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ABSTRACT The large-scale multi-objective optimization problem is characterized by a large decision
space. How to design an efficient optimization algorithm that can search a large decision space and find
the global optimum in the objective space is a very challenging problem at present. In order to solve this
problem, this paper proposes a sampling strategy based on direction vectors, which takes into account both
convergence and diversity. First, select some excellent individuals who are close to the ideal point based on
the reference vector. Secondly, construct a three-way search direction vector using the boundary point and an
additional center point, and execute a directional sampling strategy called the convergence-related sampling
strategy to improve the convergence of the algorithm. After, the direction vector is constructed among
excellent individuals and executes a directional sampling strategy called the diversity-related sampling
strategy to maintain the diversity of the population. Finally, the adjustment strategy of the reference vector
in the Reference Vector Guidance Algorithm (RVEA) is adopted to adjust the reference vector. Numerical
experiments are performed on large-scale multi-objective benchmark problem sets with 500, 1000, and
2000 decision variables and compared with the state-of-the-art algorithms. Experimental results show that
the algorithm proposed in this paper is effective and can obtain solutions that are significantly better than
those of the compared algorithms.

INDEX TERMS Large-scale, multi-objective optimization, decision space, direction vector, directional
sampling.

I. INTRODUCTION
In real-life production, there are problems involving simul-
taneous optimization of multiple objectives, which are
called Multi-Objective Problems (MOPs) [1]. In the past
few decades, scholars have proposed a large number of
multi-objective evolutionary algorithms (MOEAs) to solve
such problems, which can be broadly categorized into
three categories: Pareto dominance based algorithm [2],
[3], [4]; indicator based algorithms [5], [6], [7]; decom-
position based algorithm [8], [9], [10].The aforementioned
techniques, however, are only appropriate for multi-objective
optimization problems with a limited set of decision variables
because they only consider the scalability of the number
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of objectives. But for the real world, there exist large-scale
multi-objective optimization problems (LSMOPs) that con-
tain hundreds or thousands of decision variables, such as
large-scale public transportation network design problems
[11]. The search space of the algorithm grows exponentially
as the number of decision variables rises [12], resulting in
the dimensionality curse [13], while the search efficiency
of traditional multi-objective optimization algorithms rapidly
declines [14], [15], and it becomes more challenging to pro-
duce promising offspring solutions in a larger decision space.
In order to solve these problems, many large-scale multi-
objective evolutionary algorithms (LSMOEAs) have been
proposed, which can be roughly divided into the following
categories.

1) MOEAs based on cooperative coevolution (CC). Based
on the principle of divide and conquer, this kind of
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MOEAs divide the decision variables into numerous
groups with various dimensions, optimize each group
separately, and then achieve the optimization of the
entire problem through the co-evolution between sub-
populations. CCGDE3 [16] divides decision variables
into multiple subpopulations of equal length based on
a random grouping strategy, and then uses GDE3 [17]
to optimize each subpopulation separately. MOEA/D2
[18] further proposed to combine MOEA/D [8] with
co-evolutionary techniques for decomposition in both
the decision space and the objective space at the same
time.

2) MOEAs based on decision variable analysis. This kind
of MOEAs is used to more precisely categorize deci-
sion variables by evaluating the link between them.
Ma et al. [19] proposed an MOEA based on deci-
sion variable analyses (MOEA/DVA). The algorithm
observes the change of the dominant state by perturbing
the value of the decision variable, divides the decision
variable into convergence variables, diversity variables
and mixed variables and optimizes them respectively.
Zhang et al. [20] proposed an evolutionary algorithm
based on clustering of decision variables (LMEA).
The algorithm divides the decision variables into con-
vergence variables and diversity variables through a
clustering algorithm, and then uses two different strate-
gies to optimize the two groups of variables. Li and
Wei [21] proposed a coevolutionary algorithm to solve
large-scale multi-objective problems by using a fast
interdependence recognition groupingmethod. In addi-
tion, PEA [22], FR [23], etc. also belong to the category
based on decision variable analysis.

3) MOEAs based on problem transformation. This type
of MOEAs transforms the original large-scale deci-
sion variable optimization problem into a small-scale
weight optimization problem through the problem
transformation function. Zille et al. [24] proposed a
weight optimization framework (WOF). The algorithm
divides decision variables into multiple groups and
optimizes the associated weight vector for each
group, thereby transforming it into a small-scale
MOP. To enhance the effectiveness of this framework,
Liu et al [25] proposed to use random dynamic group-
ing rather than ordered grouping. He et al. [26] pro-
posed a problem reconstruction framework (LSMOF).
The algorithm constructs a bidirectional reference vec-
tor in the decision space and associates it with a set
of weight variables. The weight variables are then
optimized using the HV indicator to track the Pareto
optimal set and speed up the search process.

4) The last category is MOEAs that do not belong to
the above three categories. For example, Tian et al.
[27] proposed a modified competitive swarm optimizer
for large-scale multi-objective problems (LMOCSO).
The algorithm proposes a new particle update strategy,

in which inferior particles learn from superior parti-
cles to generate promising offspring to accelerate the
search for the global optimal solution. He et al. [28]
propose an adaptive offspring generation method for
large-scale multi-objective optimization (DGEA). The
algorithm constructs convergence and diversity search
directions through dominated and non-dominated solu-
tions, and adaptively guides the generation of offspring.
Qin et al. [29] introduce a direct sampling method
for large-scale problems (LMOEA-DS), which con-
structs a bidirectional search direction vector through
boundary points and individuals closest to the origin.
Directional sampling is then performed on the direc-
tion vector to generate offspring, while complementary
non-dominated sorting and decomposition-based envi-
ronmental selection strategies are used for selection.
Yang et al. [30] proposes a fuzzy decision variables
framework for large-scale multi-objective optimization
(FDV), which divides the evolution process into two
main stages: fuzzy evolution and precise evolution by
fuzzy operations on decision variables.

Although the existing large-scale multi-objective algo-
rithms can improve the search efficiency to some level, each
category of the algorithms has drawbacks. The performance
of MOEAs algorithm based on cooperative coevolution
depends on the grouping of decision variables. When the
grouping of decision variables is not appropriate, the per-
formance of the algorithm will significantly suffer. These
algorithms, which use methods like random grouping [31],
linear grouping [32], ordered grouping [33], differential
grouping [34], and others, do not account for the interrela-
tionships between decision variables, so they are not suitable
for large-scale multi-objective optimization problems with
interactions between decision variables. In order to divide
the decision variables more accurately, MOEAs based on
decision variable analysis often need to spend a lot of function
evaluation, and the decision variable categories generated by
the decision variable analysis are few, so the correspond-
ing sub-problems may still be large-scale problems. The
MOEAs based on problem transformation are prone to fall
into local optima, and the final solution set has poor diversity.
The LMOCSO [27], DGEA [28], LMOEA-DS [29] algo-
rithms directly search for the optimal solution in the original
decision space. They still cannot effectively find promising
offspring solutions to speed up search for some problemswith
high dimensional decision variables. The FDV [30] algorithm
introduces fuzzy operations to increase the complexity of the
algorithm and increase the computational burden.

Based on the above discussion, a large-scale multi-
objective evolutionary algorithm based on direction vector
sampling (LSMOEA-DVS) is proposed. The main idea of
the algorithm is to construct a search direction vector that is
related to convergence and diversity through excellent indi-
viduals, boundary points and a center point. The direction
vector is then directional sampling to produce the desired
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offspring solutions in the decision space. Since the method
proposed in this article directly generates offspring through
direction vector sampling in the original decision space,
it avoids the defects caused by the need to group decision
variables in the first two types of algorithms. At the same
time, it also avoids the problem of lack of diversity caused
by the need for problem conversion in the third type of
algorithm. In addition, the method proposed in this article
further improves the performance of the last type of algorithm
by enhancing the direction vector generation and implement-
ing a sampling strategy that considers both convergence and
diversity. The main contributions of this work are as follows:

1) A convergence-related sampling strategy is proposed:
in each generation of the search, three promising search
direction vectors are constructed through each excel-
lent individual close to the ideal point, the boundary
point and the additionally introduced center point.
Then, directional sampling is performed along each
search direction vector to generate individuals with
good convergence.

2) A diversity-related sampling strategy is proposed: in
each generation of the search, the strategy takes a set
of diversity-related excellent individuals that is closed
to the ideal point to construct a set of search directions.
Directional sampling is then performed along each
search direction. Additionally, non-dominated individ-
uals perform crossover mutation operations to further
improve diversity.

3) The algorithm proposed in this paper takes both conver-
gence and diversity into account through two sampling
strategies in the generation of offspring. In order to ver-
ify the effectiveness of the proposed LSMOEA-DVS
algorithm in solving LSMOPs, it is compared with
other five representative large-scale MOEAs. The
experimental results show that LSMOEA-DVS is sig-
nificantly better than other large-scale MOEAs evolu-
tionary algorithm. In addition, an ablation experiment
was conducted to confirm the efficacy of the proposed
method, which verified the effectiveness of the method.

The rest of this article is organized as follows. In Section II,
we introduce the related work of the paper. Section III
introduces the LSMOEA-DVS algorithm framework and the
principle of program implementation. Section IV is the anal-
ysis of experimental results, which are compared with that of
other algorithms. Section V is the conclusions of this paper.

II. RELATED WORK
A. MULTIOBJECTIVE OPTIMIZATION PROBLEM
MOPs can be expressed mathematically as follows [35]:{

minF (X) = (f1 (X) , f2 (X) , . . . , fm (X))

subject to X ∈ �
(1)

where X = (x1, x2, . . . , xD) is a decision vector from a
D-dimensional decision space �, and F (X) is the objec-
tive function vector, which contains m conflicting objective

functions. Due to the presence of conflicting objective
functions, there is no single solution that can simulta-
neously minimize all objective functions. In the field of
multi-objective evolution, a non-dominated solution set is
defined as a trade-off between different objectives. Assuming
X1,X2 ∈ �, we define X1 Pareto dominate X2 as X1≺X2,
if and only if fi (X1) ≤ fi (X2) (∀i ∈ {1, 2, . . . ,m}), and at
least on one objective fj (X1) ≤ fj (X2) (j ∈ {1, 2, . . . ,m}).
All Pareto optimal solutions in the decision space are called
Pareto optimal set (PS), and the projection of PS in the
objective space is called Pareto optimal front (PF).

B. OBJECTIVE VALUE CONVERSION
Since the initial point of the reference vector is always the
origin of the coordinates, in order to facilitate the division of
the population individuals, the objective value of the popula-
tion individual Pt needs to be transformed. Assuming Ft ={
ft,1, ft,2, . . . , ft,|pt |

}
, t represents the t-th iteration. Converted

by the following formula:

f ′t,i = ft,i − zmint (2)

where i = 1, 2, . . . , |pt |, ft,i and f ′t,i are the objective vectors
of individual i before and after the transformation. zmint =(
zmint,1 , zmint,2 , . . . , zmint,m

)
represents the minimum value of each

objective in the current population. The purpose of this is
to ensure that all objective values and reference vectors of
the transformed population are in the first quadrant of the
objective space. At this point, the ideal point is the coordinate
origin.

C. SOLUTION ASSOCIATION
In order to achieve a population with good diversity, it is
necessary to assign individuals to uniformly distributed refer-
ence vectors [36], and allocate individuals based on the angle
relationship between individuals and reference vectors in the
objective space. The formula is as follows:

cosθt,i,j =
f ′t,i.vt,j∥∥∥f ′t,i∥∥∥ .

∥∥vt,j∥∥ (3)

where θt,i,j represents the angle between the objective vector
f ′t,i after the transformation of the population individual Pt,i
and the reference vector vt,j, if and only When the angle
between the population individual Pt,i and the reference vec-
tor vt,k is the smallest (the cosine value is the largest), it is
assigned to the reference vector vt,k .

D. MAIN FRAMEWORK
The main framework of the LSMOEA-DVS algorithm pro-
posed in this paper is listed in Algorithm 1. It can be seen
from Algorithm 1 that the LSMOEA-DVS algorithm mainly
uses two sampling strategies to generate offspring population
individuals, which is also the main contribution of this paper.
In the following subsections, we will describe the main parts
of Algorithm 1 in detail.
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Algorithm 1 LSMOEA-DVS
Input: N (population size), FEmax (the maximum number of
function evaluation), mu (number of candidate solutions to
construct the direction vector).
Output: P (final population).
1: V0,V ∗← generate-reference-vectors(N );
2: V ← V0 ∪ V ∗;
3: P← Initialization(N );
4: while termination criterion is not fulfilled do
5: coffspring← convergence-related

sampling(P,V ,mu);
6: doffspring, offspring← diversity-related

sampling(P ∪ coffspring,V ,mu,N );
7: P← Environmental Selection(P ∪ coffspring∪

doffspring ∪ offspring,V );
8: V (1 : N )← reference-vector-adaptation(P,V0);
9: if FE > 1

2FEmax then
10: V (N + 1 : end)← Reference-Vector-

Regeneration (P,V (N + 1 : end));
11: end if
12: end while

III. THE PROPOSED ALGORITHM
A. PREPROCESSING
The purpose of preprocessing is to select excellent individuals
from each generation of the population that are required by
the subsequent sampling strategy to construct the direction
vector.We first transform the individual objective value of the
current population, and then assign it to the current reference
vector V t . The reference vector that assigns at least one indi-
vidual is called the active reference vector V t

act . The reference
vector of unassigned population individuals is called the inac-
tive reference vector V t

ina. Use K-means clustering to cluster
the active reference vector V t

act intomu classes. If the number
of active reference vectors V t

act is less than the number of
clusters mu required for clustering, then cluster the active
reference vectors V t

act into the number of active reference
vectors Nact classes. Therefore, the population individuals
are divided into min (mu,Nact) subpopulations. This method
of clustering the active reference vectors is based on the
K-RVEA algorithm [37], so that the selected individuals have
the widest distribution. Finally, an individual who is closest
to the ideal point is selected from each subpopulation. In this
way, individuals with good convergence and diversity can
be obtained to construct the direction vector. To illustrate
how to find excellent individuals to construct the direction
vector, an example is given in Figure 1. The four blue dots
in Figure 1 represent the current population individuals, and
the five solid black lines represent the reference vector.
It can be seen that the reference vector Va has no population
individuals assigned, so it is an inactive reference vector,
while the remaining four assigned population individuals are
active reference vectors. The four active reference vectors are
clustered into two categories, Cluster1 and Cluster2. Then,

FIGURE 1. The selection of the best individual closest to the ideal point
constituting the direction vector.

the individuals X2 and X4, which are closest to the ideal
point (original point), are selected from each category. X2
and X4 are the excellent individuals required to construct the
direction vector.

B. SAMPLING STRATEGY
1) CONVERGENCE-RELATED SAMPLING STRATEGY
With the increase of the dimension of decision variables,
the search space of the algorithm increases exponen-
tially. The traditional approach of generating offspring by
cross-mutation makes the algorithm slow to converge in a
large search space. Construct a promising direction vector
to guide the search towards the Pareto optimal front, which
can greatly speed up the convergence of the algorithm. Both
the LSMOF [26] and LMOEA-DS [29] algorithms use the
upper and lower boundary points of the decision space and
excellent individuals to construct the direction vector of the
bidirectional search. It is expected that the direction vector
can intersect with the Pareto optimal set in the decision space,
so as to follow the direction vector and generating popu-
lation individuals on the Pareto optimal front to accelerate
convergence. However, the effectiveness of this method is
contingent upon the presence of an intersection between the
direction vector and the Pareto optimal set. If the direction
vector is far from the Pareto optimal set, it cannot guarantee
the generation of population individuals with better conver-
gence. Figure 2 shows an example of constructing a direction
vector in a two-dimensional decision variable space using
only boundary points. In the figure, the blue curve represents
PS in the decision variable space, while the four black solid
circles represent the selected outstanding population individ-
uals. Additionally, the red solid line represents the direction
vector of the construct. As can be seen from Figure 2, the
four selected population individuals exhibit a concentration
in the lower half of the space, whereas the PS curves are
predominantly located in the upper half of the space. The
direction vector that has been constructed does not intersect
with PS, which makes it difficult for the offspring individuals
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FIGURE 2. In the two-dimensional decision variable space, use the
boundary points to construct the direction vector.

FIGURE 3. In the two-dimensional decision variable space, use the
boundary points and a center point to construct a direction vector.

generated along this vector to approach the vicinity of PS,
so that the optimal solution cannot be directly found. Based
on this problem, in this study, we decided to introduce an
additional center point C , This point will be used to construct
direction vectors with excellent individuals, allowing each
excellent individual to generate three direction vectors. These
vectors will then form a three-way search. Thereby increasing
the possibility of intersection between the direction vector
and PS. Figure 3 shows an example of constructing the direc-
tion vector in the two-dimensional decision variable space
using the boundary points and the center point. From Figure 2
and Figure 3, it can be seen that the inclusion of the center
point C enhances the likelihood of intersection between the
direction vector and PS. Consequently, the distribution of
offspring individuals generated along the direction vector
becomes more extensive, which is beneficial to improve the
exploration efficiency of the algorithm across the entire deci-
sion variable space.

After selectingmu excellent individualsX = {X1, . . . ,Xmu}
from the parent population P through preprocessing, a direc-
tion vector is constructed using the upper and lower boundary
points, as well as the center point, which is defined as follows:

cdvl,i = Xi − L

cdvu,i = Xi − U

cdvc,i = Xi − C (4)

where L andU represent the lower and upper boundary points
of the decision variable space, and the center point C is
defined as follows:

C = L +
U − L

2
(5)

Generate a set of direction vectors cdv = {cdvl,1, cdvu,1,
cdvc,1, . . . , cdvl,mu, cdvu,mu, cdvc,mu}. Each direction vector
represents a search direction. The search starting point can be
the upper boundary point, the lower boundary point, or the
center point. We randomly sample multiple solutions in each
search direction, the formula for this process is as follows:

coffspringl,ij = L + γ
l,i
j ·

cdvl,i∥∥cdvl,i∥∥
coffspringu,ik = U + γ

u,i
k ·

cdvu,i∥∥cdvu,i∥∥
coffspringc,il = C ± γ

c,i
l ·

cdvc,i∥∥cdvc,i∥∥ (6)

where the sampling coefficients γ
l,i
j and γ

u,i
k are random

numbers uniformly distributed on [0, ∥U − L∥], γ c,il is a

random number uniformly distributed on [0, ∥U−L∥2 ], ∥·∥
represents the Euclidean distance. This ensures that the indi-
viduals generated along the direction vector cdvl,i, cdvu,i and
cdvc,i cover the entire search space, j, k , and l represent the
j-th, k-th and l-th samplings along the direction vector cdvl,i,
cdvu,i and cdvc,i. Figure 4 gives an illustrative example in
the two-dimensional decision variable space. An excellent
individual X1 and boundary points L, U construct direction
vectors cdvl,1 and cdvu,1. X1 and the center point C construct
a direction vector cdvc,1. At the same time, random sam-
pling is performed on cdvl,1, cdvu,1, and cdvc,1 to generate
coffspringl,1j , coffspringu,1k , and coffspringc,1l .
Algorithm 2 gives the pseudocode for the convergence-

related sampling strategy method. First, the preprocessing
selects mu excellent individuals (line 1). Then 3 direc-
tion vectors were constructed for each excellent individual
(lines 2-4). Subsequently, random sampling was performed
on each direction vector to generate offspring individuals
(lines 5-7). Duplicate individuals are eliminated (line 8)
and Out-of-bounds handling is performed on the resulting
offspring individuals (lines 9-11). Output the offspring indi-
viduals generated through the convergence-related sampling
strategy.

2) DIVERSITY-RELATED SAMPLING STRATEGY
Although the convergence-related sampling strategy can gen-
erate individuals with good convergence to accelerate the
convergence process, it cannot guarantee that the generated
individuals will have good diversity. Therefore, a diversity-
related sampling strategy is proposed to improve the diversity
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Algorithm 2 Convergence-Related Sampling
Input: P (the parent population), mu (number of excellent
individuals to construct the direction vector), V (a set of
reference vectors for identifying search directions).
Output: coffspring (sampling solution)
1: gp← The mu excellent individuals obtained by prepro-

cessing for constructing the direction vector;
2: for i = 1 : |gp| do
3: Define three direction vectors according to equation

(4) and individual i;
4: end for
5: for i = 1 : |gp| do
6: Generate offspring individuals coffspring according

to equation (6);
7: end for
8: delete the same individual;
9: for i = 1 : |coffspring| do

10: Out-of-bounds handling based on equation (9) for
each individual i;

11: end for
12: Output coffspring.

of each generation of populations. From the offspring indi-
viduals coffspring generated by the convergence-related
sampling strategy and the parent population P, mu excel-
lent individuals X = {X1, . . . ,Xmu} are selected through
preprocessing. The mu excellent individuals are selected in
sequence to serve as the starting point of the construction
direction vector. Then, one of the other mu − 1 candidate
individuals is randomly selected to serve as the end point of
the construction direction vector. The construction process is
defined as follows:

ddvi = Xj − Xi (7)

where i = {1, 2, . . . ,mu}, j belongs to any number not equal
to i in {1, 2, . . . ,mu}. Generate a set of direction vectors
ddv = {ddv1, ddv2, . . . , ddvmu}, each direction vector rep-
resents a search direction. The search starting point is Xi, and
multiple solutions are randomly sampled in each direction.
The process formula is as follows:

doffspringij = Xi ± δij .
ddvi∥∥ddvi∥∥ (8)

The sampling coefficient δij is a random number uniformly
distributed on [0,

∥∥ddvi∥∥], ∥.∥ represents the Euclidean dis-
tance, and j represents the j-th sampling along the direction
vector ddvi. After the offspring individual doffspring is gen-
erated, it is combined with the parent P and the offspring
individual coffspring generated by the convergence sampling
strategy to select N non-dominated individuals through non-
dominated sorting. Cross-mutating it to generate offspring
offspring to further improve population diversity. Figure 5
gives an illustrative example. In the two-dimensional decision
variable space, a direction vector ddv1 is constructed between

FIGURE 4. Construction and sampling of direction vectors in
convergence-related sampling strategy.

FIGURE 5. Construction and sampling of direction vectors in
diversity-related sampling strategy.

two excellent individuals X1 and X2 and at the same time,
doffspring1j is randomly sampled on ddv1.
Algorithm 3 gives the pseudocode of the diversity-related

sampling strategy method. First, the preprocessing selects
mu excellent individuals (line 1). Then construct a direc-
tion vector for each excellent individual (lines 2-4) and
randomly sample from each direction vector to generate
offspring individuals (lines 5-7). Duplicate individuals are
removed (line 8) and out-of-bounds handing is performed
on the resulting offspring individuals (lines 9-11). Finally
perform non-dominated sorting on the individuals of the cur-
rent population, select the top N non-dominated solutions for
cross-mutation (lines 12-13), and output the offspring indi-
viduals generated by the diversity-related sampling strategy.

3) OUT OF BOUNDS HANDLING
Some solutions generated by the sampling coefficients may
exceed the boundary of the decision space, so here we use the
value of the decision variable beyond the boundary position
to reproject back to the feasible region. The specific process
is defined as follows:

x ′i,d = min
(
xcdi,d ,Ud

)
VOLUME 11, 2023 108911
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Algorithm 3 Diversity-Related Sampling
Input: P (the parent population), coffspring (convergence-
related sampling individuals), mu (number of excellent
individuals to construct the direction vector),V (a set of refer-
ence vectors for identifying search directions), N (population
size).
Output: doffspring (sampling solution), offspring
1: gp← The mu excellent individuals obtained by prepro-

cessing for constructing the direction vector;
2: for i = 1 : |gp| do
3: Define a direction vector according to equation (7)

and individual i;
4: end for
5: for i = 1 : |gp| do
6: Generate offspring individuals doffspring according

to equation (8);
7: end for
8: delete the same individual;
9: for i = 1 : |doffspring| do

10: Out-of-bounds handling based on equation (9) for
each individual i;

11: end for
12: Sort the population P ∪ coffspring ∪ doffspring

non-dominated and select the top N non-dominated
individuals;

13: Cross mutation operation produces offspring;
14: Output doffspring, offspring.

x ′i,d = max
(
xcdi,d ,Ld

)
(9)

where xcdi,d represents the d-th decision variable of the i-th
solution X cdi . Ud and Ld are the values of the d-th decision
variable at the upper and lower boundary points. Figure 6
shows such an example. The x1 value xcdi,1 of individual X cdi
and the x2 value xcdk,2 of individual X

cd
k sampled on the direc-

tion vector are beyond the decision variable space, and these
individuals are projected back to positions X ′i and X

′
k in the

feasible region, respectively.

C. ENVIRONMENTAL SELECTION
Decomposition-based environmental selection strategy for
populations P, coffspring, doffspring and offspring. First,
the objective value of each individual in the population is
transformed and then assigned to the reference vector V .
From the individuals assigned by each reference vector, the
individual with the closest Euclidean distance to the ideal
point in the objective space is selected and retained for the
next generation.

D. REFERENCE VECTOR ADJUSTMENT
1) REFERENCE-VECTOR-ADAPTATION
Since the individual objective values of the population are
not normalized, there may be some MAOPs where different

FIGURE 6. Project out-of-bounds decision variables back to the feasible
region.

objectives are scaled to different ranges. As a result, even if
a uniformly distributed reference vector is used, it may not
yield a uniformly distributed solution. We adopt the reference
vector adaptation method in RVEA [9] to adjust the reference
vector according to the objective value, refer to [9] for more
details.

2) REFERENCE-VECTOR-REGENERATION
In some optimization problems characterized by irregular
PF geometry, uniformly distributed reference vectors may
result in the presence of invalid reference vectors, which
lack non-dominated individuals associated with them. If we
continue to rely on them for guiding environment selection,
this practice will result in a decrease density for obtaining
Pareto optimal solutions, as well as a wastage of computa-
tional resources on these invalid reference vectors. Therefore,
in the second half of the optimization process, the reference
vector regeneration strategy in RVEA [9] is used to regenerate
these invalid reference vectors, please refer to [9] for more
details.

IV. EXPERIMENTAL STUDY
The performance of the proposed LSMOEA-DVS is evalu-
ated by comparing with five algorithms, including LMOEA-
DS [29], LMOCSO [27], LSMOF [26], WOF [24] and FDV
[30] on the seven test problems of the DTLZ [38] test suite,
the nine test problems of the LSMOP [14] test suite, and
the nine test problems of the WFG [39]test suite. These
problems have 500, 1000, 2000 decision variables and 2 and
3 objective dimensions, respectively. For fair comparison, all
compared algorithms are implemented in PlatEMO [40] and
use an AMD Ryzen 7 5800H CPU, 3.20GHZ processor, and
16GB RAM. They are independently run 20 times on each
benchmark problem.

A. PERFORMANCE INDICATOR
In the experiments, the inverted generational distance (IGD)
[41] is used as a performance indicator to evaluate the
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comparison algorithms. This indicator can measure the con-
vergence and diversity of the population obtained from the
algorithm. The smaller the value of the IGD indicator, the
better the obtained population. Defined as follows:

IGD(P∗,P) =

∑
x∈P∗ d(x,P)
|P∗|

(10)

where P∗ is a set of uniformly distributed reference points
on the true PF, P is the obtained solution set, d (x,P) is the
minimum Euclidean distance from the point x on the Pareto
optimal front to the individual in the final solution set P, |P∗|
is the number of elements in P∗. The smaller the IGD value,
the better the quality of the obtained solution set.

We also use the HV indicator to further evaluate the
algorithm’s performance. The calculation formula for the HV
indicator is as follows:

HV =
⋃
i

voli (11)

where i ∈ PF , voli corresponds to a super region bounded
by a pre-specified reference point and a solution i. The HV
indicator estimates the hypervolume of the area enclosed by
a point in the population and a reference point. The HV
indicator can measure both the convergence and diversity of
the population obtained by the algorithm simultaneously. The
larger the HV value, the better the algorithm performs.

B. EXPERIMENTAL SETTINGS
All algorithms are run independently 20 times. The maxi-
mum number of objective evaluations (denoted as FEmax)
allowed is 200000 for test problems with three objectives and
150000 for test problems with two objectives. The initial pop-
ulation size is set to 100. Moreover, the Wilcoxon rank sum
test [42] is employed to assess whether the performance of
the solution set obtained by one of the two comparison algo-
rithms is statistically different from the other. The symbols
‘‘+,’’ ‘‘−,’’ and ‘‘=’’ indicate that the compared algorithms
are significantly better, significantly worse, or statistically
associated with LSMOEA-DVS.

In our method, the genetic operators used are simulated
binary crossover (SBX) [43] and polynomial mutation (PM)
[44]. For SBX, the distribution index is set to 20 and the
crossover probability is set to 1. For PM, the distribution
index is set to 20 and the mutation probability is set to 1/

D,
where D is the number of decision variables. The number mu
of excellent individuals selected by preprocessing is set to
10. The number of randomly generated solutions along each
direction vector is set to 30.

The parameters of all comparison algorithms are consistent
with those given in their papers. ForWOF and FDV, NSGA-II
is used as the optimization algorithm for embedding.

C. ANALYSIS OF THE EFFECTS OF THE INDIVIDUAL
COMPONENTS
In this section, a series of experiments are conducted on
some DTLZ, LSMOP, and WFG test problems with decision

variable dimensions of 500, 1000, and 2000 to demonstrate
the effectiveness of the proposed method.

1) THE EFFECTS OF PREPROCESSING
To evaluate the effectiveness of the preprocessing strat-
egy, we conducted comparative experiments with a variant
(LSMOEA-DVS-r). The variant algorithm LSMOEA-DVS-r
selects excellent individuals by randomly choosing from the
current population. As can be seen from Table 1, LSMOEA-
DVS performs better on 15 out of the 27 test problems. It only
performs worse than LSMOEA-DVS-r on the WFG2 prob-
lem. According to the results in Table 1, we can demonstrate
the effectiveness of the preprocessing strategy. The number of
excellent individuals selected by the preprocessing strategy
mu is crucial for the subsequent sampling strategy. In theory,
the larger the mu setting is, the more direction vectors are
defined, and the more function fitness evaluations are con-
sumed in one iteration. Therefore, setting appropriate values
is essential. Figure 10 shows the IGD values of different mu
values for LSMOP2, LSMOP5, and LSMOP9 in the case of
three objectives. It can be seen from Figure 10 that settingmu
to 10 results in better algorithm performance. Therefore, the
value of mu is set to 10.

2) THE EFFECTS OF CONVERGENCE-RELATED SAMPLING
STRATEGY
In our method, three points of the boundary point and cen-
ter point are used as starting points to construct the search
direction vector of the three-way for directional sampling.
To evaluate the effectiveness of the additional center point,
we compare it with a method (LSMOEA-DVS-two) that only
takes two boundary points as starting points to construct
the direction vector for the two-way search. As can be seen
from Table 2, LSMOEA-DVS wins 18 out of 27 test prob-
lems compared to LSMOEA-DVS-two. On 9 test problems,
both of them perform equally well. According to the results
in Table 2, we can conclude that our proposed method is
effective.

3) THE EFFECTS OF DIVERSITY-RELATED SAMPLING
STRATEGY
To evaluate the performance of the diversity-related sampling
strategy, we compare it with a variant that uses only the
convergence-related sampling strategy (LSMOEA-DVS-c).
Table 3 shows the results of the experimental comparison.
It can be seen that LSMOEA-DVS achieves better perfor-
mance on all 27 test problems. This shows that the method
significantly enhances the quality of the obtained solution set,
thereby proving its effectiveness.

4) THE EFFECTS OF OUT-OF-BOUNDS HANDLING STRATEGY
To demonstrate the effectiveness of the out-of-bounds han-
dling strategy, we conducted comparative experiments with a
variant (LSMOEA-DVS-i). The variant algorithm first deter-
mines the bounds of the search direction and then samples
within the bounds, so it does not require out-of-bounds
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TABLE 1. Statics of IGD results obtained by LSMOEA-DVS-R and
LSMOEA-DVS on 500, 1000, and 2000 dimensional three-objective DTLZ
LSMOP WFG some test questions. the best results in each row are
highlighted.

handling. As can be seen from Table 4, LSMOEA-DVS
outperformed LSMOEA-DVS-i on 17 out of the 27 test
problems, and performed worse on only two problems.
Experimental results prove the effectiveness of the out-of-
bounds handling strategy.

D. COMPARISONS WITH STATE-OF-THE-ART
LARGE-SCALE MULTI-OBJECTIVE METHODS
In order to evaluate the performance of the LSMOEA-
DVS algorithm, we give the experimental results of the
LSMOEA-DVS algorithm along with five other state-of-the-
art algorithms, namely LMOEA-DS, LMOCSO, LSMOF,
WOF, and FDV. These algorithms were evaluated on
DTLZ1-7, LSMOP1-9, and WFG1-9 test problems. The per-
formance was compared based on the IGD values, with the
best results are highlighted.

TABLE 2. Statics of IGD results obtained by LSMOEA-DVS-TWO and
LSMOEA-DVS on 500, 1000, and 2000 dimensional two-objective DTLZ
LSMOP WFG some test questions. the best results in each row are
highlighted.

It can be seen from Table 5 that in DTLZ1-7 problems,
our proposed LSMOEA-DVS algorithm achieved the best
results in 36 out of 42 cases. In 42 cases, LSMOEA-DVS
outperformed the corresponding competing algorithms in 39,
42, 36, 42, and 41 cases. Our proposed LSMOEA-DVS
algorithm performs the best on DTLZ1-4 and DTLZ7 prob-
lems, particularly on the bi-objective DTLZ problem, where
our algorithm performs the best on all problems. The PF of the
DTLZ5 and DTLZ6 test problems is degraded on three objec-
tives. Our proposed algorithms do not achieve optimal results
for these problems. LMOEA-DS only has good performance
on DTLZ6-7 problems. Due to its complementary environ-
ment selection strategy, it has certain advantages in dealing
with degenerate and discontinuous PF multi-objective prob-
lems like DTLZ6 and DTLZ7. on other remaining problems,
the algorithm itself may not converge sufficiently, requiring
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TABLE 3. Statics of IGD results obtained by LSMOEA-DVS-C and
LSMOEA-DVS on 500, 1000, and 2000 dimensional three-objective DTLZ
LSMOP WFG some test questions. the best results in each row are
highlighted.

additional fitness evaluations to improve performance. Com-
paredwith other competing algorithms, LSMOF performs the
best among the five competing algorithms and has relatively
good performance on all DTLZ problems. However, due to
the lack of diversity maintenance in the algorithm itself,
it did not achieve the best results. Especially in the case
of the multi-modal discontinuous PF problem of DTLZ7,
LSMOF often only manages to find a portion of the optimal
solution. This limitation hinders the algorithm’s ability to
further enhance its performance. The other three competing
algorithms failed to achieve good results.

It can be seen from Table 6 that in LSMOP1-9, our pro-
posed algorithm achieves the best results in 34 out of 54 cases.
In 54 cases, LSMOEA-DVS outperformed the correspond-
ing competing algorithms in 33, 54, 43, 41, and 53 cases.

TABLE 4. Statics of IGD results obtained by LSMOEA-DVS-I and
LSMOEA-DVS on 500, 1000, and 2000 dimensional three-objective DTLZ
LSMOP WFG some test questions. the best results in each row are
highlighted.

LMOCSO and FDV failed to achieve good results on the
LSMOP problem, LSMOF and WOF only outperformed our
proposed algorithm in 5 out of 54 problems, and mainly focus
on the two-objective problem. On the 3-objective problem,
the PF of the LSMOP2-4 and LSMOP6-9 test problems is
mixed or multimodal, and algorithms that rely on problem
transformation, such as LSMOF and WOF, do not perform
well. LMOEA-DS is the best among the five competing
algorithms. It outperforms LSMOF and WOF algorithms on
problems with multimodal or mixed PF. LMOEA-DS out-
performs our proposed algorithm in 14 out of 54 problems,
especially on the LSMOP8 problem. It can be seen that our
proposed algorithm can achieve the best results on LSMOP2,
4, 6, and 9 problems, regardless of whether they have 2 or
3 objectives. As for other LSMOP problems, our algorithm
mainly fails to achieve excellent results on two-objective.
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TABLE 5. Statistics of IGD results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
DTLZ test problems. the best result in each row are highlighted.

As can be seen from Table 7, in WFG1-9, our proposed
LSMOEA-DVS algorithm achieves the best results in 33 out

of 54 cases. Among the 54 cases, LSMOEA-DVS outper-
formed the corresponding competing algorithms in 31, 49,
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TABLE 6. Statistics of IGD results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
LSMOP test problems. the best result in each row are highlighted.

40, 46, and 46 cases, respectively. The PF of the WFG4-9
test problem is a concave function on the three objectives.

The PF of WFG1 is mixed, that of WFG2 is discontinu-
ous, and that of WFG3 is linear. LSMOF does not achieve
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TABLE 7. Statistics of IGD results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
WFG test problems. the best result in each row are highlighted.

the best results on the WFG problem. There are 2 cases in
which LMOCSO and WOF achieve the best results. FDV

achieves the best results on the WFG1 problem. LMOEA-DS
is the best performer among the 5 competing algorithms, as it
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TABLE 8. Statistics of HV results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
DTLZ test problems. the best result in each row are highlighted.

achieves the best results in 11 cases, specifically targeting the
WFG4, WFG5, and WFG6 problems. It can be seen that our

proposed algorithm has achieved the best results on WFG2,
3, 7, and 9 problems. Especially on two-objective problems,
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TABLE 9. Statistics of HV results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
LSMOP test problems. the best result in each row are highlighted.

our proposed algorithm performs well in the majority of
cases.

Table 8, Table 9, and Table 10 give the comparative experi-
mental results of HV indicators. According to the comparison
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TABLE 10. Statistics of HV results obtained by LSMOEA-DVS and five comparison algorithms on 500, 1000 and 2000 dimensional two- and three-objective
WFG test problems. the best result in each row are highlighted.

results of HV indicators in Table 8, in 42 cases, our proposed
algorithm LSMOEA-DVS outperforms the corresponding
competing algorithms in 39, 42, 33, 42, and 39 cases.

LSMOEA-DVS achieves the best performance on DTLZ2-4
and DTLZ7 problems. Especially for the bi-objective DTLZ
problem, LSMOEA-DVS achieved the best performance.
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FIGURE 7. The pareto front obtained by each algorithm in 3-objective DTLZ3 with 2000 decision variables. (a) LMOEA-DS;
(b) LMOCSO; (c) LSMOF; (d) WOF; (e) FDV; (f) LSMOEA-DVS.

FIGURE 8. The pareto front obtained by each algorithm in 2-objective DTLZ7 with 1000 decision variables. (a) LMOEA-DS;
(b) LMOCSO; (c) LSMOF; (d) WOF; (e) FDV; (f) LSMOEA-DVS.

This result is similar to the conclusion reached by the IGD
indicator. According to the results in Table 9, out of 54 cases,
LSMOEA-DVS outperforms the corresponding competing
algorithms in 30, 42, 33, 37, and 45 cases. LSMOEA-DVS
has the best performance on LSMOP4, 6, 8, and 9 prob-
lems. This result is similar to the conclusion reached by the
IGD indicator. On certain bi-objective LSMOP problems,
all algorithms perform poorly, resulting in an HV indicator
score of 0. Therefore, it is impossible to intuitively compare
the advantages and disadvantages using the HV indicator
on these problems. However, it can be compared based on

the IGD index. According to the results in Table 10, out
of 54 cases, LSMOEA-DVS outperforms the correspond-
ing competitive algorithms in 29, 49, 31, 39, and 43 cases.
LSMOEA-DVS performs best on WFG3, 7, and 9 prob-
lems, especially for the bi-objective WFG problem. In most
cases, LSMOEA-DVS has the best performance. This result
is similar to the conclusion reached by the IGD indica-
tor. It can be seen that the algorithm we proposed still
outperforms the comparative algorithm in most problems
according to the HV indicators. Therefore, the experimental
results provide evidence of the efficiency and superiority of
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FIGURE 9. The convergence curves of each algorithm in 3-objective DTLZ1 with 2000 decision variables and 2-objective DTLZ5 with
1000 decision variables. (a) DTLZ1; (b) DTLZ5.

FIGURE 10. Parameter analysis of the mu value of the number of excellent individuals selected for preprocessing. (a) LSMOP2; (b)
LSMOP5; (c) LSMOP9.

FIGURE 11. Experiment on time complexity.

LSMOEA-DVS in comparison to the other five competing
algorithms.

In order to illustrate the superiority of the algorithm pro-
posed in this paper more intuitively. Figures 7 and 8 present
the distribution diagrams of the final Pareto front obtained

by the algorithm in this paper, as well as other comparative
algorithms, on the DTLZ test problem. In these diagrams,
the gray solid circle represents a solution, while the gray
grid lines represent the real Pareto front. It can be seen from
Figure 7 that the LSMOEA-DVS algorithm proposed in this
paper really converges to the real PF, which is consistent
with the conclusion drawn from the IGD value. LSMOF is
the best performing algorithm among the comparison algo-
rithms, and it can also converge to the real PF. However,
the obtained solution set distribution is not widely spread
across the real PF. This also shows that algorithms based on
problem transformation, such as LSMOF, have a tendency to
converge towards local optima, leading to a limited diversity
in the solution set. LMOEA-DS can also converge to the
real PF. However, it determines whether the environment
selection is based on decomposition or Pareto domination
using a threshold, which introduces the possibility of retain-
ing the dominate individual. The solution sets obtained by
the remaining algorithms fail to converge to the real PF.
It can be seen from Figure 8 that all algorithms have good
performance on 2 objectives. The algorithm LSMOEA-DVS
proposed in this paper still has the best performance, and
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the obtained solution set achieves full coverage on the real
PF. Algorithms based on problem transformation, such as
LSMOF and WOF, only find half of the true PF. Although
LMOEA-DS can find all the real PF, it retains the dominant
solution in the discontinuous area, so it cannot handle irregu-
lar PF optimization problems. The LMOCSO algorithm also
cannot deal with irregular PF optimization problems and still
needsmore fitness function evaluations to converge to the real
PF. FDV can handle irregular PF optimization problems, but
it also requires more fitness function evaluations to converge
to the real PF.

In order to provide a more intuitive illustration of the
convergence speed of the algorithm proposed in this paper,
Figure 9 shows the convergence curves of all algorithms.
It can be seen from Figure 9 that the algorithm proposed in
this paper has the fastest convergence speed and can converge
to a lower level before 50000 fitness function evaluations.
Although LSMOF has the slowest convergence speed, it can
achieve better performance among the compared algorithms.
In contrast, the remaining algorithms have prematurely con-
verged to local optima, leading to sluggish convergence in the
later stages of the algorithm.

E. TIME COMPLEXITY EXPERIMENT AND ANALYSIS
As the number of decision variables increases, the complexity
ofmulti-objective optimization problems also increases. Con-
sequently, it becomes more time-consuming for the algorithm
to find the optimal solution. We compare the time complexity
of each algorithm by measuring its actual running time on
the test problem. Figure 11 shows the CPU running time
of the comparison algorithm for the LSMOP1 problem. The
abscissa represents the number of decision variables, while
the ordinate represents the CPU running time.

The results show that the time complexity of our pro-
posed algorithm, LSMOEA-DVS, is similar to that of
LMOEA-DS and is lower compared to the other algorithms
being compared. This shows that the time complexity of
LSMOEA-DVS is lower than that of competing algorithms.
It is worth noting that as the number of decision variables
increases, the running time of the algorithm also increases.
This is mainly because the cost of evaluating the function
is closely related to the dimension of the decision variables.
As the number of decision variables increases, the time com-
plexity will inevitably increase. Since the FDV algorithm
utilizes fuzzy search and is heavily influenced by the spatial
dimension of decision variables, the time complexity of the
FDV algorithm becomes more sensitive to the quantity of
decision variables.

V. CONCLUSION
In this paper, a large-scale multi-objective optimization
algorithm named LSMOEA-DVS is proposed which is based
on direction vector sampling. The algorithm first selects
multiple excellent individuals with good convergence and
diversity to construct direction vectors by clustering. The
directional sampling is guided by the boundary points, center

points, and excellent individuals to construct a three-way
search direction vector in order to generate a promising off-
spring solution. To promote diversity in the next generation
population, two individuals are selected from the excellent
individuals to construct a direction vector for directional
sampling, and then cross-mutate is implemented. At the same
time, the reference vector is regenerated to solve the irregular
PF optimization problem.

Ablation experiments verify the effectiveness of the two
sampling strategies proposed in this paper. Compared with
other five large-scale multi-objective evolutionary algo-
rithms, the experimental results show the superiority of
the proposed LSMOEA-DVS algorithm. The distribution
and convergence curve of the solution set prove that the
LSMOEA-DVS algorithm has better convergence and diver-
sity than other algorithms. In future work, we will improve
the selection of excellent individuals for constructing direc-
tion vectors to further improve the efficiency of directional
sampling. At the same time, the proposed LSMOEA-DVS
is extended to higher dimensions of objectives and practical
problems.
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