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ABSTRACT This work proposes a novel technique for biological compound transformation by a circulating
electrical breakdown in the liquid (EBL) process. The EBL reactor has been designed with a cylindrical,
hourglass-shaped structure that facilitates plasma generationwithin a 1mmgap between two pin electrodes at
the neck of the reactor. During the EBL process, the inulin solution was flown upward and brought into direct
contact with the plasma before recirculating back to the bottom of the reactor for subsequent retreatment.
Consequently, it enabled a continuous and thorough inulin treatment. At this time, the influence of the
supplied voltage (3.20, 3.76, and 4.32 kVpeak at 50 Hz positive half-wave) for the EBL process generation
on the inulin structural transformation was investigated. The most optimal condition in the EBL process was
operated at 4.32 kVpeak supplied voltage within the optimal inulin treatment duration of 20 min. Regarding
the experimental results, it could be confirmed that the EBL process has the potential to depolymerize the
inulin structure. One gram of inulin was dissolved in 100 mL of deionized water and treated under the EBL
process for 20 min. Inulin structures were deformed from a 20-100 µm micro spherical shapes into small
flakes. Moreover, the DPPH free radical scavenging analysis showed that the antioxidant activity and the
prebiotic activity of treated inulin have been improved by 311%, and 35%, respectively.

INDEX TERMS Inulin, polysaccharide, depolymerization, antioxidant, plasma—liquid interactions, solu-
tion plasma processing.

I. INTRODUCTION
An inevitable negative by-product of the rapidly evolv-
ing world is the massive daily production of waste, which
has a huge impact on ecosystems and humans. Therefore,
how to reduce and recycle wasted products is essentially
the focus. Each year, more than a thousand tons of agri-
cultural residues have been abandoned owing to imper-
fect preference, including problems in harvesting and pro-
cessing. However, the imperfection of those agricultural
residues has not affected their beneficial nutrients. Therefore,
many researchers have been looking for new ways to turn
these products into value-added products, such as cosmetic
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ingredients, supplementary food, prebiotics, medicines, and
others [1], [2], [3], [4].

In classical electrical engineering, electrical breakdown
in liquid (EBL) seems to be a major problem if it hap-
pens in liquid-insulating materials [5], [6]. However, this
electrical breakdown in liquid, also known as in-liquid
plasma or solution plasma processing (SPP), has recently
received much attention in the field of applied high voltage
applications owing to advanced oxidation processes (AOP)
of active free reactive radicals, such as reactive oxygen
species (ROSs), reactive nitrogen species (RNSs), and reac-
tive oxygen-nitrogen species (RONSs) productions; in the
chemical reactions generated during the in-liquid breakdown
process [7], [8], [9], [10], [11]. These chemical reactions can
help reduce the number of organic contaminants in the liquid.
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In addition, the EBL process also enhances the biological
structure modification of organic matter (biotransformation).
The shorter size or reduced molecular weights of organic
matter, such as the polysaccharide structure, are beneficial
for bioactive functions and intrinsic viscosity [12], [13],
[14]. Moreover, many useful phenomena also happen during
the ELB process, such as kinetic reactions, electric fields,
electromagnetic waves, photons, shockwaves, and ultraviolet
rays [7], [8], [9]. Therefore, the EBL process can also be
beneficially applied to waste disposal, food, pharmaceutical,
cosmetic, medical, agricultural, and chemical industries [8],
[9], [14], [15], [16], [17], [18], [19], [20], [21].
At this time, the influence of electrical breakdown in

the liquid process on structural transformations of biolog-
ical compounds from agro-industrial waste materials has
been investigated. In this work, inulin, one of the most
beneficial functional foods in the group of natural polysac-
charides numerously used in both food and medicine, has
been chosen to be investigated. Inulin, a dietary fiber found
naturally in plants like chicory, garlic, Jerusalem artichoke,
onion, leeks, and asparagus, is classified as a fructan-type
non-digestible carbohydrate. It serves as a vital functional
ingredient for improving digestive health. In the culinary
realm, inulin is used in a variety of food products. Genially,
inulin resists digestion by human pancreatic enzymes but can
be metabolized by gut microorganisms. This dual role as
a non-digestible fiber and a prebiotic (substances found in
food that promote the development or stimulation of advan-
tageous microorganisms) makes it a valuable contributor to
gut health, benefiting both the small and large intestines [4],
[22], [23], [24]. Important functionalities of inulin, such as
solubility, thermo-stability, sweetness, and prebiotic action,
are related to the existence of branches and the degree of
polymerization [4], [22], [25]. Therefore, it is expected that
the EBL process would enable value addition and enhance
the bioactive functions of inulin, which is extracted from
artichoke roots, an emerging agricultural waste. In this work,
the EBL reactor was initially designed for practical use for
inulin biotransformation at laboratory scale with low cost
prior to extrapolation to a larger scale. The effect of the EBL
process on the inulin structure and antioxidant activity was
investigated by a scanning electron microscope (SEM), and
a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay,
respectively. The electrical characteristics of the in-liquid
electrical breakdown process was also monitored and
analyzed.

II. EXPERIMENTAL SETUP AND METHODS
A. PLASMA MODEL AND EXPERIMENTAL SETUP
Fig. 1 elucidates the illustrative drawing of the electrical
breakdown in the liquid (EBL) process and the experimental
setup. The plasma reactor for the EBL process is cylindrical
and hourglass-shaped with four Ø5 mm ports for in/outlet
of water, and air, made from Pyrex glass. The thickness and

inner diameter of the reactor at the shortest and common parts
are 2, 5, and 10 mm, respectively. At the shortest gap of the
reactor, two Ø0.1 mm tip tungsten rods (2% lanthanated tig
tungsten electrode) have been inserted into the sidewall oppo-
sitely as high voltage electrodes for the EBL process. The gap
between these two electrodes is 1 mm. The EBL process is
a circulating system, in which a target solution is circulated
between the rector and reservoir beaker via Peristaltic Pump
DP-385 into and out of the plasma reactor at a pumping rate
of 42 ml s−1.

The target solution was flown from the reservoir beaker
into the reactor, and back to the reservoir beaker again as a
circulated treatment system. Air bubbles from the air com-
pressor (HAILEA ACO-318) have been supplied to the space
between electrodes in the reactor from the bottom air inlet at
a flow rate of 1 LPM. To start the EBL process, one side of
the tungsten electrode has been connected to the high voltage
supplied from a positive half-wave voltage doubler (HWVD)
circuit from an 800 W microwave transformer, while the
other electrode is connected to a 17.5-ohmmonitor resistor in
series, and then grounded. The maximum output voltage used
at this time is 4.32 kVpeak at the input voltage of 150Vrms from
50 Hz variable ac power supplies [26]. Regarding the EBL
process, heat could be accumulated in the solution; therefore,
the solution has been kept between 25 - 29o C by using a 5oC
cooling system.

Tomonitor the electrical properties of the discharge voltage
(VD) and current (ID), an oscilloscope (GW Instek GDS-
1104B, 100 MHz, 1 GSa/s) has been used. A high-voltage
probe (Pintek HVP-28HF, 75 MHz bandwidth) has been con-
nected across the plasma model, and a general-purpose pas-
sive probe (GW Instek, 100 MHz bandwidth) was connected
across the monitored resistor. To study optical emission
spectroscopy (OES) during plasma formation, a small charge-
coupled device (CCD) spectrometer (Newport 71SI00087)
has been employed. The optical fiber detector tip was per-
pendicularly 1 cm away from the electrode plane.

B. EBL TREATMENT PROCESS
The target solution (1 mg of inulin powder (purchased from
Krungthepchemi Co., Ltd.) dissolved in 100 mL of deion-
ized water (DI water) were treated by the EBL process at
three different input voltages of 110, 130, and 150 Vrms for
20 min (a maximum continuous operating time of power
supply), respectively. It should be noted that this work mainly
focused on determining the optimal input voltage at a 20-
min treatment time. The processing time at 20 min had been
chosen and thought to suffice to trigger the depolymerization
of inulin (polysaccharide) because it had recently been proved
that the EBL process is able to decrease the molecular weight
of chitosan (another polysaccharide) from an initial 197 kDa
to 9-40 kDa after 20 min of plasma treatment utilizing a DC
glow discharge initiated between a graphite anode and the
surface of a chitosan solution acting as cathode [27].
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FIGURE 1. The illustrative drawing of EBL process and the experimental setup.

C. CHARACTERIZATION OF PLASMA-TREATED INULIN
1) PREPARATION OF PLASMA-TREATED INULIN FOR
ANALYSIS
Control samples (no plasma treated) and plasma-treated
inulin were freeze-dried and then used for structural analysis.
Freeze-dried samples were redissolved in deionized water to
make a 20 mg mL−1 stock solution for the antioxidant assay.
As for prebiotic property assessment, inulin solutions were
used directly after plasma treatment.

2) PHYSICAL AND CHEMICAL ANALYSIS OF INULIN
SOLUTION
The physical-chemical properties of inulin solution, includ-
ing pH, temperature, and electrical conductivity (EC), were
investigated. A pH meter (model SevenEasyTMpH, Mettler
Toledo) and a conductivity meter (model HI4321, Hanna)
were used to monitor the pH levels and EC, respectively.
The solution temperature was monitored by a mercury ther-
mometer immersed in a treating solution. The Quantofix
peroxide 25 test strips verified that H2O2 was produced in the
PAW.

3) STRUCTURAL ANALYSIS
The morphology of inulin samples was analyzed by
scanning electron microscopy (model Hitachi S-3500N)

at Central Laboratory Center at Mahasarakham University,
Thailand.

4) ANTIOXIDANT ACTIVITY ANALYSIS
2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity
assay was used to assess the antioxidant activity of inulin.
The procedure was previously described in [28]. Trolox was
used as a standard and expressed as µg Trolox Equivalent
TE mL−1.

5) PREBIOTIC ACTIVITY
Plasma-treated inulin or untreated inulin (1 g per 100 mL)
solutions (5 mL) or sterile deionized water (negative control)
(5 mL) were sterilized using 0.22 µm membrane filter and
added to 5 mL MRS broth (from De Man, Rogosa, and
Sharpe) of 1% v/v bacterial culture inoculum of Lactococcus
lactis subsp. lactis TBRC 375. Over the course of 72 h, 1 mL
of culture was taken for OD600nm measurement at 8, 24, 32,
48, 56, and 72 h. Growth curves were constructed.

D. STATISTICAL ANALYSIS
All experimental conditions and measurements have been
rigorously validated through triplicate testing to derive the
mean result value. Statistical significance was tested at p <

0.05 using Duncan’s Multiple Range Test.
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III. RESULTS AND DISCUSSION
A. ELECTRICAL MODEL AND VISUAL CHARACTERISTICS
OF THE EBL PROCESS
In order to generate the discharge under the liquid phase
with a small high voltage and a large frequency, the electrode
geometry is necessary to be sharp in order to cause a highly
non-uniform electric field, resulting in electrical stress at the
intermediate voltage. Therefore, plasma reactor for the EBL
process in this work is composed of a couple of pin electrodes
separated by a small space as shown in Fig. 1. The maximum
electric field strength (EMax) at the anode tip was expressed
by equation (2), modified from [29] and [30]

EMax =
Vanode

ln
(
1+η0
1−η0

) (
a

a2−(d/2)2

)
, kV cm−1 (1)

where d is the distance between two electrode tips and
R is the radius of the cultivarue of the electrode tip.
a = [(d/2)(d/2 + R)]1/2 and η0 = [(d/2)/(d/2 + R)]1/2.
Vanode is the potential at the anode tip while Vcathode is
zero (grounded). Air discharge is typically initiated when
the electric field strength surpasses a critical threshold of
31 kV cm−1. In the specific experimental setup, a peak
voltage of 4.32 kV resulted in the EMax of approximately
69.31 kV cm−1, which is sufficient to induce air discharge in
the atmospheric environment. However, the discharge phe-
nomena in liquid media containing air bubbles are notably
more complex than those in atmospheric conditions. This
complexity arises due to the interaction between the electric
field, the bubble dynamics, and the liquid environment [31],
[32], [33], [34], [35], [36].

When the EBL process has been started, an electrical
breakdown (plasma) has been generated in the space between
sharp electrodes. At the beginning of the process, plasma is
difficult to generate due to the low liquid electrical conduc-
tivity (EC), which is around 0.01 mS cm−1. In the initial
stages, the input voltage is gradually raised to an intermediate
point before reaching the setup input voltage. The break-
down occasionally arises when the air bubble reaches around
the electrodes (in-bubble contacted discharge). However, the
breakdown has often been generated gradually with treatment
time increase due to the increasing EC of liquid regarding
EBL process (data presented in section III-D. The discharge
mechanism observed in this phase is similar to the discharge
mechanism that occurs at the electrode-gas interphase in the
atmospheric environment [31], [32], [33], [34], [35], [36].
Fig. 2 illustrates examples of the visual time evolution char-
acteristics of the EBL process when the process has reached a
stable state (less EC change). It should be noted that the visual
characteristics investigated in this study have been recorded
using a camera with a fixed frame rate of 177.2 frames per
second and a fixed size of 1080 pixels. The time development
of the picture has been used as a basis for analysis, with
sample stills captured at 1, 3, 11, and 15 ms. However,
it should be emphasized that a video camera with a greater

frame rate is required to catch the delicate details of the
process and achieve a complete grasp of the visual charac-
teristics associated with discharge development. It could be
observed that the corona streamer discharge has initiated a
pre-breakdown in the liquid phase (in-liquid contacted dis-
charge), owing to micro gas bubbles initiated from the joule
heating, at both highly-stress electrode tips (Fig. 2a)) [31],
[32], [33], [34], [35], [36], [37]. As time increased, a streamer
has been developed and bridged across both tips to become a
plasma column (Fig. 2b)). When the air bubbles have arrived
near the plasma column (in-bubble contacted discharge), the
breakdown has developed to a spark streamer discharge and
greatly expanded, consistent with the air dynamic bubble
deformation due to the internal and external non-uniform
electric field distribution of bubbles [38], [39], [40] (Fig. 2c)
and 2d)). Finally, at the time the air bubble has deformed and
completely traveled past the electrode gap, the breakdown has
been terminated, and then start the new cycle again [38], [39],
[41]. It should be noted that distinctive voices from the explo-
sion when a spark streamer discharge is taking place could be
noticed during the EBL process, indicating the shock wave
generation corresponding to the pulsed breakdown [37], [42].

B. ELECTRICAL CHARACTERISTICS OF THE EBL PROCESS
In Fig. 3, the comparison of the electrical characteristics
of the electrical breakdown under water at various treat-
ment times is illustrated. At the input voltage of 110 Vrms,
130 Vrms, and 150 Vrms, the peak voltage at no load con-
ditions is around 3.20, 3.76, and 4.32 kV, respectively. It
should be noted here that the electrical characteristics of
discharge voltage and current of all input voltages perform
in a similar trend but different magnitude; therefore, only
electrical characteristics of 150 Vrms input voltage have been
elaborated. The voltage waveforms are shown in 50 Hz posi-
tive half-wave. The on time of voltage is around 17.5 ms. It
could be clearly seen that the magnitude of discharge voltage
(VD) across electrodes has decreased when increasing the
treating time, as shown in Fig. 3a). The breakdown voltage
(the maximum VD before dropping) during the EBL process
at 1, 10, and 20 min is around 3.36, 1.88, and 1.48 kVpeak,
respectively. During the discharge, there is an increasing in
discharge current (ID) corresponding to the dropping of VD,

as shown in Fig. 3b). During the EBL process at 1, 10, and
20 min, the ID peaks are in the ranges of 0.72-6.12, 0.60-3.48,
and 0.36-3.24 Apeak with the pulse width around 0.5 µs,
respectively. The characteristics of ID are similar to a micro
discharge in which the self-pulsing discharge pulse width are
in the range of microseconds [43], [44], [45]. However, the
frequency of these self-pulsing discharges is quite dynamic
owing to the turbulently floating bubble, flowing solution,
and EPL process.

Fig. 3c) depicts a zoom-in image of one loop of waveform
characteristics at 1 min, which is in the red rectangle in
Fig. 3a) and can be used to explain the V-I characteristics of
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FIGURE 2. Time evolution example images of visual characteristics of EBL process.

this work. The discharge current in plasma is a consequence
of electrical discharge. When there is no plasma, there should
be no discharge current in the circuit, and the voltage across
the plasma model should be close to the supply voltage with
minimal voltage loss. However, if the supplied voltage is high
enough, the liquid breakdown can occur causing the voltage
across the plasma model to drop while the discharge current
increases.

The high-voltage power supply unit used in this work pro-
vides a 50 Hz positive half-wave high voltage with a period
of A1-A2 at no load. The on time of the supplied voltage is
around 17.5 ms (A1-F), and electrical discharges are gener-
ated during the on time of the supplied voltage in each cycle
(main loop). The mechanism of one-cycle discharge of the
main loop can be explained as follows: the voltage across
the electrode during the EBL process starts at A1, the same
as in the no-load condition. It is important to note that the
voltage across the electrodes during the EBL process slightly
drops compared to that of the no-load condition due to the
leakage current and joule heating in the conductive liquid.
When the electrode voltage increases to B, the discharge is
initiated, resulting in an abrupt drop in the electrode voltage
together with an instantaneous increase in discharge current.
At this point (B), there is a short transition around 20 ns
from streamer discharge to spark discharge as depicted in
Fig. 3d) [33], [46], [47], [48]. However, other sub sequential
micro discharges can still be generated during the increase
of the supplied voltage beyond the breakdown voltage (B-C)
due to leftover free ions and electrons from previous dis-
charges. These micro discharges terminate at phase C since
the capacitor of the power supply unit has discharged all the
stored voltage (charges) generated during micro discharge,
resulting in no discharge in phase C-D. Nevertheless, during
this period, the capacitor is still being charged from the
transformer. The capacitor will discharge again when it gains
enough voltage higher than the breakdown voltage at phase
D. However, the micro discharges occur only during phase

D-E before the capacitor has discharged all the stored voltage
again. It is important to note that phase D-E has a marginally
shorter duration than phase B-C. Since the capacitor was
charged during the declining edge of the supplied voltage,
there is a brief period of time after phase D-E during which
it can be charged with a voltage greater than the breakdown
voltage. Therefore, the main loop discharge terminates at
phase E. The discharge will start again at the same principle
at phase A2, periodically.
During the EBL process, it could be clearly noticed that

the temperature of the treating solution had increased very
quickly. Regarding the preliminary experiment, it should be
noted that the temperature of a static treating solution could
be heated up from 25 to 60 ◦C within 30 s; therefore, the
circulated cooling system has been applied in this work. This
phenomenon could be evidence of joule heating loss in the
treating solution, in which the EC has been increasing with
time [49], [50], [51], [52].

During the EBL process, the advanced oxidation processes
(AOP) of active free radicals in the treating solution have
played an important role in an increase in the EC of the solu-
tion [7], [8], [9]. The increased EC has resulted in a reduction
of solution resistance; therefore, the high temperature would
accumulate in the treating solution during the EBL process
as a result of an electro-thermal process due to a significant
leakage current [52].

The active energy consumption per pulse during the EBL
process could be derived from the integration over the dura-
tion of the VD pulse (TP) of VD and ID, as in

Wper pulse =

∫ Tp

0
VD(t)ID(t)dt, J pulse−1 (2)

The discharge energy levels at the treatment time at 1, 10,
and 20 min were approximately 97.99, 83.89, and 38.44 mJ
pulse−1, respectively [53], [54]. The discharge energy tends
to decrease as the treatment time increases due to the loss
from joule heating and a leakage current in a high-EC solu-
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FIGURE 3. a) Time evolution of discharge voltage and current characteristics at varous treatment times, b) discharge wavefrom
characteristics at 1 min, c) one loop of wavefrom characteristics at 1 min, and d) discharge wavefrom characteristics at the small time scale,
during EBL process at the input voltage of 150 Vrms.

tion. A smaller equivalent impedance, compared to that of the
air bubble, of treating solution resulting from the increasing
of EC causes a huge energy loss into the solution and a
reduction of energy efficacy [52], [55], [56]. Therefore, the
discharge current tends to be suppressed quicker when the
EC increases, as shown in Fig. 3a) [56].

C. OPTICAL EMISSION SPECTRUM CHARACTERISTICS OF
THE EBL PROCESS
During the EBL process, the optical emission spectra (OES )
have been investigated, as demonstrated in Fig. 4. Regard-
ing the non-continuous discharge under water, the OES has
varied with time due to the different discharge phenomena,
streamers, and spark discharges. Therefore, the three most
frequently observed OES during the EBL process have been
comparably plotted. It should be noted that the legend in
Fig. 4 represents the OESs observed at 3 different capturing

times. It could be commonly observed in 3 cases that the
atomic oxygen emission at 777.4 and 844 nm, as well as
the highly reactive species of OH· at 309.6 nm, could be
detected. The N2 second positive system has been observed
in the range from 310 nm to 400 nm. Hβ and Hα lines could
be seen at 486.13 and 656.28 nm, respectively [57], [58],
[59], [60], [61], [62], [63], [64]. These radicals have played
an important role as the powerful oxidizing agent in AOPs
and beneficial ROSs, RNSs, and RONSs productions, which
influence the transformation of organic and polysaccharide
structures [7], [10], [11], [12], [13], [65]. Regarding the OES
observed at capturing time 1, it could be noticed that a broad
spectrum has been observed, which is in contrast to the OESs
observed at capturing times 2 and 3, where OESs perform
a lower level of continuum radiation. This could be implied
that the OES observed at capturing time 1 had been captured
during the spark discharge mode, while others had been cap-
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FIGURE 4. The optical emission spectra (OES) during the EBL process
observed at 3 different capturing times.

tured during the corona streamer discharge mode. The broad
spectrum of the OES observed at capturing time 1 has been
influenced by black-body radiation due to the joule heating
during the spark discharge. This phenomenon is consistent
with the large leakage current causing an electro-thermal
process resulting in high-temperature accumulation during
the EBL process [52]. Moreover, the broad spectrum could
also contribute from the molecular bands of molecules and
molecular ions, such as the bands of 1st positive, 1st neg-
ative, and 2nd positive N2, which are usually found in the
air discharge [66], [67], [68]. In contrast, the narrow OES
bands have been contributed by the streamer, spark, and glow
discharge of neutral atoms and atomic ion emission [49], [50],
[51], [52], [69].

D. CHARACTERISTICS OF TREATED INULIN SOLUTION,
ANTIOXIDANT ACTIVITY, AND PROBIOTIC ACTIVITY OF
INULIN AFTER EBL PROCESS
The physical-chemical properties, including pH, temperature,
H2O2, EC, and antioxidant activity (DPPH) of inulin solution,
have been investigated before (0 min) and after the 20 min
EBL process, as shown in Fig. 5. The variation tendency of
solution temperature, EC, and antioxidant activity increases
when the input voltage (output voltage) increases while the
pH shows an opposite trend. However, the variation of these
parameters is consistent [32], [36], [70], [71], [72], [73]. The
chemical reactions between the air plasma and the treated
inulin solution have caused the solution pH to fall. Typically,
pH is measured as the negative logarithm of the concentration
of hydrogen ions (H+) in a solution. Various compounds,
including hydrogen peroxide (H2O2), nitric acid (HNO3),
peroxynitrous acid (ONOOH), and others, were generated
during and after the EBL process and contributed to the
decrease in pH [32], [36], [72], [73], [74], [75], [76].
The EC of inulin solution has greatly risen due to numerous

active ions generated during the EBL process [32], [36],

[70], [71], [72]. The conductivity levels of the inulin solution
generated at the input voltages of 110, 120, and 150 Vrms
are higher than that of the control group, around 12, 23, and
29 times, respectively. The solution temperature after 20 min
treatment slightly increased (owing to the cooling system) in
the control group as in the same trend as EC. As input voltage
increased, the solution pH values after 20 min treatment
have dropped from 5.83±0.09 to 3.52±0.08, 3.27±0.07,
and 2.86±0.10, respectively.Regarding the H2O2 strip test,
it could be confirmed that the existence of H2O2 in all cases
could be around or more than 25 mg L−1.

The results, Fig. 5e) showed that the highest antioxidant
activity of inulin came from the highest generating volt-
age (150 Vrms input) and longest treatment time (20 min).
DPPH scavenging activity of 182.39±4.32 µg TE mL−1 was
significantly improved by 311% compared with the control
(untreated inulin) at 0 min (44.29±6.94 µg TE mL−1). The
increase in DPPH scavenging activity was increased with
increasing voltage and treatment time. This implied that the
structure of control inulin has been changed in some ways
during plasma treatment and hence the increased antioxidant
activity. Therefore, inulin at 150 Vrms input and 20 min
treatment time was chosen for the prebiotic activity test. The
results (Fig. 6) confirmed that the plasma treatment on inulin
enhanced the prebiotic activity of inulin on Lactococcus lactis
subsp. lactis TBRC 375. The growth of bacteria at 72 h
from treated inulin (OD600nm = 0.54) was higher than that
of control inulin (OD600nm = 0.40) by 35%. The bacterial
growth without inulin as a prebiotic was significantly lower
(OD600nm = 0.16). At this plasma treatment condition, the
antioxidant activity and the prebiotic activity of inulin were
significantly improved by 311%, and 35%, respectively.

E. MORPHOLOGY OF INULIN STRUCTURE AFTER EBL
PROCESS
The structural analysis of the inulin structure before and
after the EBL process was investigated by SEM, as shown
in Fig. 7. The morphology of the inulin structure before the
EBL process in Fig. 7a) is similar to a micro spherical
shape with a smooth surface having a diameter ranging from
20-100 µm [22]. It could be clearly seen that the inulin
structures underwent complete fragmentation, segregation
into distinct particles, and the interior portion experienced
disruption, as shown in Fig. 7b), and hence possibly yield-
ing lower molecular weight molecules. Regarding the SEM
images, it could be confirmed that the EBL process could be
a potential tool for biological transformation and/or modifi-
cation of inulin by improving the accessibility of reactants,
such as hydroxyl radicals generated during EBL process.

F. INFLUENCE OF THE EBL PROCESS ON INULIN
STRUCTURAL TRANSFORMATIONS
In contrast to the electrical gas breakdown, the electrical
discharges in liquid have a rather complicated breakdown
mechanism. The breakdown mechanism in liquids is a more
complicated process than that in solids or gases. This is due

VOLUME 11, 2023 114783



K. Matra et al.: Application of Electrical Breakdown in Liquid Process on Inulin Structural Transformations

FIGURE 5. Inulin solution characteristics and its antioxidant activity at different input voltages, a) Temperature, b) EC, c) pH, d)
H2O2, and e) DPPH scavenging activity. Superscripts on the bars indicate statistical significance at p < 0.05 using Duncan’s
multiple range test.

to the fact that liquids are denser than gases and lack the
long-range order seen in solids. Moreover, the breakdown
process is significantly influenced by electrode geometry, the
characteristics of the supplied voltage, and the purity of the
liquid, including dissolved gases, which can form microbub-
bles within the liquid [31], [32], [33], [34], [35]. However,
the liquid-breakdown mechanism could be explained by the
fundamentals of direct discharges in liquids owing to direct
impact ionization and gas bubble theory. Generally, direct
discharges in liquids are characterized by direct impact ion-
ization, which necessitates the use of very short pulsed high
voltage. Specifically, an electric field strength of at least
220 MV cm−1 with a rise time of a few picoseconds is
required to facilitate this process. Therefore, this mechanism
might not be applicable to the EBL process in this work.

The liquid breakdown mechanism of the EBL process
can be explained using the gas bubble theory and in-bubble
contacted discharge. Regarding the experimental results in
section III-A, the EBL mechanism has been observed to
function as follows: the corona streamer discharge gener-
ates a pre-breakdown phase by producing micro gas bub-
bles through joule heating at highly-stressed electrode tips
in the liquid. Subsequently, over time, a streamer evolves
and becomes a plasma column, which in turn triggers a
spark streamer discharge upon the arrival of an air bubble
in close proximity to it. This discharge expands owing to
the non-uniform electric field distribution inside and out-
side the bubble. Ultimately, the breakdown is terminated
as the air bubble deforms and passes through the elec-
trode gap, thereby restarting the new cycle [31], [37], [38],
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FIGURE 6. Lactococcus lactis subsp. lactis TBRC 375 growth during 72 h
fermentation with plasma-treated inulin, untreated inulin and without
(w/o) inulin (negative control).

[39], [40], [41], [42]. During each cycle, various species
have been generated. Regarding the optical emission spec-
tra in Fig. 4, there are various prominent peaks, such as
H, O, OH·, N, NO, and molecular nitrogen bands. These
species with energetic electrons and photons are the pri-
mary sources for other consequent reactions that resulted in
other short-lived and long-lived species, such as O−

2 ,
1O2,

O∗−

2 , O3, H2O2, NO
−

2 , NO
−

3 , including H2O2, HNO3, and
ONOOH. The chemical reactions during and after the EBL
process could happen both in the gas phase, the gas-liquid
interphase, and also the liquid phase. The most important
primary substances, which are essential for biological appli-
cations, are O2, H2, N2, and all forms of H2O (vapor, droplet,
gas, or liquid). A comprehensive description of potential
chemical reactions during the EBL process can be found
in [14], [36], [75], [76].

Even though, at present, the detailed mechanism of
plasma-induced inulin structural modification has been the
focus of our investigation, a brief explanation of the impact
of the EBL process on the structural alteration of inulin
could be possibly discussed. Regarding the studied parame-
ters and evidence from the experiments and related research,
themain reason for organic (inulin) structural transformations
by the EBL process is from the physicochemical process
[8], [13], [18], [77]. During the EBL process, several ener-
getic, active, and reactive particles, species, radicals, and
substances have been generated between the electrodes of
the reactors. However, these particles have a different life-
time depending on their chemical species, and energy and
momentum transfer [7], [8], [9], [32], [73], [74], [78]. There-
fore, the AOPs are rather complicated, resulting from the
chemical reactions between these particles. The structural
modification has not just been active only at the electrode
gap where air breakdown exists, but also in the treating
solution owing to AOPs of the chemical reaction between the

long-lived species and the organic structure dissolved in the
solution.

In the liquid phase, the dissolved inulin structures have
been continuously chemically reacted with the long- and
short-lived reactive oxidant agents. It has been reported that
the main reactive species playing an important role in the
depolymerization process of polysaccharide structure are
OH·, singlet O, O3, nitric acid, and H2O2. Moreover, the
excited species from the N2 2nd positive system detected in
OES have contributed to surface modification in corporately
with the reactive functional groups on the inulin (polysaccha-
ride) surface [10], [11], [14], [20].

At the plasma-liquid interface region, though there has
been only a short contacting time, inulin structures could pos-
sibly be directly in contact with air plasma; therefore, reactive
species, UV radiation, a strong electromagnetic field, shock
waves, fluid interface reactions, and other phenomena would
interact with the inulin structure, directly resulting in plasma
surface modification in both physical (etching and sputtering)
and chemical interactions [8], [11], [20], [37], [42].

The hypothetical hydroxyl radical mechanism of inulin
depolymerization by the EBL process is shown in Fig. 8.
During the EBL process, hydroxyl radicals are produced from
advanced oxidation process. These radicals have the ability to
extract a hydrogen atom from the fructose unit located at the
C-1 position of a β-(2, 1) glycosidic bond with the subse-
quent generation of a water molecule. Afterwards, the carbon
radical was generated and underwent an oxidation reaction
with oxygen within the system, resulting in the formation of
a superoxide anion. As a result, the β-(2, 1) glycosidic bond
of inulin underwent scission. Subsequently, the formation of
the carbonyl group occurred, followed by the reaction of the
C-2 radical with a hydroxyl radical, resulting in the produc-
tion of oligomers with reducing ends of fructose units [14],
[19], [21]. The hydroxyl radical-induced depolymerization of
inulin has the potential to produce multiple oligomers [14],
[65], which possess an increased number of reducing ends
that can serve as effective reducing agents in reactions with
oxidants. In addition, other radicals and phenomenon happen-
ing during the EBL process might possibly also contribute
to this depolymerization of inulin [8], [11], [20], [37], [42].
As a result, the present study observed an increase in the
antioxidant activity of plasma-treated inulin, as determined
by the DPPH radical scavenging method, when compared to
the control group consisting of untreated inulin. Likewise, the
prebiotic effects of the smaller molecules of inulin oligomers
were shown to be stronger compared to the untreated inulin
control. This difference in effect may be attributed to the
higher accessibility to beneficial bacteria, hence enhancing
bacterial growth.

According to the experimental findings, it is possible to
confirm that the electrical breakdown in the liquid (EBL)
process significantly enhanced the antioxidant and prebiotic
properties of the treated inulin solution, and also changed its
morphology. However, the joule heating and the leakage cur-
rent owing to the long-duty cycle of the high voltage applied
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FIGURE 7. Example SEM images of inulin structures a) before and b) after 20 min EBL process.

FIGURE 8. Hypothetical hydroxyl radical mechanism of inulin depolymerization by EBL process.

for the EBL generation, in the system are the issues that
required to be improved. Nonetheless, the proposed method
could possibly serve as an economically and promisingly
green method for biotransformation, which is beneficial for
bioactive functions and intrinsic viscosity enhancement [7],
[10], [11], [12], [13], [14], [65].

IV. CONCLUSION
The electrical breakdown in the liquid (EBL) process has
potential for inulin structural transformations and bioactivity
enhancement. It has been found that the higher the voltage
supplied for the EBL process within the critical optimal
time, the better the outcome in terms of bioactivity. However,
due to the long duty cycle of the supplied high voltage, the
joule heating, and the leakage current could result in the

accumulating heat in the treating liquid, and reduction of
discharge voltage, which needs to be improved. The further
study of this work is to determine the precise mechanism of
plasma-induced inulin structural change, which is currently
in progress. However, the suggested approach might be used
as a promising, economically viable, and environmentally
friendly strategy for biotransformation, which is advanta-
geous for the enhancement of the inherent viscosity and
bioactive activities of the other forms of polysaccharides from
agricultural sources.
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