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ABSTRACT Mycobacterium tuberculosis, a highly perilous pathogen in humans, serves as the causative
agent of tuberculosis (TB), affecting nearly 33% of the global population. With the increasing prevalence of
multidrug-resistant TB, there is a need for novel and efficacious alternative therapies. Peptide therapies have
emerged as a favorable alternative due to their remarkable specificity in targeting cells without affecting
healthy cells. However, the experimental identification methods of anti-tubercular peptides (AtbPs) are
labor-intensive and costly. Therefore, accurate prediction of AtbPs has become challenging due to the large
number of peptide samples. In this paper, we propose an ensemble learning model to enhance the prediction
outcomes by addressing the limitations of individual learning models. We formulate the training samples
by utilizing four distinct representation methods: AAindex, Composition/Transition/Distribution, Dipeptide
Deviation from Expected Mean, and Enhanced Grouped Amino Acid Composition to numerically encode
peptide samples. The feature vectors extracted from these methods are fused to develop a compact vector.
We evaluate the prediction rates using three different classification models, employing both individual and
heterogeneous vectors. Furthermore, we enhance the prediction and training capabilities of the proposed
model by using the predicted labels of the individual classifiers for implementing an ensemble deep model
via a genetic algorithm. Through evaluation of both the training datasets and independent datasets, our
proposed ensemble learner achieves impressive accuracies of 97.80%, 95.13%, 93.91%, and 94.17%, using
RD training, MD training, RD independent, and MD independent datasets, respectively. Our findings
demonstrate that the proposed pAtbP-EnC model outperforms existing predictors by reporting approximately
11% higher training accuracy. We conclude that the pAtbP-EnC predictor will be a considerable tool in the
field of pharmaceutical design and research academia. The used datasets and the source code are publicly
available at https://github.com/Intelligent-models/pAtbP-EnC2023.

INDEX TERMS Anti-tubercular peptides, ensemble classification, genetic algorithm, hybrid representation,
k-fold cross-validation test.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Tuberculosis (TB) is a life-threatening condition initi-
approving it for publication was Gustavo Olague . ated by an infection with the bacterium Mycobacterium
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tuberculosis [1], [2]. It presents a substantial worldwide
health risk, leading to widespread illness and mortality on
a global scale. According to the World Health Organization
(WHO), 10 million people were affected by tuberculosis
(TB) in 2017, resulting in 1.6 million documented deaths.
Despite advancements in treatment options, the prevalence
of tuberculosis (TB) continues to escalate due to various fac-
tors, including inadequate medication utilization, low-quality
pharmaceuticals, and premature discontinuation of therapy.
These factors contribute to the development of drug-resistant
strains for Mycobacterium TB, which are more difficult to
manage [3]. Multidrug-resistant tuberculosis is a kind of
drug-resistant tuberculosis in which bacteria resist primary
anti-TB medications like rifampicin and isoniazid [4]. This
critical global health challenge poses a substantial threat
to global health security, demanding immediate attention
[5]. Moreover, extensively drug-resistant tuberculosis (XDR-
TB), a variant of multidrug-resistant tuberculosis (MDR-TB),
exhibits non-responsiveness to secondary anti-TB medica-
tions, further complicating the scenario. Furthermore, the
adverse consequences linked to current anti-tubercular drugs
and the extended duration of treatment present significant
hurdles. In light of these barriers, exploring innovative thera-
peutic options with inventive mechanisms of action against
tuberculosis becomes imperative. Peptide-based interven-
tions emerge as a promising avenue in this context. A notable
attribute of peptides is their capacity to interact with vari-
ous biological targets, including specific molecules within
living organisms. This characteristic renders them appealing
candidates for the development of effective anti-tubercular
agents. Facilitating the expedited discovery and develop-
ment of AtbPs assumes paramount importance. However,
identifying and developing these peptides through empir-
ical studies is time-intensive and financially burdensome.
To tackle this challenge, there is an increasing interest in
binding advanced computational methods and techniques to
streamline and cost-effectively identify peptide candidates
with anti-tubercular potential [6]. Integrating computational
approaches into AtbPs, the discovery proves indispensable
for expediting and streamlining their synthesis [7], [8].
Numerous intelligent learning frameworks have been
developed to efficiently identify anti-TB peptides. For exam-
ple, the AntiTBpred predictor utilized a concatenate vector
approach [8]. The informative features were encoded from
the amino acid sequences by amino acid composition, di-
coupling composition (DPC), fragment-based composition,
and binary structure information. To measure the predictive
performance of their model, they employed an ensemble
learning algorithm within their proposed framework. Sim-
ilarly, Khatun et al. introduced the “iAntiTB” Predictor
intending to identify anti-tuberculosis agents [9]. To rep-
resent the anti-TB samples, they employed four distinct
encoding techniques, namely DPC, tripeptide composition
(TPC), binary coding, and amino acid index characteristics.
The resulting feature vectors were evaluated using Ran-
dom Forest (RF), and Support Vector Machines (SVM).
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Furthermore, to improve the prediction outcomes, the result-
ing outcomes derived from SVM and RF were integrated
through linear regression. A distinct framework named the
AtbPpred model has been devised to predict anti-TB peptides
[10]. The peptide samples within the training datasets were
encoded utilizing nine diverse strategies. In the preliminary
stage of AtbPpred, a two-level feature selection method-
ology was implemented to ascertain the most appropriate
information derived from the encoding schemes. Following
this, prediction models for each descriptor were established
employing a comprehensive randomized tree classification
model. To assess the final prediction performance, the pre-
diction scores obtained from each model were combined
and fed into an extremely randomized tree ERT. Similarly,
Chen et al. have developed an iATP web server to identify
anti-peptides TB [11]. To construct a robust computational
model iATP used the combination of pseudo-g-gap DPC and
support vector machines. For the numerical representation
of amino acid sequences and sample preparation, a pseudo-
g-gap peptide DPC has been used. To identify the most
useful descriptors, the resulting feature vector is formed
by selecting the optimal features using incremental feature
selection. Finally, SVM was applied to evaluate the model’s
performance. Recently, to discriminate anti-TB peptides, the
use of multiple descriptors and measure selection based on
differentiation features has been proposed by Akbar et al.
[12]. Their approach involved eliminating noisy and less
informative features and leveraging a majority voting-based
learning model to improve the predictive outcomes. However,
despite these advancements, it is important to note that exist-
ing models still have certain limitations regarding accuracy.
Moreover, the existing methods lacked important features
with inadequate training and generalization abilities. There-
fore, a dependable and efficient learning model is highly
crucial to accurately discriminate AtbPs and non-AtbPs. Ini-
tially, we encoded the amino acid samples numerically using
four distinct methodologies: amino acid index, dipeptide
deviation from the expected mean, enhanced grouped amino
acid composition, and composition/transition/distribution.
Furthermore, multi-information vectors were combined to
address the weaknesses of single encoding vectors. The per-
formance of the extracted vectors was then evaluated using
various machine learning techniques, including RF, ETC,
and Deep neural Network (DNN). Additionally, an ensemble
classifier via genetic algorithm was employed to improve
the evaluation outcomes of the developed model. The
overall structure of our suggested model is depicted in
Figure 1. Moreover, to assess the model reliability two inde-
pendent datasets were also utilized to tackle over fitting
problems.

Il. MATERIALS AND METHODS

A. DATASET

One of the primary challenges in machine learning is the
development or selection of adequate benchmark datasets,
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FIGURE 1. The framework of the proposed pAtbP-EnC model.

as it significantly impacts the training of computational
models [13].

In this work, we used the same AtbPs datasets, namely
AntiTb RD and AntiTb MD which were previously employed
by Usmani et al. [8]. These training datasets consisted of pos-
itive sequences (representing peptides with anti-tubercular
activity) and negative sequences. Initially, the datasets com-
prised 492 sequences of peptides, out of which 246 were
identified as anti-TB peptides (ATBPs). The samples were
sourced from various databases, including Swiss-Prot [14]
and databases specifically focused on antimicrobial pep-
tides. To ensure the diverse representation of amino acids
with different characteristics, these samples were randomly
selected. Experimental confirmation revealed that all positive
sequences in the datasets contain Anti-tubercular peptides
(AtbPs) retrieved from the AntiTbpdb database [15]. The
length of amino acids per sequence ranged from 5 to 61.
To ensure data integrity, duplicate and homogeneous sam-
ples were eliminated using CD-HIT [16]. Subsequently,
after the preprocessing, 80% of the total sequences were
selected for training datasets. In this model, the training
dataset comprised 398 samples, equally distributed between
the two classes, specifically, 199 AtbPs and 199 non-
AtbPs. To assess the generalization capacity of our proposed
study and address overfitting concerns, the remaining 20%
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of sequences are applied as independent sets. The inde-
pendent dataset comprised 94 samples, equally distributed
into 47 AtbPs and 47 non-AtbPs. Moreover, while develop-
ing independent samples, none of the training samples were
repeated.

B. FEATURE FORMULATION METHODS

1) AMINO ACID INDEX (AAI)

The physicochemical characteristics of amino acids perform
an essential part in demonstrating biochemical reactions and
have been widely utilized in the field of bioinformatics.
To incorporate the diverse range of physicochemical proper-
ties associated with amino acids, we employed the AAlIndex
database, which aggregates numerous published indices [17].
Each physicochemical property is represented by a series of
20 numerical values, with each value corresponding to one
of the 20 amino acids. The AAIndex database comprises a
comprehensive collection of 544 distinct physicochemical
properties. However, to ensure the reliability and compre-
hensiveness of our analysis, we excluded properties that had
‘NA’ (not available) values assigned to any of the amino
acids. Consequently, we acquired a dataset of 531 physico-
chemical properties that were deemed suitable for subsequent
analysis. Diverging from residue-based encoding methods
that primarily focus on amino acid identity and evolutionary
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information, we adopted an alternative approach. We con-
structed a vector representation by calculating the mean
values across the 531 physicochemical properties. This vector
representation allowed us to capture and incorporate a wide
range of physicochemical characteristics associated with the
amino acids. Furthermore, it also facilitated the represen-
tation of samples across different window sizes, enabling
us to account for variations in peptide length and context
[18]. The AAlndex descriptor has been successfully applied
in various applications, including the prediction of protein
ubiquitination sites, protein malonylation sites, and many
more [19].

2) DIPEPTIDE DERIVATION FROM EXPECTED MEAN (DDE)
The Dipeptide Derivation from the expected mean is a
sequential feature computing method that can be calculated
using three different parameters such as theoretical variance
(T), theoretical mean (7},), and dipeptide composition (D).
Mathematically, DDE can be computed using these parame-
ters in the following manner.

NFS
N—1
The dipeptide composition of a di-peptide ‘rs’, can be com-
puted using Dc(7s), N,s represents the count of dipeptides
expressed by the amino acid categories r and s. The size of the
peptide sequence can be denoted by ‘N’ [20]. The theoretical
mean T, (r, s) is determined by:
C, C;
X =,
Cyv  Cy
where C, represents the count of codons, used to encode the
initial amino acid, and Cj signifies the count of codons used
for 2" amino acid in a specific dipeptide rs. Additionally,
the overall number of condons is represented by Cy, without
the three termination codons [20]. The theoretical variance,
T,(r, s), of the dipeptide ‘rs’ is determined by:
Lastly, DDE(r, s) can be calculated as follows:
D (r,s) — Ty(r,s)

\Y Tv(r ’ S)
The DDE attribute has been effectively utilized in the predic-
tion of B-cell epitopes [21].

D.(r,s) =

r, se€{A,C,D,...Y}, (1)

T(r,s) = @)

DDE(r, s) = 3

3) ENHANCED GROUPED AMINO ACID COMPOSITION
(EGAAQ)
EGAAC is an extension of the Group-based Amino Acid
Composition (GAAC) method. EGAAC calculates the
GAAC within sliding windows of a fixed size, continuously
shifting from the N-terminal to the C-terminal of each amino
acid sample. It is commonly used for protein samples with
uniform lengths [22], [23].

The representation of EGAAC can be computed as follows:

. N(g, win)
fg, win) = ————, g € {gl, g2, 83, g4, 85},
N (win)
win € {windowl, window?2, . .. .window17} “4)
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TABLE 1. Attribute classification.

Charge Hydrophobicity
tve Polar
C1 R.K D,K,E,Q,N,R

Not +ve nor —ve Not +ve nor —ve

C2
A, C,Q,N A, H,G,S,P,T,Y
H, LG
F,P,S, M,
W, V.Y, T
—ve Hydrophobic
c3 D,E C.LF.V.M, W

In this approach, the count of amino acid samples belonging
to group ‘g’ inside the sliding window ‘win’ is represented by
N(g, win), while the ‘win’ is denoted as N(win). The EGAAC
descriptor has been successfully employed in the prediction
of lysine crotonylation sites [24].

4) COMPOSITION/TRANSITION/DISTRIBUTION
DESCRIPTOR (CTD)

CTD analyzes the overall structure of a peptide sequence,
including the arrangement of amino acids and the occurrences
of two different adjacent amino acids. The major task of CTD
is to arrange the sequence to calculate the structure, transition,
and arrangement [25]. Based on their characteristics, amino
acids are classified into three groups (group 1, group 2,
and group 3) [26], also known as reduced amino acids
[27], [28]. These classifications are related to charge and
hydrophobicity are presented in Table 1. C/T/D, characterized
by composition C,, transition 7, and distribution Dy, ,, is
defined.

CozNaaz1,23..) )
:_.'.a:,, ..
“=N
Npc +N,
T, = et Neb 103 ez (6)
N—1
N,
Dy. = ;Z(.-_b:1,2’3.__,z:l,O.lSN...,N) @)

In this context, N, represents the category identifier, Nj .
denotes the count of instances where class b and ¢ are adjacent
to each other, and Nj, ; indicates the count of amino acids that
belong to the z-th position within the b-th class.

C. CLASSIFICATION MODELS

1) DEEP NEURAL NETWORK (DNN)

Deep learning algorithms are essential to train and classify
complex and nonlinear functions represented by biological
sequences [29], [30], [31]. In this study, to effectively train
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TABLE 2. Hyper parameters of the DNN model.

Parameter Optimal Value
Hidden Layers 4

Dropout 0.3

Activation Function ReLu, Sigmoid
Learning Rate 0.001

Lasso Regularization 0.01

Batch size 32,64
Optimizer Adam

Dense Hidden Layers 2

Weight initialization Xavier

a model three distinct encoding techniques were utilized to
transform the biological sequences into numerical structures.
The DNN structure is comprised of an initial layer, four
hidden layers, and an output layer [32], [33]. The initial layer
takes the extracted features of different encoding methods
and provides them to the hidden layers. Whereas, the hidden
layers process the input neurons using different non-linear
functions, enabling the network to learn the complex task
effectively. Hidden layers are also an iterative procedure
that continues from one hidden layer to the next until the
final hidden layer is reached. The final layer consists of a
single neuron that produces the output based on processed
data using a sigmoid activation function. Which helps to
map the output class labels to either 0 or 1. Consequently,
the final output layer will predict either 1 for AtbP or
0 for non-AtbPs.

In deep learning literature, various linear and non-linear
activation functions were applied to enable the neural net-
work to effectively learn complex patterns. In our study,
we focused on the Rectified Linear Unit (ReLU) activation
function for evaluating the effectiveness of the proposed
model. Additionally, for appropriate initialization of the
weights to the neural network, the Xavier function was
employed for stable and efficient learning. By appropriate
scaling of the initial weights, the Xavier function helps to
avoid the exploding or vanishing gradients issues during
the training process [34]. Hence, for a smooth and reli-
able learning process, we used a learning rate of 0.001.
To thoroughly assess the DNN model and to handle the
overfitting issue, regularization techniques such as L1 reg-
ularization (LASSO), and a dropout value of 0.3 are
applied [32]. To ensure model generalization, a diverse
set of independent datasets are also employed. The opti-
mized hyperparameters for the DNN model are presented
in Table 2.

2) EXTRA TREE CLASSIFIER (ETC)

ETC is a kind of ensemble classification method that belongs
to the family of RF algorithms [35]. That combines multiple
decision trees to perform prediction tasks. ETC is consid-
ered more effective due to its computational efficiency and

VOLUME 11, 2023

capability to handle high-dimensional data by creating an
ensemble of decision trees. Each tree is trained through
a random selection of the subset from the training sam-
ples. Throughout the training process, the decision trees
are constructed by randomly choosing feature thresholds
to partition the data at each node [36]. The final forecast
of the ensemble is determined by averaging or voting on
the prediction of individual trees. Compared to traditional
decision trees and other ensemble methods like random
forests, the ETC introduces additional randomness in the
tree construction process [37], [38]. Which helps to reduce
overfitting and improve generalization performance. Fur-
thermore, to train faster than any other method the extra
tree classification is capable of using parallel computing
power.

3) RANDOM FOREST (RF)

Random Forest (RF) is an ensemble classifier originally intro-
duced by Breiman [39]. That has been effectively applied to
various tasks, such as clustering, feature selection, regression,
and classification [40], [41]. The RF algorithm consists of
an ensemble of decision trees, collectively forming a forest.
Each tree undergoes training using a subset of the training
samples from the dataset. Subsequently, the RF model assigns
a class label to a new sample by employing a majority voting
scheme [42], [43]. One important advantage of RF lies in its
ability to address the challenges of high variance or bias asso-
ciated with individual trees, thereby ensuring that the overall
performance of the model remains unaffected [44], [45]. This
can be obtained by incorporation of a weighting scheme
within RF, where lower weights are assigned to trees exhibit-
ing higher error rates. Consequently, the overall predictive
capability of the ensemble is enhanced, leading to improved
performance. RF is particularly well-suited for handling large
datasets, effectively managing missing data, and detecting
outliers.

4) ENSEMBLE LEARNING

Ensemble classification is widely adopted by researchers in
the field of computational bioinformatics due to its ability
to achieve outstanding classification results and facilitate
effective generalization [1], [46], [47], [48], [49], [50]. The
primary objective of an ensemble classifier is to fuse the
individual classifiers, thus creating a more reliable and intelli-
gent learning model that enhances predictive outcomes while
minimizing errors [51]. Moreover, incorporating an ensem-
ble strategy in classical machine learning approaches proves
particularly advantageous as it reduces variance arising from
inconsistent prediction rates of conventional classifiers [52],
[53]. Consequently, scientists have extensively employed
ensemble learning methods across diverse domains over the
last few years, encompassing topics such as neuro-peptides
[54], protein subcellular localization [55], antiviral peptides
[56], anti-cancer peptides [34], anti-fungal peptides [57],
recombination spots [58], and malaria parasite [59]. In our
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study, we utilized an ensemble learning method using an
optimized genetic algorithm (GA) to assess the predic-
tive outcomes of the composite features. GA is a heuristic
approach that effectively tackles classification problems with
a high degree of success [60]. GA involves a random strat-
egy to select a subset of the whole population and then
apply different genetic functions, i.e., crossover, selection,
and mutation, to produce the best predictive results [12], [61].
Firstly, we calculated the predicted labels of the proposed
encoding schemes using three learning algorithms: ERT, RF,
and DNN. Subsequently, the predicted labels from each clas-
sifier were given to GA to construct an ensemble learning
method, as elaborated below:

EnC = RF @& ET ® DNN ®)

In equation (8), the symbol EnC signifies the collective
learning model, while @ representing the merging opera-
tor utilized to combine the predicted labels from individual
classifiers. The Ensemble methodology, referred as EnC
employs a diverse range of algorithms with distinct char-
acteristics. Let us discuss in detail: Consider a classifier
‘S’ designed for analyzing a sequence of peptides denoted
as 'P’:

{Si, Sii, Siii} € {Ca, Cp} 9

In this context, the symbols S;, Sj;, Si;; represent individual
classifiers, while corresponding to the desired labels, namely
AtbP and non-AtbPs.

Y, = Z; 5SiC), (=12 (10
I, ifSiedC ]

0, otherwise

8(SiCy) = | (11

Lastly, the prediction rates of the ensemble learning
algorithm, EnC, using GA, are evaluated as follows:

EnC,‘ = Max{w,-y,-, RN (%118 4111 (12)
In this scenario, EnC; denotes the ensemble learning method
based on a Genetic Algorithm. The term ‘Max’ indicates the
highest classification rate achieved, while w;y;, ... ..w;yiii
representing the optimal weights assigned to each hypothesis
learner.

D. PERFORMANCE EVALUATION PARAMETERS

To evaluate the performance of the constructed models,
we utilized four widely employed prediction metrics usually
applied in binary classification problems [62], [63], [64]:
sensitivity, specificity, accuracy, and Matthews’s correlation
coefficient (MCC). The computation of these metrics was
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carried out according to the following formulas:

AtbPT + AtbP7

A =1-—" 13
couracy AbP+ + AtbP- (13)
Sensitivity = 1 AtbP? (14)
ensit lVlfy = Al‘bP+
Specifici { AtbP, (15)
pecificity = AP
| AtbPT +AbPT
— \ AtbPT+AbP-
MCC =
AtbPT +AtbPT AtbPT +AthP
(o) (1 e
(16)

where AtbPT represents the true-positive prediction
of the AtbPs and AtbP~ denotes the true-negative predic-
tion of the non-AtbPs. Likewise, AtbP, demonstrates the
errors of the model in terms of predicting the false-negative,
the sequences that the model falsely predicted as true. Sim-
ilarly, ArbPT shows the error of the model in terms of false
negatives that are true.

Ill. RESULTS AND DISCUSSIONS

In this study, we outcomes of the predicted model are
evaluated using a 10-fold Cross-validation (CV) test. Addi-
tionally, to generate reliable and accurate results, the mean
value of the 10-fold CV was reported by repeating the
Stratified loop strategy 30 times [57], [65]. Initially, the
peptide sequences were formulated via DDE, EGAAC,
AAindex, and CTD-based sequential and structured proper-
ties vectors. Then, a hybrid vector is formed by fusing the
extracted features to cover the limitation of the individual
feature vectors. The prediction analysis of the model was
examined using the GA-based ensemble model. The predic-
tive results of the training and independent datasets using
the different classification algorithms are discussed in the
subsections below.

A. PERFORMANCE OF pAtbP-ENC VIA MD TRAINING
DATASET

The predictive results of the MD training samples by apply-
ing various classification models are presented in Table 4.
As described in the II (A) section, the positive sequences
of both RD and MD datasets are the same, however, only
the negative sequences are different. At first, we trained our
proposed model using the MD training sequences. In terms
of single feature space, the ensemble genetic algorithm
employed CTD, leading to an enhanced sensitivity of 94.85%
and improved values of accuracy, specificity, and MCC,
reaching 93.07%, 91.18%, and 0.86, respectively. Similarly,
GA reported an accuracy of 92.32%, 91.92%, and 91.47%
using EGAAC, DDE, and AAindex, respectively. Subse-
quently, we combined the extracted descriptors of the applied
encoding methods to construct a heterogeneous vector. After
reporting predictive rates for all the classifiers, Ensemble-GA
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achieved remarkable outcomes, with an accuracy of 95.13%,
sensitivity of 96.45%, specificity of 93.83%, and MCC of
0.90. The improved performance rates of the heterogeneous
vector happen due to high training power and discriminative
descriptors of AAIndex, DDE, and EGAAC. Consequently,
the combined vector demonstrated superior outcomes as com-
pared to the individual.

B. PERFORMANCE OF pAtbP-ENC VIA RD TRAINING
DATASET

On the other hand, the RD training dataset is also uti-
lized for purpose and to effectively assess their predictive
potential. The predictive evaluation of the applied classifiers
learners using RD-training samples is presented in Table 3.
We applied several learning models including RF, ET, DNN,
and GA-based ensemble classifier, to evaluate the predictive
results of the extracted features. Similar to the MD train-
ing dataset, the proposed learning algorithms were used to
evaluate the outcomes of RD training using an individual
encoding scheme. Additionally, we combined all the descrip-
tors from different encoding methods into a heterogeneous
vector with a dimension size of 1056. The heterogeneous
vector was also measured with the proposed classifiers. After
thoroughly comparing the predictive outcomes of all the clas-
sifiers, it was found that the ensemble classifier surpasses
than single classifiers. Especially, in individual DDE vectors
having a dimension of 400D, ensemble-GA attains a higher
sensitivity of 93.49% and demonstrates remarkable values
of 91.84% accuracy, 90.19% specificity, and 0.83 MCC,
respectively.

Conversely, our ensemble classifier by employing multi-
perspective features performed outstanding well by achieving
a prediction accuracy of 97.80%, along with a specificity
of 96.80%, a sensitivity of 98.81%, and an MCC of 0.96.
We choose an optimized ensemble classifier as a pro-
posed training model due to its promising predictive results
using RD and MD training samples. The proposed ensem-
ble model combines the predicted labels of the applied
single classifiers which was used to form an optimized
using genetic algorithm and performs better than individual
algorithms.

C. PERFORMANCE OF pAtbP-ENC ON INDEPENDENT
DATASETS

To evaluate the effectiveness and generalization power of
our proposed pAtbP-EnC model, we applied two different
independent datasets as discussed in section II-A. The pre-
dictive assessment of MD-independent and RD-independent
datasets using the proposed model is illustrated in Table 5.
For instance, using the MD-independent dataset, we achieved
an exceptional level of accuracy of 94.17% which shows
the robustness and reliability of the model using unseen
sequences. In addition, other performance metrics reported
excellent results such as sensitivity, specificity, and MCC
of 98.69%, 92.63%, and 0.88 respectively. Similarly, in the
case of RD- RD-independent samples our ensemble learning
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Receiver Operating Characteristic

True Positive Rate

Hybrid Vector (AUC = 0.98)
AAlndex (AUC = 0.95)

CTD (AUC = 0.96)

DDE (AUC = 0.96)
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FIGURE 2. ROC analysis of RD training sample.
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—— Hybrid Vector (AUC = 0.98)
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—— DDE (AUC = 0.96)
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FIGURE 3. ROC analysis of MD training sample.

model obtained better accuracy of 93.91%, a sensitiv-
ity of 95.60%, specificity of 92.24%, and MCC of 0.87,
respectively. These outcomes show that our model can be
effectively used to discriminate between positive and negative
classes of unseen AtbP samples. Additionally, we calcu-
lated the area under the receiver operating characteristic
curves (AuROCs) and generated ROC curves for the pro-
posed method using all training and independent datasets,
as illustrated in Figures 2—5. On the other hand, the precision-
recall curves are calculated against the training and the
independent dataset as shown in Figure 7(A-D). Hence, the
evaluation of our model on the independent datasets confirms
its robustness and capacity to discriminate peptide samples
appropriately.
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TABLE 3. Performance results of classification learners using RD training dataset.

Eﬁz‘t’ﬂ(‘)‘;g Classifier ACC% Sen% Spe% MCC
RF 78.08 70.70 85.42 0.56

_ ETC 79.58 76.76 82.41 0.59
AAindex DNN 81.08 73.23 88.94 0.62
GA 88.94 87.65 90.23 0.77

RF 80.84 72.22 89.44 0.60

DDE ETC 81.35 76.26 86.43 0.63
DNN 82.85 7727 88.44 0.66

GA 91.84 93.49 90.19 0.83

RF 81,61 78.28 84.92 0.63

ETC 82.37 79.29 85.42 0.64

EGAAC DNN 84.11 8131 86.93 0.68
GA 86.46 88.65 84.56 0.73

RF 7781 76.26 79.39 0.55

ETC 80.08 77.77 82.41 0.60

CTD DNN 82.12 7727 86.93 0.64
GA 91.42 90.48 92.37 0.82

RF 87.22 8739 87.06 0.74

Hybrid Features ETC 87.14 86.96 87.31 0.74
DNN 93.74 94.62 92.90 0.87

GA 97.80 98.81 96.80 0.96

TABLE 4. Performance results of classification learner using MD training dataset.

Eh‘ice‘t’ﬂ(‘)‘(‘lg Classifier Ace (%) Sn (%) Sp (%) MCC
AAindex RF 78.84 68.68 88.94 0.58
ETC 79.09 71.12 86.93 0.58

DNN 86.03 85.88 86.51 0.72

GA 91.47 94.14 88.67 0.82

DDE RF 77.57 75.25 79.89 0.55
ETC 78.82 77.27 79.39 0.56

DNN 89.75 90.81 88.71 0.79

GA 91.92 94.38 89.33 0.83

EGAAC RF 76.56 69.19 81.40 0.50
ETC 78.10 75.75 80.40 0.56

DNN 89.14 92.26 86.58 0.78

GA 92.32 95.26 89.23 0.84

CTD RF 75.08 71.71 78.39 0.50
ETC 76.33 73.73 78.89 0.52

DNN 89.74 91.07 88.77 0.79

GA 93.07 94.85 91.18 0.86

Hybrid Features RF 87.22 87.39 87.06 0.74
ETC 89.45 89.62 89.28 0.78

DNN 93.68 93.99 93.39 0.87

GA 95.13 96.45 93.83 0.90
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FIGURE 4. ROC analysis of RD independent dataset.
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FIGURE 5. ROC analysis of MD independent dataset.

TABLE 5. Prediction analysis of heterogeneous feature vector using RD
and MD independent datasets.

Dataset

Model | ACC% Sen% Spe% MCC

RD-
Independent

RF 85.13 80.30 89.94 0.70
ETC 86.13 8131 9095 0.72
DNN | 90.66 89.33 9377 0.81
GA 93.91 95.60 92.24 0.87

MD-
Independent

RF 74.09 76.30  72.07 0.48
ETC 74.24 72.83 7560 0.48
DNN | 87.59 90.88 84.89 0.75
GA 94.17 95.69 92.63 0.88

D. MODEL INTERPRETATION

In this section, we performed the interpretation of the
proposed model interpretation using the Shapley Additive

VOLUME 11, 2023
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FIGURE 6. (a). SHAP analysis for contributory features using MD training

dataset. (b). SHAP analysis for contributory features using RD training
dataset.

Explanation Algorithm (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME) analysis [66], [67],
[68]. These methods investigate the contribution of the
extracted features by visualizing the high contributory fea-
tures from the whole feature set using machine learning
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FIGURE 7. Precision-Recall analysis for (A) RD Training Dataset (B) MD training dataset (C) RD independent dataset (D) MD independent dataset.

algorithms. SHAP is a global interpolation scheme to
measure the contribution of each feature via aggregating its
shapely values [69]. The SHAP analysis of 10 contributory
features using MD training and RD training datasets are
illustrated in Figures 6(A), and 6(B). Each row in the figure
represents the SHAP value distribution for a specific feature.
Data point colors indicate feature values, with red denoting

137108

higher values and blue lower ones. Colored dots signify each
feature’s influence on the model output. Whereas, SHAP > 0
indicates a positive prognosis (AtbPs), while SHAP < 0
suggests a negative prognosis (non-AtbPs). Our find-
ings emphasize the significance of the Hybrid feature,
highlighting the importance of predicting the targeted
classes.
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FIGURE 8. (a). LIME-based instance analysis using an MD-independent dataset. (b). LIME-based instance analysis using RD independent

dataset.

Additionally, LIME analysis is also applied to represent the
significance of the model per instance [70]. LIME simplifies
models through feature matrix permutations. A pivotal aspect
of LIME is the construction of a similarity matrix, measuring
distances between query sequences and perturbed sequences.
In this work, we applied the LIME analysis on the test sam-
ples as shown in Figures 8(A), and 8(B) for MD-independent
and RD-independent datasets. LIME analysis discriminates
the input instance based on its correlation with AtbPs (orange
color) and non-AtbPs (blue color).
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E. PERFORMANCE COMPARISON OF THE pAtbP-ENC
MODEL WITH EXISTING METHODS

The performance analysis of the pAtbP-EnC model is com-
pared with currently available models as displayed in Table 6,
and Figures 9-11. Which provides an overview of the exist-
ing computational methods applied for the prediction of
AtbPs. As mentioned in the literature, the existing studies
relied heavily on feature representation approaches based
on typical machine learners. Such as the Antitbpred model
[8] developed a novel approach, which integrates strategies
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FIGURE 9. Comparison analysis of pAtbP-EnC with existing predictors (A) RD training dataset (B) MD training dataset.
TABLE 6. Comparison of proposed model with existing methods.
Dataset Model ACC% Sen% Spe% MCC
Antitbpred [8] 81.70 78.70 84.60 0.64
AtbPpred [10] 91.70 90.50 93.01 0.83
RD-Training
iAtbP-Hyb-EnC [12] 94.47 92.96 95.97 0.89
pAtbP-EnC 97.80 98.81 96.80 0.96
Antitbpred [8] 77.01 76.80 77.30 0.55
MD-Training AtbPpred [10] 84.90 81.90 87.90 0.70
iAtbP-Hyb-EnC [12] 94.22 95.60 92.81 0.88
pAtbP-EnC 95.13 96.45 93.83 0.90
Antitbpred [8] 78.50 73.30 83.80 0.57
AtbPpred [10] 85.10 80.90 89.40 0.70
RD-Independent .
iAtbP-Hyb-EnC [12] 92.55 93.04 91.87 0.85
pAtbP-EnC 93.91 95.60 92.24 0.87
Antitbpred [8] 75.90 75.01 76.70 0.52
MD-Independent AtbPpred [10] 89.40 83.01 95.70 0.79
iAtbP-Hyb-EnC [12] 92.68 95.24 92.96 0.89
pAtbP-EnC 94.17 95.69 92.63 0.88

such as sequential peptide approaches and a binary pat-
tern strategy. After training the RD dataset, the Antitbpred
model achieved an accuracy rate of 81.70%. Subsequently,
Antitbpred on RD independent samples reported an accu-
racy of 78.50%. Similarly, the AtbPpred applied sequential
feature representation for training RD and MD samples
[10]. A 91.70% training accuracy was achieved via the MD
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training dataset. Additionally, the AtbPpred predictor demon-
strated a prediction accuracy of 85.10% on RD training
samples and an accuracy of 89.40% via MD-independent
samples. Recently, Akbar proposed an ensemble classifi-
cation model called iAtbP-Hyb-EnC [12], which achieved
prediction accuracies of 94.47% and 92.22% on RD and
MD training datasets, respectively. On the testing datasets,
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FIGURE 11. Comparison analysis of pAtbP-EnC with existing predictors
using MD independent dataset.

iAtbP-Hyb-EnC achieved accuracies of 92.55% and 92.68%
on both independent datasets. In contrast, our pAtbP-EnC
model using a multi-varied feature vector achieved the high-
est training accuracy of 97.80% using RD training samples,
with a sensitivity of 98.81%, specificity of 96.80%, and
MCC of 0.96. It was observed that the pAtbP model out-
performed all the computational models i.e., Antitbpred
predictor, AtbPpred model, and iAtbP-Hyb-EnC via both RD
and MD training sequences. Furthermore, while measuring
the MD and RD independent samples, the pAtbP-EnC model
using all predictive metrics, significantly performed than the
AtbPpred, Antitbpred, and iAtbP-Hyb-EnC models as shown
in Figure 10 and Figure 11.
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IV. CONCLUSION

This study presents a reliable and precise computational
method for effectively discriminating Antitubercular pep-
tides. The proposed comprises several phases to ensure accu-
rate predictions. Firstly, we formulate the peptide samples
using four diverse nature formulation techniques: AAindex,
DDE, CTD, and EGAAC. These methods enable transform-
ing the peptide samples into numerical information that is
highly mandatory for the training machine learning model.
Hence, various individual feature vectors and a hybrid vec-
tor are generated. The hybrid vector thoroughly represents
the numerous information of all encoding methods used for
the prediction of AtbP sequences. Finally, we develop an
ensemble classification algorithm by concatenating the pre-
dicted outcomes of the applied classifiers using an optimized
genetic algorithm. Which leads to overcoming the limitations
of the individual classifiers. Especially, an ensemble learner
by incorporating hybrid features performed remarkably well
in all evaluation metrics using training and independent
datasets. Our pAtbP-EnC model will serve as a valuable
tool in the field of drug discovery and advancing academic
research in this domain.
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