(1)
n = 1.

FIGURE 14. A snapshot of user locations for a single cellular network
with M cellular and N D2D links (M = 5 and N = 3).

Since a larger Qm leads to higher EC, the network lifetime
of all the considered schemes decreases as Qm increases.
It can be observed that the minimum EC scheme has the
same performance as the maximum EE scheme. However,
the computational complexity of the latter is much greater
than that of the former. The simulation results also show that
the proposed scheme outperforms these two by about 40%,
revealing its superiority.Moreover, the proposed schemewith
fixed spectrum allocation has nearly the same performance as
the proposed scheme when 1 kbps ≤ Qm ≤ 2 kbps, which
indicates the importance of reasonable spectrum allocation.

B. PERFORMANCE OF M CELLULAR LINKS AND
N D2D LINKS
In this part, we evaluate the performance of M cellular and
N D2D links. In our simulations, the BS is deployed in
the cell center with a radius R = 1000 m. The CUs and
the D2D pairs are uniformly distributed within the cell. The
minimum rate requirements of the cellular and D2D links
are set to be 10 kbps and 5 kbps. Each node’s initial energy
price and battery energy are set to be 1 and 1 mJ, respectively.
Fig. 14 shows a snapshot of user locations with M = 5 and
N = 3. Fig. 15 shows the influence of changing N to the
system throughput when M = 5. It is noted that the system
throughput of the considered schemes is equal to MQm +

min {N ,M}Qn, which is consistent with the results in Fig. 6.
The simulation results also imply that the number of the active
D2D links is equal to 5 when N > 5.
Fig. 16 shows the impact of N on the network lifetime

of the system. The results further confirm the superiority
of the proposed scheme. Besides, it can be observed that
the network lifetime decreases when N ≤ 5 and increases
slightly when N > 5 with the increasing N . The rationale is
as follows. When N ≤ 5, more active links consume energy
as N increases, which shortens the time for any node in the
system to exhaust its energy. When N > 5, the number of
D2D links that access the channels of the cellular links is
always equal to 5, whichmeans that the number of active links
no longer increases as N increases. On the other hand, the
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FIGURE 15. The system throughput versus N .

FIGURE 16. The network lifetime of the system versus N .

FIGURE 17. Computation time versus N .

potential matching between the cellular and D2D links still
increases. Consequently, it will make the EC among different
nodes more balanced, prolonging the network lifetime of the
system.

Finally, Fig. 17 shows the average computation time
versus N in the first frame. This simulation measures the
computation time through an Intel Core i7-9750Hwith 16GB

memory based on Matlab R2022b. It can be observed that
the average computation time of the proposed scheme, the
proposed scheme with fixed spectrum allocation, and the
minimum EC scheme is kept low, while that of the maximum
EE scheme is significantly increased, e.g., the computation
time of the maximum EE scheme is more than 7000 ms when
N = 10. The computation time of the proposed scheme
equals that of the minimum EC scheme. We also notice that
the computation time of the proposed scheme is higher than
it is for the proposed scheme with fixed spectrum allocation,
which does not involve Newton’s method. However, the
computation time of the proposed scheme is always less than
10 ms for all the cases considered, which proves its suitability
for real-time operation.

V. CONCLUSION
In this paper, we have investigated the resource scheduling
issue in cooperativeD2D communications overlaying cellular
networks and proposed a scheme to jointly optimize power
and spectrum allocation, mode selection, and link matching.
Based on energy price, the utilization of each node’s energy
could be balanced, extending the network lifetime of our
system. Through the graphic method and Newton’s method,
an algorithm with low computational complexity was used
to tackle the nonconvex power and spectrum allocation
problem. Alongside the proposed scheme, we proposed a
heuristic energy pricing strategy that involved no iteration
and was suitable for real-time operation. The simulations
demonstrated the advantage of the proposed scheme. When
the energy prices of different nodes are equal, the optimality
of the proposed scheme in terms of EE was also verified in
our scenario.
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