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ABSTRACT In the face of uncertainty in customer demand and dynamic traffic conditions, determining
the optimal logistics distribution route under deterministic conditions becomes challenging. To address this
issue, we propose a novel approach by adopting Robust Optimization Models for Electric Vehicle Path
Optimization. Our robust optimization model incorporates two uncertainty sets, namely the convex set and
the box set, to tackle variations in demand and speed. By introducing deviation coefficients, we compare
the objective function values of the robust optimization model with those of the deterministic model. This
enables us to understand the trade-offs between robustness and optimality. To find solutions for various
instance sizes, we apply an improved genetic algorithm to solve the constructed model efficiently. Our
case study results demonstrate that while the optimal objective function value of the robust optimization
model may be higher than that of the deterministic model, it ensures the feasibility of the path even
amidst demand fluctuations and dynamic traffic conditions. Moreover, we analyze the economic returns of
velocity and demand under both uncertainty sets with different data sizes, using the deviation coefficients.
These discoveries provide valuable perspectives for pertinent departments, assisting them in rendering
well-informed choices and attaining practical significance in real-world scenarios. To recapitulate, our study
introduces an innovative methodology for addressing the challenges of optimizing electric vehicle routes in
the face of unpredictable demand fluctuations and time-dependent speed variations. By demonstrating the
effectiveness of our proposed robust optimization model, we contribute to the advancement of logistics and
transportation systems in a volatile and uncertain environment.

INDEX TERMS Uncertain demand, robust optimization, time varying speed, electric vehicle, genetic
algorithm, deviation factor.

I. INTRODUCTION
The transportation industry’s rapid development has
resulted in significant environmental and energy challenges.
To address these issues, countries worldwide are embrac-
ing the concept of a ‘‘low-carbon economy’’ to achieve
sustainable economic and social progress. Guided by the
principles of the ‘‘low-carbon economy,’’ the transformation
of new energy vehicles has become a crucial undertaking in
urban development. Electric vehicles (EVs), in comparison
to traditional fuel vehicles, offer numerous advantages such
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as energy efficiency, environmental friendliness, and policy
support. With the continuous advancement of battery and
charging infrastructure, EVs have emerged as indispensable
tools for sustainable logistics and transportation. Despite
their advantages, EVs have certain limitations, including
extended charging times, limited battery capacities, and
restricted battery life and range. Consequently, researchers
are actively engaged in discussing how to efficiently manage
electric vehicle scheduling and optimize distribution path
planning within the constraints of existing technical condi-
tions. By addressing these challenges, we can pave the way
for sustainable urban development and effectively promote
the adoption of EVs in our transportation systems.
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FIGURE 1. Time-varying travel speed of the road section.

The Electric Vehicle Routing Problem (EVRP) is an
extension and expansion of the traditional Vehicle Routing
Problem (VRP). Due to the limited range of electric vehi-
cles, they require multiple stops during transport to recharge
energy. Currently, research on electric vehicle path optimiza-
tion problems mainly focuses on charging strategies. This
includes the optimization of the number of charging station
visits, charging waiting time, charging time, and whether to
fully charge or not. Keskin et al. presented the EVRP problem
with soft time windows and charging station waiting times,
dividing the day into five time periods with varying queue
lengths. They utilized the M/G/1 queuing system to calculate
the queuing time for each time slot [1]. Erdelic conducted
a comparative analysis of the application of single-charge
and multiple-charge strategies in the electric vehicle path
problem. Subsequently, Erdelic investigated partial charging
strategies as well as full charging strategies. The comparative
analysis revealed that the partial charging approach resulted
in shorter waiting times and reduced total travel time. How-
ever, it also led to an increase in the psychological burden
of drivers, an upsurge in the number of vehicles, and an
extension in the driving distance [2], [3].
Meanwhile, Desaulniers examines the EVRP by incorpo-

rating time window constraints across four distinct charging
strategies, varying the number of charging instances [4].
Froger develops an EVRP model that incorporates charging
stations with capacity constraints. The study focuses on opti-
mizing the path, taking into account the non-linear charging
function, multiple charging techniques, en route charging,
and variable power [5]. In the investigation of nonlinear
charging functions, Liang et al. introduced a precise heuristic
algorithm for electric vehicles utilizing such functions. The
inherent nonlinearity in the battery charging process necessi-
tates the incorporation of a sophisticated set of recursive func-
tions within the pricing algorithm. This enables the evaluation
of path and cost decisions [6]. The above literature indicates
a strong correlation between the choice of charging strategy

for electric vehicles and their energy consumption. There-
fore, an important aspect of EVRP research is to investigate
various influencing factors and models that affect the energy
consumption of electric vehicles. Basso et al. proposed a
two-stage electric vehicle path problem with an improved
energy consumption estimation model based on terrain and
speed. This model takes into account not only the distance
traveled but also other crucial factors such as effective load,
speed profile (acceleration and braking), road topography,
instantaneous powertrain efficiency, and auxiliary equipment
(air conditioners, refrigerators, etc.) that can affect the energy
consumption of electric vehicles [7]. Xiao et al. introduced a
novel fixed arc bypass technique. For each arc, an optimal
fixed charging station access detour is designated, and a
comprehensive multi-factor power usage model is formulated
[8]. Kancharla investigated the impact of vehicle load on the
energy consumption of electric vehicles [9]. Liu et al. inves-
tigated the impact of road traffic flow and driver behavior
on the energy consumption of electric vehicles [10] Xu et al.
conducted an analysis of a nonlinear minimization model for
the energy consumption rate of electric vehicles, taking into
account the influence of road slope [11].

The objective environment and transportation situation of
VRP problems in real life are characterized by uncertainty.
With the continuous development of optimization theory
and the improvement of computer capabilities, uncertainty
optimization has garnered unprecedented attention from the
academic community. In the VRP model, uncertainty in the
parameters arises from four main aspects. First, there can
be excessive data deviation due to lost statistics and the
data collection process. Second, incomplete cognition can
lead to deviations between existing models and real life.
Third, force majeure factors such as weather can introduce
uncertainty. Fourth, some non-convex linear models that are
difficult to solve may require simplified descriptions. Uncer-
tainty optimization theory is divided into two categories of
methods: ex ante and ex post analysis, depending on the
stage of analysis. Among the ex ante analysis methods are
stochastic planning, fuzzy planning, and robust optimization,
while sensitivity analysis is the most typical ex post analysis
method. Fuzzy planning, proposed by Zhang et al., is applied
to address the EVRP in uncertain environments. To construct
a fuzzy electric vehicle path optimization model based on
reliability theory, fuzzy numbers are utilized to represent the
uncertainties associated with service time, energy consump-
tion, and transportation time [12]. Song et al. introduced a
novel dynamic path planning strategy, which relies on fuzzy
logic and an enhanced ant colony algorithm [13]. In the
realm of fuzzy programming, acquiring fuzzy membership
functions for uncertain parameters relies on the subjective
insights of the decision maker. As a result, fuzzy planning
inherently leans towards subjectivity. Conversely, stochas-
tic programming addresses the task of devising plans that
contend with stochastic data. This field can be categorized
into three distinct classes based on differing decision rules:
expectation models, opportunity-constrained planning mod-
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els, and their interconnected counterparts. Francesc et al.
developed an energy consumption prediction model for elec-
tric gas vehicles, taking uncertainties into account. Themodel
incorporates stochastic speed to mitigate the impact of human
interventions on consumption [14]. Although the sensitiv-
ity analysis method is relatively simpler compared to other
uncertainty optimization methods, it serves solely as an eval-
uation and analysis tool.

Robust optimization has emerged as a methodology
derived from robust control theory, aiming to rectify the
limitations inherent in conventional optimization techniques.
Diverging from stochastic and fuzzy planning approaches,
robust optimization operates independently of a probability
distribution model encompassing uncertain parameters or
a fuzzy affiliation function entailing uncertain parameters.
Its efficacy resides in ensuring constraint satisfaction for
derived solutions as long as these uncertain parameters fall
within the designated uncertainty set, thereby imbuing the
solutions with notable robustness. Ji et al. proposed an anti
risk two-level stochastic lowest cost consensus model with
asymmetric adjustment costs. Afterwards, proposed several
new maximum expert consensus models to address uncer-
tainty and risks in the consensus formation process [15], [16].
These models can all be solved using robust optimization
methods. The application of robust optimization offers a
viable approach to tackle the manifold uncertainties inherent
in the VRP. Guo et al. proposed a two-stage, robust, and
dynamic multi-objective path planning method that takes
into account the impact of both load and travel distance on
energy consumption [17]. Hu et al. investigate the VRP under
conditions of uncertain demand and travel time [18]. Sun-
gur et al. proposed a robust optimization method to address
demand uncertainty in the VRP. The results demonstrate that
this robust optimization method effectively prevents unmet
demand occurrences [19].Hooge et al. addressed uncertain-
ties in both travel time and service time by developing a
robust VRP model. The primary objective of their model
was to minimize the expected travel time while reducing the
risk of time window violations [20]. Based on the robust
optimization theory, Sun et al. have proposed a novel weakly
robust optimization model. This model is designed to address
the open VRP while taking into account predetermined time
windows under travel time uncertainty [21]. Yuliza addresses
the challenge of robust path optimization for waste trans-
portation, considering uncertainties in waste volume and
travel time. To tackle potential delays caused by congestion
and engine failure during garbage transportation, Yuliza pro-
poses a robust pairwise open capacity VRP [22], [23]. Zhang
proposed a model for distributionally robust optimization
[24]. In the context of electric vehicle path optimization,
Pelletier et al. address the EVRP considering various uncer-
tainties, including driver behavior, weather conditions, and
road situations. The primary objective is to ascertain the
most cost-effective optimal path, aiming to minimize overall
expenses [25]. Jeong et al. established an adaptive and robust

EVRPmodel to address the challenges posed by partial charg-
ing and energy consumption uncertainty [26].

In summary, numerous prior studies on electric vehicles
for logistics distribution have focused on aspects such as
charging methods and charging queues, while fewer have
explored uncertainties. Therefore, this research introduces the
robust optimization method to address the EVRP problem,
considering the characteristics of speed, stochasticity, and
uncertain demand. We construct an electric vehicle path opti-
mization model and a robust optimization model to handle
speed and demand uncertainty sets separately. Additionally,
we design an improved genetic algorithm to find solutions.
The experimental results are compared to analyze the effec-
tiveness of these models concerning each distribution cost
variation and the uncertainty set.

II. PROBLEM DESCRIPTION AND METHOD DESIGN
A. RESEARCH HYPOTHESES
There is only one distribution center with an ample number of
electric vehicles for distribution. The geographical location
of each customer point in relation to the charging station
is known, along with their service hours, time windows,
demand, and fluctuations. It is a requirement that a vehicle’s
starting point must be a distribution center. The remaining
assumptions are as follows: (1) all electric vehicles have iden-
tical specifications, and both the load and driving distance
must not exceed the vehicle’s maximum capacity. (2) The dis-
tribution process should comply with both the time window
constraint and the power constraint. (3) If an electric vehicle
does not have sufficient power to complete the distribution
requirements, it must go to the nearest charging station for
charging and exchange, considering only the full charging
situation. (4) The average driving speed of the vehicle at
different times of the day is known, along with the range of
speed fluctuations under the influence of weather and other
conditions.

What are the distinctions between deterministic conditions
for electric vehicles and the logistics distributionmodel under
robust optimization? How do their comparison results for
distribution costs differ? What sets the deviation coefficients
apart under an uncertainty set? Is there a guideline for select-
ing uncertain sets at various scales?.

B. SYMBOL DESCRIPTION
M = {1, 2, · · · ,m} denotes the total number of electric vehi-
cles in use. N = {0, 1, 2, · · · , n} indicates the distribution
center and customer point of aggregation.W = {0, 1, · · · ,w}

indicates charging station collection. qi indicates the demand
of customer i. P1 denotes the fixed cost per unit of electric
vehicle. P2 denotes the transportation cost per unit time of
electric vehicle. P3 denotes the price per unit of electricity
consumption. P4 denotes the charging price per unit time.
Q,D denotes the maximum load and maximum distance of
electric vehicle respectively. aik , [Bi,Ei] denotes the time of
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arrival of vehicle k at node i, and the time window of node
i, respectively. xkij denotes the 0 − 1 variable, xkij = 1 when
electric vehicle k is transported in section i, j, otherwise xkij =

0. ykj denotes the 0 − 1 variable, if the electric vehicle k
delivers for customer point j, ykj = 1, otherwise ykj = 0. zki
denotes the 0 − 1 variable, zki = 1 when EV k is charging at
i charging station, otherwise zki = 0.

C. THE METHOD OF REPRESENTATION OF UNCERTAINTY
SETS
1) METHOD OF REPRESENTING DEMAND UNCERTAINTY
Customer demand is significantly influenced by the external
environment, as indicated by the uncertainty set formation
method described in the literature [44]. First assume that
the demand qi has l scenario sets and belongs to a bounded

closed set Uq =

{
qi

∣∣∣∣qi0 +

s∑
l=1

zilqil, zi ∈ Z
}
. where qi0 is

the average demand of customer i. qil is the deviation of the
demand of the lth scenario from the mean. zi is the weight
of the corresponding deviation. Z is a bounded closed set.
Different weight vectors correspond to completely different
types of bounded closed sets. The two sets of Z are: the

convex set Z1 =

{
zi

∣∣∣∣zil ≥ 0,
s∑

l=1
zil ≤ 1

}
and the box set

Z2 = {zi |−1 ≤ zil ≤ 1 }. [19].

2) METHOD OF REPRESENTATION OF SPEED UNCERTAINTY
The time of day is divided into
T = {[i1, j1], [i2, j2], [i3, j3] , [i4, j4]}, which are morning
peak, smooth driving time, and evening peak. The velocity
changes in adjacent time periods, and Figure 1 shows the
velocity change in different periods. To illustrate the calcula-
tion, let the distance of the vehicle on the travel arc in each
time period be d and the departure time be h. The following
is an example of the first three periods used to calculate the
travel time th.
When h ≤ (i2 −

d
v1
) or h ≥ j2

th =
d
v1

(1)

When (i2 −
d
vf
) < h < i2

th =
d
v2

+
v1 − v2
v2

(i2 − h) (2)

When i2 ≤ h < (j2 −
d
v2
)

th =
d
v2

(3)

When (j2 −
d
vc
) < h < j2

th =
d
v1

−
v1 − v2
v1

(j2 − h) (4)

In the above equations, equation (1) indicates the vehicle
departure time during the morning and evening peak periods
of the roadway, excluding the transition period. It provides

TABLE 1. Speed impact rate in different weather.

a formula for calculating the time when a vehicle normally
travels at the regular congestion speed. Similarly, equation
(2) represents the calculation of the departure time during
the transition period between general congestion and smooth
driving. Equation (3) pertains to the time calculation during
the period of smooth traffic, while equation (4) deals with the
calculation of time during the transition period from smooth
to general congestion.

Weather conditions significantly influence the urban road
traffic system, affecting people, roads, and vehicles. Severe
weather conditions, in particular, can lead to considerable
changes in the state of the traffic network. To analyze this
impact, we refer to actual monitoring data from the China
Automotive Technology Research Center-China Automotive
Condition Information System Platform. The data reveals that
weather conditions and traffic congestion both play a role in
the fluctuation of driving speed. Table 1 presents the average
influence of various weather conditions on driving speed.

Vehicle travel speed in different weather v = v(1−ρb), v is
the travel speed and ρb is the impact rate in different weather.
Similar to the representation of the demand uncertainty set,
the uncertainty set of the velocity between any two cus-

tomer points is defined as Uv =

{
vij

∣∣∣∣vij + u∑
t=1

ytvt , yt ∈ Y
}
,

where vij is the average travel speed on road segment i, j
and vt is the deviation of the speed value from the average
value in the tth weather. The two sets of Y are: the convex

set Y1 =

{
yt

∣∣∣∣yt ≥ 0,
u∑
t=1

yt ≤ 1
}

and the box set Y2 =

{yt |−1 ≤ yt ≤ 1 }.

III. MODEL BUILD
A. DETERMINISTIC EV PATH OPTIMIZATION MODEL
The objective of this study is to develop a vehicle path opti-
mization model aimed at minimizing the total distribution
cost. The total distribution cost comprises fixed costs, trans-
portation costs, energy costs, and charging costs.

1) FIXED COSTS AND TRANSPORTATION COSTS

C1 = K × P1 + P2
m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij (5)

where: K is the number of vehicles used, m is the number
of available vehicles (k = 1, 2, · · · ,m), and tijk is the travel
time of electric vehicle k in section i, j.

2) ENERGY COSTS
Electric vehicles’ energy consumption is influenced by vari-
ous factors, including load, speed, and transport time. In the
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context of a time-varying road network, the power consump-
tion of a vehicle on a specific road section is represented as

Eijk =

n∑
t

P
(
Qik , vtijk

)
∗ tijk (6)

P (Qk , v) =
(Q0 + Qk) · g · f · v+

Cd ·A·v3
21.15

3600η
(7)

Thus, the energy cost of electric vehicles is represented as

C2 = P3
m∑
k=1

n∑
i=0

n∑
j=1

xkij tijkEijk (8)

where: P (Qk , v) is the operating power, g is the acceleration
of gravity, A,Cd , f is the wind-blown area of the electric
vehicle, the air resistance coefficient and the friction resis-
tance coefficient of the car, η is the mechanical transmission
efficiency of the system, andQ0,Qk is the no-load and current
load of the electric vehicle, respectively.

3) CHARGING COSTS
When the electric vehicle’s remaining power is insufficient
to meet the distribution requirements for reaching the next
service point, it must head to the nearest charging station for
a quick recharge. The cost of charging is directly associated
with the charging time.

Charging time is tcik =
Emax−Eik

rc
zki , charging costs is

C4 = P4
m∑
k=1

w∑
i=0

tcik · zki (9)

where: Emax is the maximum battery capacity of the EV, Eik
is the power left in the EV at the charging station i, and rc is
the charging efficiency of the charging station.

In summary, the deterministic electric vehicle path opti-
mization model incurs a total distribution cost of

minC1 = K × P1 + P2
m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij

+ P3
m∑
k=1

n∑
i=0

n∑
j=1

xkij tijkEijk + P4
m∑
k=1

w∑
i=0

tcik · zki

(10)

The constraints are as follows
m∑
k=1

n∑
i=1

xkij ≤ m, i = 0 (11)

m∑
k=1

n∑
j=1

xkij =

m∑
k=1

n∑
j=1

xkji,

i = 0, k = 1, 2, · · · ,m

(12)
m∑
k=1

yki = 1, i = 1, 2, · · · , n (13)

n∑
i=1

qiyki ≤ Q, i ̸= j,

k = 1, 2, · · · ,m (14)
n∑
i=0

n∑
j=0

dijxkij ≤ D, i ̸= j,

k = 1, 2, · · · ,m (15)

aik + tik ≥ Bi (16)

aik + tik ≤ Ei (17)
m∑
k=1

w∑
i=0

Eaik
(
1 − zki

)
+ Emax =

m∑
k=1

w∑
i=0

E lik (18)

E0 ≤ Eaik ≤ Emax (19)

According to Eq. (12), the number of electric vehicles in
the distribution system must be greater than or equal to the
number of distribution routes. Equip. (13) specifies that the
starting point for each distribution task should be a distribu-
tion center. Furthermore, Eq. (14) states that each demand
point can only be served by one electric vehicle, and just
once. Additionally, Eq. (15) sets a constraint that the total
demand quantity of customer points within each distribution
route should not exceed the maximum carrying capacity of
electric vehicles. Eq. (16) enforces a limitation on the total
distribution distance of each distribution path, whichmust not
exceed the farthest distribution distance of electric vehicles.
Eqs. (17) and (18) represent the time window constraints.
Eq. (19) addresses the requirement for electric vehicles to
arrive fully charged at the charging station and leave after
charging. Lastly, Eq. (20) defines the power constraint for
electric vehicles serving each customer point.

B. ROBUST OPTIMIZATION MODEL FOR ELECTRIC
VEHICLE PATHS
The analysis of the deterministic model reveals that uncer-
tainty in demand arises solely in constraint (15). Therefore,
it is essential to focus our study on the uncertain set of con-
straints (15) and the variation in vehicle speed. Accordingly,
we establish the corresponding robust optimization model.

Taking the demand uncertainty set as an example, the
robust corresponding equation in place of the constraint (15),
conditional on the convex set Z1, is

n∑
i

yki qi0 + max
n∑
i

yki {max qil, 0} ≤ Q (20)

The constraint holds for all qi that match the set Z1,
i.e., the condition can be satisfied when the worst condition

max
(

n∑
i
yki qi

)
≤ Q holds.

Similarly, the robust corresponding equation in place of the
constraint (15), conditional on the set of boxes Z2, is

n∑
i

yki qi0 + max
n∑
i

yki

u∑
l

|qil | ≤ Q (21)
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In summary, the constraint (15) of the deterministic prob-
lem is replaced by equation (20) or (21). It is transformed into
a robust optimization model under the demand uncertainty
set Z1,Z2. Similarly, add the uncertain velocity constraint

Uv =

{
vij

∣∣∣∣vij + u∑
t=1

ytvt , yt ∈ Y
}
, i.e., construct a robust

optimization model under two uncertain sets.
The objective function value increases under an uncertainty

constraint. The deviation coefficient is used to represent the
relative deviation of the optimal objective value of the robust
optimization model from the value obtained under determin-
istic conditions.

F =
Cr − Cd
Cd

× 100% (22)

where: Cr is the objective value of robust optimization under
uncertainty, and Cd is the objective value under deterministic
conditions.

IV. ALGORITHM RESEARCH
In tackling robust EVRPmodels, the utilization of exact algo-
rithms leads to slow search speeds. Consequently, heuristic
algorithms are commonly employed to address such NP-hard
problems. Among these, the genetic algorithm stands out as
an efficient parallel search algorithm well-suited for solving
global optimization problems. Below are the specific steps of
the genetic algorithm in handling EVRP problems:
Step 1: Encoding and Decoding. In the context of the

Electric Vehicle Routing Problem (EVRP), the path selection
should take into account not only the impact of the load but
also the necessity to visit a charging station for recharging
when the electric vehicle’s power is low. To represent the
order in which each customer is visited in the instance,
we employ a coding scheme using natural numbers. Each
customer is assigned a unique number, starting from 1 and
incrementing up to n. The distribution center is assigned the
number 0. If there are m charging stations, they are assigned
numbers from n+1 to n+m. The first set of customer nodes
is organized in integer order, and the distribution center (0)
is strategically inserted among the customer points based on
constraints like the maximum vehicle load and the demand
at each node. The decision of whether the electric vehicle
should proceed to the nearest charging station for recharging
is determined by evaluating the remaining power in the vehi-
cle. If recharging is necessary, the charging station number is
inserted after the customer point number in the sequence.

For example, the customer point order is represented by the
integer arrangement (6, 2, 5, 4, 3, 1, 7, 10, 9, 8). After consid-
ering the load and time window constraints, the distribution
center is inserted, resulting in the modified arrangement (0,
6, 2, 5, 0, 4, 3, 1, 7, 0, 10, 9, 8, 0). Furthermore, to address
low power issues in electric vehicles, a charging station is
included in the arrangement, leading to the final arrangement
(0, 6, 2, 11, 5, 0, 4, 12, 3, 1, 7, 0, 10, 9, 8, 0). Decoding is the
reverse process of encoding, which means the path resulting
from decoding this chromosome can be broken down into
three separate paths:

Path 1: 0, 6, 2, 11, 5, 0
Path 2: 0, 4, 12, 3, 1, 7, 0
Path 3: 0, 10, 9, 8, 0
These paths indicate the use of three electric vehicles for

delivery, with a total of two charges required along the route.
Step 2: Population Initialization. The population size is

typically selected to fall within the range of 20 to 200 individ-
uals. If the number of chromosomes is too small, the global
optimal solution may not be obtained. Conversely, if the
number of chromosomes is too large, it will result in increased
computation and negatively impact the efficiency of the solu-
tion. Thus, for this study, the number of chromosomes is set
to 100. The coding rules for each chromosome can be under-
stood by referring to the coding example presented in Step 1.
Specifically, customers are randomly generated, and a single
chromosome is created by inserting the distribution center
and charging station in accordance with the load and power
constraints. This process is repeated until 100 chromosomes
are generated, constituting the initial solution.
Step 3: Determination of the Fitness Function. In this

step, we establish the fitness function for the EVRP model
under both deterministic conditions and robust optimization,
with the primary objective of minimizing the overall cost.
A crucial factor in the evolutionary process is the fitness
value associated with each chromosome. A higher fitness
value indicates an increased likelihood of being selected for
inheritance in the subsequent generation. To align with this
principle, the fitness function is defined as the inverse of the
objective function.
Step 4: Selection. To begin with, the elite retention strat-

egy was employed for selection. This involves sorting the
fitness values by magnitude. The top 5% of chromosomes
are retained as the elite group for the subsequent generation,
while the remaining 95% of chromosomes are selected using
the roulette wheel selection method. A set of chromosomes
with high fitness are chosen for crossover and mutation to
form the population of the next generation.
Step 5: Crossover. During the chromosome coding process

in the EVRP problem, the insertion of the charging sta-
tion number occurs, followed by the crossover and mutation
operations. However, the original insertion position of the
charging station will be disrupted, leading to the generation
of several inferior solutions in the offspring. To address this
issue, it is necessary to remove the inserted genes before per-
forming the crossover andmutation operations. The crossover
operation involves selecting non-duplicated genes from the
parent chromosomes and sequentially placing them into the
offspring. For instance, let’s consider the parents P1 (1, 2, 3,
4, 5, 6, 7) and P2 (6, 4, 2, 3, 7, 1, 5). After the crossover,
we obtain the offspring O1 (1, 6, 2, 4, 3, 5, 7, 1) and O2 (6,
1, 4, 2, 3, 7, 5).
Step 6: Mutation. Genetic variation occurs during the

process of genetic manipulation to prevent premature local
convergence and ensure chromosome diversity. Chromosome
mutation is a necessary step. During the mutation operation,
a few gene positions on the parent chromosome are randomly
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TABLE 2. Model parameter values.

TABLE 3. Deterministic model path results.

selected and then rearranged, while the other positions remain
unchanged.
Step 7: Evolutionary reversal operation is applied to

enhance the quality of solutions and accelerate local conver-
gence. This operation is carried out on chromosomes that
have already undergone selection and crossover mutation
operations. During the reversal process, two random integers
are generated to define the positions within the chromo-
some. The sequence between these two positions is reversed,
resulting in a new chromosome. For example, let’s consider
parent P1 (1,2,3,4,5,6,7). If two random integers, 3 and 6, are
generated, the offspring O1 will be (1,2,6,5,4,3,7) after the
reversal. It is important to note that only reversals resulting in
improved fitness values are considered valid.

The number of iterations is set to 500 in the algorithm
calculation. Once the iteration count reaches 500, the output
result is automatically terminated.

V. EXAMPLE ANALYSIS
A. DATA AND PARAMETER SETTINGS
The experimental data utilized in this study were sourced
from the figshare database, specifically the R-2-30 dataset
(https://doi.org/10.6084/m9.figshare.10288326). This dataset
comprises information gathered from 30 customers who uti-

lized two distinct charging stations. Given the current status
of the EV charging infrastructure, its widespread adoption
is still evolving. As such, this study opted to simulate data
using two charging stations of different capacities to enhance
the accuracy of the analysis.

The speed of vehicles in urban road traffic is subject to time
variations, with different speeds observed during congestion
and normal driving. Congestion occurs during the morning
and evening peak hours, specifically from 7:00 to 9:00 and
17:00 to 20:00. The average speed during congestion periods
is 25 km/h, whereas the normal driving speed is 40 km/h.

To address this traffic speed optimization problem,
we employed a genetic algorithm implemented on a computer
processor with a clock speed of 2.20 GHz and 4 GB of
memory. The optimization was performed using MATLAB
(R2018b), and the relevant parameters were set as outlined in
Table 2.

B. ANALYSIS OF THE RESULTS
The genetic algorithm is employed to solve two optimization
models for the R-2-30 example: one under deterministic con-
ditions, focusing on path optimization, and the other under
two uncertainty sets, addressing demand and speed in a robust
optimization framework. The resulting vehicle transportation
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FIGURE 2. Determining the distribution roadmap under uncertainty.

paths are presented in Table 3, Table 4, and Table 5, while the
path optimization diagram is visualized in Figure 2.
As shown in the figure and table above, the number of

distribution paths for the model under traditional determin-
istic and robust uncertainty conditions remains the same.
However, a comparison between the traditional distribu-
tion path results and the robust optimization results reveals
that the latter exhibits a higher number of average and
concentrated distribution paths for each vehicle. Under the

traditional model’s distribution paths, the demand is influ-
enced by the external environment, making it impossible
to maintain a stable value. For example, some customers
along path 2 experience a 5% increase in demand, leading
to an overload of vehicles and rendering path 2 infeasible.
These instances highlight the vulnerability of the traditional
model to small changes in demand, resulting in solutions
that become infeasible. To address the possibility of demand
fluctuations causing infeasibility of the optimal path under
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TABLE 4. Robust model path results under demand uncertainty.

TABLE 5. Robust model path results under speed uncertainty.

deterministic conditions, it is crucial to seek a robust solution
that can accommodate all potential demand scenarios. After
demand fluctuation, if the path continues to be based solely on
deterministic conditions, there is a risk of the total worst-case
path capacity exceeding the maximum capacity of the car,
necessitating a rescheduling of the vehicle. In contrast, the
robust optimization model ensures that all four paths remain
feasible regardless of demand variations, thereby offering a
more reliable solution.

From Tables 3, 4, and 5, it can be seen that the number of
charges and charging time under robust optimization exceeds
that of the traditional optimization model. This difference
primarily arises because both optimization models gener-
ate paths that ensure meeting the demand fluctuation and
speed variation in adverse weather conditions. The paths are
free from demand overload and untimely responses during
extremeweather events. However, achieving this comes at the
expense of the objective function and the amount of power
consumption during charging. To address this, a deviation
factor is introduced to represent the percentage of the objec-
tive function under uncertainty. The experimental results for
each cost are presented in Table 6, where QD represents the
model solution results under deterministic conditions. XT and
XH represent the model solution results under the convex set
of demand uncertainty and the box set, respectively. ST and
SH denote the model solution results under the convex set of
speed uncertainty and the box set, respectively. GC stands for
fixed cost, YC for transportation cost, NC for energy cost,
CC for charging cost, and TC for the total cost. All units are
in Yuan.

From Table 6, it is evident that the distribution cost is
higher under both uncertainty and robust optimization com-
pared to the traditional model. This increase is primarily due
to transportation costs. The impact of demand uncertainty
on costs is relatively consistent across both sets. However,
there is a significant disparity in costs caused by speed
uncertainty under the two aggregations. The relative deviation
coefficient F takes on values of 25.37% and 72.23% under
the two scenarios of speed uncertainty, respectively. This
represents a 46.86% increase in F under the box ensemble
compared to the convex ensemble. Notably, the transportation
time increases significantly to accommodate path optimiza-
tion during low-speed conditions under extreme weather, and
transportation cost is closely linked to the transportation time.

C. ROBUSTNESS ANALYSIS
1) DEMAND UNCERTAINTY
Table 7 presents the distribution costs under two different
scenarios of demand uncertainty. The results were obtained
for four instances: R30, R40, R50, and R60, respectively.
Furthermore, Figure 3(a) illustrates the total cost difference
between the two different aggregate sizes.

Table 7 shows the distribution cost difference between the
two sets under different scales, exhibiting a slow-growing
trend. Specifically, the convex set incurs higher total distribu-
tion costs than the R40 instance, while the box set distribution
cost is higher for the remaining instances. These findings
indicate a stable difference in total distribution costs across
various scales. However, accurately concluding the optimal
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TABLE 6. Distribution cost comparison.

FIGURE 3. Variation of total cost difference under uncertainty set.

TABLE 7. Comparison of results under different size demand uncertainty sets.

objective function values of the convex set and the box set
under different locations, demands, and other information
remains challenging. In practical applications, it is essential
to consider the bounded set type to which the demand uncer-
tainty belongs.

2) SPEED UNCERTAINTY
Table 8 presents the distribution costs of speed uncertainty
under two aggregations, which are solved for R30, R40, R50,
and R60 instances. Additionally, Figure 3(b) illustrates the
total cost difference between the two aggregates of varying
sizes.

As shown in Table 8, both the charging and power con-
sumption costs escalate with the size increment. The trans-
portation costs witness the most substantial rise, primarily
attributed to decreased speed and prolonged transporta-
tion time. The variance in total distribution cost between
the convex set and the box set remains relatively stable,
except for the R60 instance size. The surge in difference
from 50 to 60 poses a significant concern for customers.
Consequently, in real-world applications, when faced with
a considerable difference, exercise caution while select-
ing the uncertain set and employing robust optimization
algorithms.
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TABLE 8. Comparison of results under different size speed uncertainty sets.

VI. CONCLUSION
The volatility of the optimal path of electric vehicle logistics
distribution cost under deterministic conditions is signifi-
cant. Once the demand increases at a customer point, it may
lead to overloading the current path vehicle, rendering the
optimal solution infeasible. To address this issue, the robust
optimization method was introduced into the electric vehi-
cle distribution path optimization. The robust optimization
models for electric vehicle paths with uncertain speed and
uncertain demand are constructed, respectively. An improved
genetic algorithm is employed to solve the problem. Exper-
imental results demonstrate that the number of charges,
charging time, and distribution cost of the model under robust
optimization are higher than those of the traditional opti-
mization model. However, both robust optimization models
produce paths that can guarantee meeting demand fluctu-
ations and speed variations in adverse weather conditions.
There is no overload of demand on the paths, and they do not
experience untimely responses to extreme weather. Regard-
ing robust optimization models under different uncertainty
sets of economic efficiency, deviation coefficients are intro-
duced to represent the percentage of the objective function
under uncertain sets. The relative deviation coefficient F has
values of 25.37% and 72.23% under the two sets of speed
uncertainty, respectively. It is 46.86% higher under the box
set than under the convex set. Finally, the experimental com-
parison of the optimization models under two uncertainty
conditions at different simulation data scales indicates that
the difference in total distribution cost remains stable under
different scales of analysis. However, accurately concluding
the optimal objective function values of the convex set and the
box set under different locations, demand, and other infor-
mation proves challenging. The bounded set type to which
the demand uncertainty belongs needs to be considered in
practical applications.

Limitations of this study and future research directions.
(1) Path planning and optimization in uncertain environments
require a large amount of real-time data, including vehicle
status, traffic conditions, weather conditions, etc. In some
cases, this data may not be easily obtained or there may
be delays. Future research can seek to reduce dependence
on real-time data to adapt to a wider range of application
scenarios. (2) In the robust optimization of electric vehicle
paths in uncertain environments, our model often needs to

estimate the uncertainty of the environment. However, accu-
rately modeling uncertainty remains a complex issue that
can be influenced by various factors such as sensor errors
and environmental dynamics. Future research needs to better
address these challenges in order to improve the accuracy
and reliability of models. (3) Study how to achieve robust
path optimization in large-scale transportation systems, con-
sidering the collaborative driving of hundreds or thousands
of electric vehicles. In addition, improve the real-time perfor-
mance of the algorithm to cope with rapidly changing traffic
and environmental conditions. (4) Future research can focus
more on the combination of robust optimization of electric
vehicle paths and sustainability goals, including reducing
carbon emissions, energy efficiency, and optimizing electric
vehicle charging infrastructure.
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