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ABSTRACT The dominance–based rough set approach is crucial to the advancement of rough set theory.
It gives a more thorough and adaptable framework for knowledge acquisition, information analysis, and
DM. It is a means of expressing discrepancies resulting from the examination of the domains with specified
preference rankings of the characteristics. This work seeks to extend the Rough set approach utilizing
dominance relationships to a Pythagorean fuzzy setting. The lower and upper approximations of Pythagorean
fuzzy dominance–based rough set are determined by using the constructive technique. Next, we examine the
basic characteristics for the rough estimations relying on the Pythagorean fuzzy dominance. By combining
Approximate Distribution Reductions with a Pythagorean fuzzy dominance–based rough set, reductions
are prescribed in four distinct manners. Additionally, the discernibility matrices and theorems connected to
these reductions are produced. Such findings are all Pythagorean fuzzy generalizations or extensions of the
conventional rough set method relying on dominance. Finally, the conceptual ideas are supported with a
numerical example.

INDEX TERMS Dominance–based rough set approach, dominance–based fuzzy rough set approach,
Pythagorean fuzzy dominance–based rough set approach, approximate distribution reduct, approximate
distribution consistent set.
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I. INTRODUCTION
To cope with ambiguous and unclear information, Pawlak’s
RST [1], [2], [3], [4] was devised. Essential ideas within
rough set theory comprise operators for lower and upper
approximations, these concepts were established based on
an equivalence relation that possesses the characteristics of
reflexivity, symmetry, and transitivity. With the aid of these
two approximations, it is possible to uncover and produce
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in the shape of decision rules any knowledge concealed inside
the information systems.

The indiscernibility relation is generally recognized to
be excessively constrictive for classification analysis in
real–world applications. Due to this, several writers have
summarized the ideas of rough approximations by employ-
ing some more broad binary connections, like the tolerance
connection [5], similarity connection [6], characteristic con-
nection [7], and so forth. These enhancements for the rough
approximations have practical applications in reasoning and
knowledge development within incomplete systems [8], [9],
[10], [11], continuing–valued systems [12], and some more
advanced information systems. So the expansion of rough
approximations to fuzzy settings has been a significant factor
in the growth of RST.

By employing the vagueness connection to approximate a
fuzzy idea, Dubios and Prade [13] introduced a model for
a FRSs. On the other hand, a FS within a fuzzy estimation
space is approximated through a fuzzy rough model. The
interval–valued FRS was proposed by Gong et al. [14] by
merging the interval–valued FS and rough set. In the context
of the conversation, Cornelis et al. [15] established the notion
of IFRSs, where theyL and UApproxs are together IFSs. The
IF rough approximation was put out by Zhou et al. [16] from
the perspectives of constructive and axiomatic methods. The
fuzzy-rough sets were presented by Bhatt and Gopal [17] on
a small computational domain. To make a fuzzy rough set a
particular instance, Zhao et al. [18] studied the rough sets with
fuzzy variable precision. A fuzzy RS established on Gaussian
Kernel was suggested by Hu et al. [19], by employing the
Gaussian Kernel, the computation of the fuzzy T–equivalence
relation facilitates objective approximation. The rough sets
with fuzzy preferences were also proposed by the same
authors [20]. The following articles include further informa-
tion on current developments in fuzzy rough sets: [21], [22],
[23], [24], [25], [26].

Although the rough set has proven its utility in various
domains like Information retrieval and analysis, it cannot
identify inconsistencies that may arise due to the deliber-
ation of criteria. These standards consist of characteristics
with prioritized realm, like product excellence, market posi-
tion, and interest coverage ratio. To address this issue,
Greco et al. suggested the DRSA [27], [28], [29], [30],
which is a development of Pawlak’s RST. The foundation
of this innovation lies in the replacement of an indiscernible
connection with a dominance relation. Currently, the devel-
opment of a DRSA is also moving quickly. For instance,
Shao et al. [31] and Yang et al. [32] extended the DRSA
to handle partial scenarios by incorporating two distinct
approaches to providing semantic explanations for unfamil-
iar values. Wei et al. [33] proposed the concept of valued
dominance–based approximate approximations, which incor-
porated the notion of the RS with variable precision [34]
in the direction of DRSA. Bszczynki et al. [35] offered the
method of variable consistency for DRSA. Kotowski et al.

[36] introduced a novel DRSA Approxs by utilizing a prob-
abilistic model to address the ordinal regression issues.
Greco et al. [37] extended the DRSA to a fuzzy setting
and introduced the DFRSA by applying a fuzzy dominance
relation.

Yager [38] proposed the notion of the PFS as an extension
of the Zadeh’s FS. In the PFS, the sum of the squares of
the MG and the NMG is restricted from zero to one. Our
research combines the Pythagorean fuzzy set with the DRSA
technique to propose an innovative model known as PFDRS.
The PFDRS is a fresh approach to the conventional DRSA
by employing a Pythagorean FDR for the estimation of the
ascending and descending unions of the decision classes
rather than a crisp or FDR. In our research, we utilize a
constructive method to define the PFDRS. The dominance
relation in classical DRSA can only be used to determine
if one object dominates another. Furthermore, the FDR is
introduced to represent the plausibility that one object is
superior to another. In a fuzzy dominance relationship, when
an element x is superior to an other element y with a certain
level of credibility, it implies that x does not superior than y
completely. To broaden this concept, the Pythagorean fuzzy
method is inherently incorporated into DRSA. Within our
PFDRS, the Pythagorean FDR can depict not just the cred-
ibility of x dominating y but also the lack of credibility in x
dominating y.

After introducing a novel rough set model, the initial chal-
lenge that arises is attribute reduction. This process involves
identifying particular subsets of features that offer equiva-
lent information, serving a specific objective, as the entire
collection of current attributes. Their subsets are referred to
as reductions. Pawlak introduced the positive–region based
reduct in classic RST [39], which can be utilized to maintain
the union of all L Approxs. Kryszkiewicz [40] examined and
analyzed five data reduction theories in inconsistent informa-
tions after Pawlak’s work, while the notions of distribution
reducts and maximal distribution reducts were developed
by Zhang et al. [41]. Furthermore, Wang et al. [42] intro-
duced a methodical strategy for reducing knowledge by
utilizing a relation and it associate with rough estimation.
Chen et al. [43], on the other hand, explored the issue of
knowledge reduction in decision systems by employing a
covering based–rough estimation. Yang et al. [44] developed
an innovative theory of reductions by modifying the approx-
imation space and reducts in the scope of covering extended
RSs. Beynon [45] introduced the notion of reducts using the
RS environment with variable precision, while Mi et al. [46]
presented lower and upper ADRs. In our research, we aim
to incorporate Mi’s approximate distribution reducts into our
PFDRS. Since DRSA involves two sets of approximations,
we provide four different notions of ADRs. Furthermore,
we develop different theorems and discernibility matrices
linked to these reduction, enabling us to derive practical
techniques for computing ADRs within the framework of
PFDRS.
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The subsequent sections of this manuscript are arranged
as follows: In section II, the basic ideas of PFS, classi-
cal DRSA, and DFRSs are concisely examined to ease our
discussion. Section III presents a constructive method for
defining the PFDRS model with some subsequent character-
istics. Section IV introduces the probabilistic interpretation
of PFDRS, we also present an example for illustrating the
utilization of PFDRS in decision systems with a probabilistic
interpretation. Section V investigates the ADRs for PFDRS.
In section VI, this method is demonstrated through an exam-
ple. Section VII provides the concluding remarks of this
manuscript.

II. PRELIMINARIES
This passage provides a condensed overview of essential
details related to IFSs, PFSs, DRSA, DFRSA, and DIFRSA,
along with fundamental concepts pertinent to the article’s
content. Additionally, it covers prevalent ideas relevant to
sequential analysis.

A. IFSs, PFSs
Atanassov [47] introduced IFS as an adaptation of Zadeh’s
FST [48].
Definition 1 [47]: For universeU , and for ∈ U . The IFS

‘Į’ is described over U as:

Į = {( ,u ( ),v ( )) : ∈ U} ,

where, u ( ) ∈ [0, 1] denotes the MG and νį ( ) ∈ [0, 1]
denotes the NMG of to Į, correspondingly, with 0 ≤ uį( )+
vį ( ) ≤ 1, ∀ ∈ U .

Yager [38] introduced the concept of PFS, indicating that
it holds when the sum of MG and NMG surpasses 1, unlike
IFSs which do not succeed under such circumstances.
Definition 2 [38]: For universeU , and for ∈ U . The PFS

‘-P’ is described over U as:

-P = {( ,u ( ),v ( )) : ∈ U} ,

where, u ∈ [0, 1] denotes the MG and v ∈ [0, 1] denotes
the NMG of to -P, correspondingly, with 0 ≤ (u ( ))2 +

(v ( ))2 ≤ 1. The degree of indeterminacy is π ( ) =√
1 − (u ( ))2 − (v ( ))2.

B. GRECO’S DRSA
Definition 3 [29]: A pair S = (U , AT ∪ {f }) is a decision

system, U refers to the universe is a non–empty set of finite
objects. AT conditional attributes is a non–empty finite set,
decision attribute is f with AT ∩ {f } = ∅. For all ą ∈ AT, Vą
is the realm of attribute ą, therefore V = VAT =

⋃
ą∈AT Vą

is the domain of all attributes. Furthermore, ∀ ∈ U , ą( ) is
the value that holds on ą (ą ∈ AT ).

For preference–ordered realm of attributes, the DRSA,
which has been offered by Greco et al. [27] is a continuation
of the classical rough set that can address the inconsisten-
cies common for outstanding choices in MCDM situations.
Consider ≽ą denotes a weak preference connection for the

set U (commonly known as outranking) which represents a
preference among objects based on a criterion ą(ą ∈ AT),
also called dominance relation; ≽ą means ‘‘ is at least
as good as with respect to criterion ą’’. We assert that
dominates w.r.t A ⊆ AT, if and only if ≽ą for every
ą ∈ A.

Thus, we have the ability to establish two sets for every
in U :

• ‘‘The set of objects that dominate i.e. [ ]≽A ={
∈ U : ∀ą ∈ A, ≽ą

}
’’

• ‘‘The set of objects that dominated by , i.e. [ ]≼A ={
∈ U : ∀ą ∈ A, ≽ą

}
’’

In this context, we presume that the attribute f , within the
traditional DRSA framework, defines the partition of U into
a limited set of classes. Suppose CL = {CL , ∈ ℵ}, ℵ =

{1, 2, . . . , }, be a collection of ordered classes. Contrary
to the Pawlak’s rough estimation, the sets that need to be
estimated in DRSA can be viewed as an ascending and
descending combinations of decision classes. That are speci-
fied as:

CL
≽

=

⋃
′≽

CL ′ , CL
≼

=

⋃
′≼

CL ′ for , ′
∈ ℵ;

The A − L and U Approxs of CL
≽ are defined as:

A(CL
≽) =

{
∈ U : [ ]≽A ⊆ CL

≽
}

,

A(CL
≽) =

{
∈ U : [ ]≼A ∩ CL

≽
̸= ∅

}
;

The A − L and U Approxs of CL are defined as:

A(CL
≼) =

{
∈ U : [ ]≼A ⊆CL

≼
}

,

A(CL
≼) =

{
∈ U : [ ]≽A ∩ CL

≼
̸= ∅

}
;

The A − BND of CL
≽ and CL

≼ are defined as:

BNDA

(
CL

≽
)

= A(CL
≽) − A(CL

≽),

BNDA

(
CL

≼
)

= A(CL
≼
) − A(CL

≼).

C. DFRSA
The dominance–based fuzzy rough set approach is an
expanded version of DRSA that incorporates fuzzy concepts
with DRSA. In the DFRSA, the traditional dominance rela-
tion is substituted with a fuzzy dominance relation.
Definition 4 [30]: Suppose that Rą is a fuzzy dominance

relation over U w.r.t attribute ą, i.e. Rą : U × U →

[0, 1] , ∀ , ∈ U . Then,Rą( , ) demonstrates the reliability
of the statement ‘‘ is at least as good as with respect to
attribute ą’’. For each A ⊆ AT, the FDR over U is expressed
and established as:

RA ( , ) =
∧ {

Rą ( , ) :ą ∈ A
}
.

Definition 5 [30]: For decision system S = (U , AT ∪{f })
withA ⊆ AT then for all ∈ ℵ, theA−L and UApproxs of
CL

≽ with FDR are represented by AR(CL≽) and AR(CL
≽
)
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correspondingly, of whom memberships for every ∈ U , are
termed as:

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
(1 − RA ( , ))

)
;

u
AR(CL

≽
)
( ) =

∨
∈U

(
u

CL
≽ ( )

∧
RA ( , )

)
;

Similarly, theA−L and UApproxs of CL
≼ are expressed by

AR(CL≼) andAR(CL
≼
) respectively, of whommemberships

for every ∈ U , are termed as:

u
AR(CL

≼) ( ) =
∧

∈U

(
u

CL
≼ ( )

∨
(1 − RA ( , ))

)
;

u
AR(CL

≼
)
( ) =

∨
∈U

(
u

CL
≼ ( )

∧
RA ( , )

)
.

III. PROPOSED PYTHAGOREAN FUZZY
DOMINANCE-BASED ROUGH SET APPROACH
In this portion, we construct an innovative Pythagorean Fuzzy
Dominance–based Rough Set model.
Definition 6: For universe U , and for ∈ U . The PFS ‘-P’

is described over U as:

-P = {( ,u-P( ),v-P ( )) : ∈ U} ,

where, u-P : U → [0, 1] and v-P : U → [0, 1] satisfying the
condition 0 ≼ (u-P ( ))2 + (v-P ( ))2 ≼ 1 for every ∈ U .
The combination of all Pythagorean fuzzy subsets on U is
represented by -PF(U ).
Definition 7: The Pythagorean fuzzy connection R on U

is a Pythagorean fuzzy subset of U × U and is specified as:

R = {⟨( , ),uR( , ),vR( , )⟩ : ( , ) ∈ U × U} ;

where, uR : U × U → [0, 1] and vR : U × U → [0, 1]
satisfying that 0 ≼ (uR ( ))2 + (vR ( ))2 ≼ 1 for each
( , ) ∈ U × U . The set of all Pythagorean fuzzy relations
on U is expressed by -PFR(U × U ).
Definition 8: For universe U , and for all R ∈

-PFR (U × U) , if uR( , ) is the reliability of the statement
‘‘ is at least as good as good as in R’’ and vR( , ) is the
non-reliability of the statement ‘‘ is at least as good as in
R’’. Then, R is R is considered as Pythagorean FDR.

The Pythagorean FDR can express both the reliability
and non-reliability of dominance principle between different
objects. For a decision system S = (U , AT ∪ {f }), and for
ą ∈ AT, then Rą is Pythagorean FDR w.r.t attribute ą, for AT

it is expressed by RAT and is described as:

RAT ( , ) =
(
uRA

( , ) ,vRA
( , )

)
=

(∧ {
uRą ( , ) : ą ∈ AT

}
,∨ {

vRą ( , ) : ą ∈ AT
})

;

For every ( , ) ∈ U ×U , the Pythagorean FDR is reflexive,
i.e. Rą ( , ) = 1,

(
uRą ( , ) = 1,vRą ( , ) = 0

)
for every

∈ U and ą ∈ AT.
Definition 9: For decision system S = (U , AT∪{f }), A ⊆

AT, Pythagorean FDR RA with respect to A, and for all

∈ ℵ, and then the A − L and U Approxs of CL
≽ w.r.t RA

are represented and expressed as:

AR(CL
≽)

=

{(
,u

AR(CL
≽) ( ) ,v

AR(CL
≽) ( )

)
: ∈ U

}
,

AR(CL
≽
)

=

{(
,u

AR(CL
≽
)
( ) ,v

AR(CL
≽
)
( )

)
: ∈ U

}
,

where,

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
vRA

( , )

)
,

v
AR(CL

≽) ( ) =
∨

∈U

(
v

CL
≽ ( )

∧
uRA

( , )

)
,

u
AR(CL

≽
)
( ) =

∨
∈U

(
u

CL
≽ ( )

∧
uRA

( , )

)
,

v
AR(CL

≽
)
( ) =

∧
∈U

(
v

CL
≽ ( )

∨
vRA

( , )

)
.

Similarly, for CL
≼ theA−L and UApproxs are represented

and expressed as:

AR(CL≼)=
{(

,u
AR(CL

≼) ( ),v
AR(CL

≼) ( )

)
: ∈ U

}
,

AR(CL
≼
)=

{(
,u

AR(CL
≼
)
( ) ,v

AR(CL
≼
)
( )

)
: ∈ U

}
,

where,

u
AR(CL

≼) ( ) =
∧

∈U

(
u

CL
≼ ( )

∨
vRA

( , )

)
,

v
AR(CL

≼) ( ) =
∨

∈U

(
v

CL
≼ ( )

∧
uRA

( , )

)
,

u
AR(CL

≼
)
( ) =

∨
∈U

(
u

CL
≼ ( )

∧
uRA

( , )

)
,

v
AR(CL

≼
)
( ) =

∧
∈U

(
v

CL
≼ ( )

∨
vRA

( , )

)
.

The membership grade and non-membership grade of ∈

AR(CL≽) areu
AR(CL

≽) ( ) and v
AR(CL

≽) ( ) respectively.

The MG and NMG of ∈ AR(CL
≽
) are u

AR(CL
≽
)
( )

and v
AR(CL

≽
)
( ) respectively. The MG and NMG of ∈

AR(CL≼) areu
AR(CL

≼) ( ) and v
AR(CL

≼) ( ) respectively.

The MG and NMG of ∈ AR(CL
≼
) are u

AR(CL
≼
)
( ) and

v
AR(CL

≼
)
( ) respectively.

Theorem 1: For decision system S = (U , AT ∪ {f }), A ⊆

AT, Pythagorean FDR RA w.r.t A, and ∀( , ) ∈ U × U if
u2

RA
( , ) + v2

RA
( , ) = 1, then for each ∈ U , we have

(a) u2
AR(CL

≽)
( ) + v2

AR(CL
≽)

( ) = 1;

(b) u2
AR(CL

≽
)
( ) + v2

AR(CL
≽
)
( ) = 1;

(c) u2
AR(CL

≼)
( ) + v2

AR(CL
≼)

( ) = 1;
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(d) u2
AR(CL

≼
)
( ) + v2

AR(CL
≼
)
( ) = 1.

Proof: Only (a) is proved, remaining can be proven
similarly.

(a) For all , ∈ U , and by using definition 9

u2
AR(CL

≽)
( ) + v2

AR(CL
≽)

( )

=
∧

∈U

(
u2

CL
≽ ( )

∨
v2

RA
( , )

)
+

∨
∈U

(
v2

CL
≽ ( )

∧
u2

RA
( , )

)
,

If ∈ CL
≽ i.e. u2

CL
≽ ( ) = 1 and v2

CL
≽ ( ) = 0,

Then u2
CL

≽ ( )
∨
v2

RA
( , ) = 1, v2

CL
≽ ( )

∧
u2

RA

( , ) = 0.
If /∈ CL

≽ i.e. u2
CL

≽ ( ) = 0 and v2
CL

≽ ( ) = 1,

Then u2
CL

≽ ( )
∨
v2

RA
( , ) = v2

RA
( , ), v2

CL
≽ ( )∧

u2
RA

( , ) = u2
RA

( , ).

Thus, if = 1, then
∧

∈U

(
u2

CL
≽ ( )

∨
v2

RA
( , )

)
+

∨
∈U

(
v2

CL
≽ ( )

∧
u2

RA
( , )

)
= 1 holds. If ̸= 1 there-

fore, it implies that /∈ CL
≽ s.t.

∧
∈U

(
u2

CL
≽ ( )

∨
v2

RA
( , )

)
= v2

RA
( , ) ,

∨
∈U

(
v2

CL
≽ ( )

∧
u2

RA
( , )

)
= u2

RA
( , ).

Sinceu2
RA

( , )+v2
RA

( , ) = 1 then for each ( , ) ∈

U × U ,u2
AR(CL

≽)
( ) + v2

AR(CL
≽)

( ) = v2
RA

( , ) +

u2
RA

( , ) = 1.

This indicates that when the Pythagorean FDR transitions
to the fuzzy dominance relation, the PFDRS is also transitions
to the FDRSA. Taking this approach, the PFDRSA can be
seen as an extension of the conventional FDRSA.
Theorem 2: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then
(a) u

AR(CL
≽) ( ) =

∧ {
vRA

( , ) : /∈ CL
≽

}
( = 2, . . . , ) ;

(b) v
AR(CL

≽) ( ) =
∨ {

uRA
( , ) : /∈ CL

≽
}

( = 2, . . . , ) ;

(c) u
AR(CL

≽
)
( ) =

∨ {
uRA

( , ) : ∈ CL
≽

}
( = 1, . . . , ) ;

(d) v
AR(CL

≽
)
( ) =

∧ {
vRA

( , ) : ∈ CL
}(

= 1, . . . , ≽
)
;

(e) u
AR(CL

≼) ( ) =
∧ {

vRA
( , ) : /∈ CL

≼
}

( = 1, . . . , − 1) ;

(f) v
AR(CL

≼) ( ) =
∨ {

uRA
( , ) : /∈ CL

≼
}

( = 1, . . . , − 1) ;

(g) u
AR(CL

≼
)
( ) =

∨ {
uRA

( , ) : ∈ CL
≼

}
( = 1, . . . , ) ;

(h) v
AR(CL

≼
)
( ) =

∧ {
vRA

( , ) : ∈ CL
≼

}
( = 1, . . . , ) .

Proof: Only (a) is proved, remaining can be proven
similarly.

(a) For all = 2, . . . , and by definition 9, we have

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
vRA

( , )

)
. If ∈

CL
≽ then u

CL
≽ ( ) = 1 it implies that u

CL
≽ ( )

∨
vRA

( , ) = 1. If /∈ CL
≽ then u

CL
≽ (y) = 0 it

implies that u
CL

≽ ( )
∨
vRA

( , ) = vRA
( , ). Since

= 2, . . . , , then there must be /∈ CL
≽ s :

t u
CL

≽ ( )
∨
vRA

( , ) = vRA
( , ). As a result

u
AR(CL

≽) ( ) =
∧ {

vRA
( , ) : /∈ CL

≽
}
.

Theorem 3: For decision system S = (U , AT ∪ {f }) with
A ⊆ AT then, Pythagorean fuzzy dominance–based rough
Approxs possess the subsequent characteristics:

(C.1) Compression and Expansion:

AR(CL≽) ⊆ CL
≽

⊆ AR(CL
≽
);

AR(CL≽) ⊆ CL
≽

⊆ AR(CL
≽
);

(C.2) Complements:

AR(CL≽) = U − AR(CL
≼
−1), = 2, . . . , ,

AR(CL≼) = U − AR(CL
≽
+1), = 1, . . . , − 1;

AR(CL
≽
) = U − AR(CL≼

−1), = 2, . . . , ;

AR(CL
≼
) = U − AR(CL≼

+1), = 1, . . . , − 1;

(C.3) Monotonic with attributes:

AR(CL≽)⊆ATR(CL≽); AR(CL
≽
) ⊇ ATR(CL

≽
);

AR(CL≼)⊆ATR(CL≼); AR(CL
≼
) ⊇ ATR(CL

≼
);

(C.4) Monotonic with decision classes:
For 1, 2 ∈ ℵ such that 1 ≼ 2, AR(CL≽

1
)

⊇ AR(CL≽

2
); AR(CL

≽

1
) ⊇ AR(CL

≽

2
);

AR(CL≼

1
) ⊆ AR(CL≼

2
); AR(CL

≼

1
) ⊆ AR(CL

≼

2
).

Proof: (C.1) For every /∈ CL
≽, i.e. u

CL
≽ ( ) = 0 and

v
CL

≽ ( ) = 1, then

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
vRA

( , )

)
≼ u

CL
≽ ( )

∨
vRA

( , ) = 0 = u
CL

≽ ( ) ;

vAR(CL ) ( ) =
∨

∈U

(
v

CL
≽ ( )

∧
uRA

( , )

)
≽ v

CL
≽ ( )

∧
uRA

( , ) = 1 = v
CL

≽ ( ) .

Thus AR(CL≽) ⊆ CL
≼.
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Now, for all ∈ U , if ∈ C-L≽
n i.e. u

CL
≽ ( ) = 1 and

v
CL

≽ ( ) = 0, then

u
AR(CL

≽
)
( ) =

∨
∈U

(
u

CL
≽ ( )

∧
uRA

( , )

)
≽ u

CL
≽ ( )

∧
uRA

( , ) = u
CL

≽ ( ) ;

v
AR(CL

≽
)
( ) =

∧
∈U

(
v

CL
≽ ( )

∨
vRA

( , )

)
≼ v

CL
≽ ( )

∨
vRA

( , ) = v
CL

≽ ( ) ;

Thus, as a result CL
≽

⊆ AR(CL
≽
). Hence, AR(CL≽) ⊆

CL
≽

⊆ AR(CL
≽
).

Similarly, it can be prove that AR(CL≼) ⊆ CL
≼

⊆

AR(CL
≼
).

Proof: (C.2) For every ∈ U , as u
CL

≽ ( ) =

v
CL

≼
−1

( ) and v
CL

≽ ( ) = u
CL

≼
−1

( ) for = 2, . . . ,

then

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
vRA

( , )

)
=

∧
∈U

(
v

CL
≼

−1
( )

∨
vRA

( , )

)
= v

AR(CL
≼

−1)
( ) ;

v
AR(CL

≽) ( ) =
∨

∈U

(
v

CL
≽ ( )

∧
uRA

( , )

)
=

∨
∈U

(
u

CL
≼

−1
( )

∧
uRA

( , )

)
= u

AR(CL
≼

−1)
( ) ;

Thus, AR(CL≽) = U − AR(CL
≼
−1) for = 2, . . . , . In a

similar manner, we can establish others.
Proof: (C.3) For ( , ) ∈ U × U , we have uRA

( , ) ≥

uRAT
( , ) and vRA

( , ) ≤ vRAT
( , ) since A ⊆ AT,

therefore

u
AR(CL

≽) ( ) =
∧

∈U

(
u

CL
≽ ( )

∨
vRA

( , )

)
≼

∧
∈U

(
u

CL
≽ ( )

∨
vRAT

( , )

)
= u

ATR(CL
≽) ( ) ;

v
AR(CL

≽) ( ) =
∨

∈U

(
v

CL
≽ ( )

∧
uRA

( , )

)
≽

∨
∈U

(
v

CL
≽ ( )

∧
uRAT

( , )

)
= v

ATR(CL
≽) ( ) ;

Thus AR(CL≽) ⊆ ATR(CL≽). Similarly, we can prove
others.
Proof: (C.4) For 1 ≤ 2 and for each ∈ U ,

we obtain CL
≽
1

⊇ CL
≽
2
, i.e.u

CL
≽

1

( ) ≽ u
CL

≽

2

( ) and

v
CL

≽

1

( ) ≼ v
CL

≽

2

( ), so

u
AR(CL

≽

1
) ( ) =

∧
∈U

(
u

CL
≽

1

( )
∨
vRA

( , )

)
≽

∧
∈U

(
u

CL
≽

2

( )
∨
vRA

( , )

)
= uAR(CL ≽

2

) ( ) ;

v
AR(CL

≽

1
) ( ) =

∨
∈U

(
v

CL
≽

1

( )
∧
uRA

( , )

)
≼

∨
∈U

(
v

CL
≽

2

( )
∧
uRA

( , )

)
= v

AR(CL
≽

2
) ( ) ;

Thus AR(CL≽
1
) ⊇ AR(CL≽

2
). Similarly, we can prove

others.
(C.1) states that the union of decision classes in an upward

(or downward) manner contains its Pythagorean fuzzy rough
LorU Approx. (C.2) explains the complementary charac-
teristics of the Pythagorean fuzzy dominance–based rough
Approxs that are being proposed. (C.3) represents the mono-
tonicity of the novel PFDRS based on conditional attributes.
(C.4) specifies the monotonicity of the novel PFDRS in the
form of the consistent growth patterns of unions of decision
classes.

IV. PROPOSED PROBABILISTIC INTERPRETATION FOR
PYTHAGOREAN FUZZY DOMINANCE–BASED ROUGH SET
APPROACH
In this part, we will demonstrate the real–world application
of the suggested PFDRSA in a decision–making system that
incorporates probability interpretation.
Definition 10: For decision system S = (U , AT∪{f }) and

for all ∈ U and ą ∈ AT, ą( ) ⊆ Vą, i.e.

ą : U −→ P
(
Vą

)
where, P

(
Vą

)
represents the collection of all nonempty sub-

sets of Vą, therefore S is considered as a set–valued decision
information, and represents a set of outcomes for every
attribute rather than a single value.

For the probabilistic interpretation of set-valued decision
system, ∀µ ∈ V ą, ą ( ) (µ) ∈ [0, 1] signifies the occurrence
of µ. ∀ ∈ U , ą ∈ AT we consider∑

µ∈V ą

ą ( ) (µ) = 1

Every set value can be defined as a probability distribution
encompassing the components within the assigned set. Con-
sequently, the set value can be characterized as a probability
distribution in this manner:

ą ( ) =
{
µ1

/
ą ( ) (µ1), µ2

/
ą ( ) (µ2) , . . . , µk

/
ą ( ) (µk)

}
,

where µ1, µ2, . . . , µk ∈ Vą.
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By applying the RSA, we have examined the decision
system with a set of values and a probabilistic perspective.
For instance, in rough sets for insufficient information, the
uncertain values are represented as a consistent probability
distribution across the components within the realm of the
associated attribute. This representation is achieved through
the utilization of the valued–tolerance connection and the
valued–dominance connection. Let Vą = {ą1, ą2, ą3, ą4},
if ą ( ) = ∗ where ∗ represents unknown value like ‘‘do
not care value’’ then the probability distribution can be
defined as:

ą ( ) =
{
ą1

/
0.24, ą2

/
0.26, ą3

/
0.22, ą4

/
0.28

}
.

It means that if the value of is not known for the attribute
ą, then may takes a single value from Vą. Further, the
level of probability that possesses each value is identical.
Although valued tolerance and dominance relations evaluate
memberships in the tolerance and dominance degrees only,
non–memberships are ignored. The Pythagorean fuzzy rough
approach has become necessary to overcome this limitation.
Example 1: For universe U =

{
1, 2, . . . , 10

}
, con-

ditional attributes AT = {ą, b̧, ç, ḑ, ę}, Vą = {ą0, ą1, ą2},
Vb̧ =

{
b̧0, b̧1, b̧2

}
, Vç = {ç0, ç1, ç2}, Vḑ =

{
ḑ0, ḑ1, ḑ2

}
,

Vę = {ę0, ę1, ę2}, with ą0 ≺ ą1 ≺ ą2, b̧0 ≺ b̧1 ≺ b̧2,
ç0 ≺ ç1 ≺ ç2, ḑ0 ≺ ḑ1 ≺ ḑ2, ę0 ≺ ę1 ≺ ę2, for f decision
attribute Vf = {1, 2, 3}, then for all ( , ) ∈ U ×U , ą ∈ AT,

Pythagorean fuzzy dominance relation is described as:

RAT ( , ) =

{
[1, 0] : =(

uRAT
( , ) ,vRAT

( , )
)

: otherwise

}
;

where, ∀ą ∈ AT

uRą ( , ) =

∑
µ1≽µ2,µ1,µ2∈Vą

ą ( ) (µ1)
2
· ą ( ) (µ2)

2

vRą ( , ) =

∑
µ1≺µ2,µ1,µ2∈Vą

ą ( ) (µ1)
2
· ą ( ) (µ2)

2

Here, uRA
( , ) represents the concept of dominance

principle connecting with attributes AT, while vRA
( , )

represents the degree of non-dominance principle concerning
attributes AT. Table 1 represents information system with
probability distribution.

For instance,

uRb̧
(

7, 2
)

=

∑
µ1≽µ2,µ1,µ2∈Vb̧

b̧
(

7
)
(µ1)

2.b̧
(

2
)
(µ2)

2

uRb̧
(

7, 2
)

= b̧
(

7
) (
b̧0

)2
.b̧

(
2
) (
b̧0

)2
+ b̧

(
7
) (
b̧1

)2
.b̧

(
2
) (
b̧0

)2
= (0.5)2 (0.6)2 + (0.5)2 (0.6)2 = 0.18

vRb

(
7, 2

)
=

∑
µ1≺µ2,µ1,µ2∈Vb̧

b̧
(

7
)
(µ1)

2.b̧
(

2
)
(µ2)

2

vRb̧
(

7, 2
)

= b̧
(

7
) (
b̧0

)2
.b̧

(
2
) (
b̧2

)2
+ b̧

(
7
) (
b̧1

)2
.b̧

(
2
) (
b̧2

)2

= (0.5)2 (0.4)2 + (0.5)2 (0.4)2 = 0.08

Similarly, the all outcomes of Pythagorean FDR represented
in Table 1 are displayed in Table 2.

Using the Pythagorean FDR, we can derive the respec-
tive rough approximations of MG and NMG based
on Definition 3.4. By employing the decision attribute
f , the U can be divided into the classes in this
manner. CL = {CL1, CL2, CL3}. Where CL1 ={

2, 4, 8
}
, CL2 =

{
1, 5, 7, 9

}
and CL3 ={

3, 6, 10
}
. The upward and downward unions are

CL
≽
1 =

{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}
, CL

≽
2 ={

1, 3, 5, 6, 7, 9, 10
}
, CL

≽
3 =

{
3, 6, 10

}
, CL

≼
1 ={

2, 4, 8
}
, CL

≼
2 =

{
1, 2, 4, 5, 7, 8, 9

}
, and

CL
≼
3 =

{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}
. The outcomes

of Pythagorean fuzzy dominance–based rough Approxs in
Table 1 are displayed in Table 3.

V. PROPOSED APPROXIMATE DISTRIBUTION
REDUCTION FOR PYTHAGOREAN FUZZY
DOMINANCE–BASED ROUGH SET
Mi [46] was the first to suggest the idea of ADR. Based on
Mi’s finding, we have included such reduction to DRSA for
handling the information system’s missing and unknowable
values. The notion of ADR will be further generalized into
our PFDRS model.

A. APPROACH TO APPROXIMATE DISTRIBUTION
REDUCTION
Definition 11: For decision system S = (U , AT ∪ {f })

with A ⊆ AT, we denote

-L≽
AT =

{
ATR(CL≽

1 ), ATR(CL≽
2 ), . . . ,ATR(CL≽)

}
;

-L≼
AT =

{
ATR(CL≼

1 ), ATR(CL≼
2 ), . . . ,ATR(CL≼)

}
;

≽
AT =

{
ATR(CL

≽
1 ), ATR(CL

≽
2 ), . . . ,ATR(CL )

}
;

≼
AT =

{
ATR(CL

≼
1 ), ATR(CL

≼
2 ), . . . ,ATR(CL

≼
)
}

;

(a) If -L≽
A = -L≽

AT , thenA is known as the≽–lower ADCS;
If -L≽

A = -L≽
AT and -L≽

B ̸= -L≽
A ∀B ⊂ A, then A is

known as a ≽–lower ADR of S;
(b) If -L≼

A = -L≼
AT , thenA is known as the≼–lower ADCS;

If -L≼
A = -L≼

AT and -L≼
B ̸= -L≼

A ∀B ⊂ A, then A is
known as a ≼–lower ADR of S;

(c) If ≽
A =

≽
AT , then A is known as the ≽–upper

ADCS; If ≽
A =

≽
AT and ≽

B ̸=
≽
A ∀B ⊂ A, then

A is known as a ≽–upper ADR of S;
(d) If ≼

A =
≼
AT , then A is known as the ≼ ≼ –upper

ADCS; If ≼
A =

≼
AT and ≼

B ̸=
≼
A ∀B ⊂ A, then

A is known as a ≼ –upper ADR of S.
Hence, ≽ −L/U and ≼ −L/U ADCS refer to
a set of attributes that retains the Pythagorean fuzzy
dominance–based L and U Approxs for all the upward
and downward unions of the decision classes, respectively.
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TABLE 1. Probabilistic interpretation of information system.

TABLE 2. Pythagorean Fuzzy Dominance Relation for Table 1.

−L/U and ≼ −L/U ADR represent the minimal set
of attributes required to maintain the Pythagorean fuzzy
dominance–based L and U Approxs for all the upward and
downward unions of the decision classes, respectively.
Theorem 4: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then
(a) A is ≽ –lower ADCS ⇐⇒ A is ≼ –upper ADCS;
(b) A is ≼ –lower ADCS ⇐⇒ A is ≽ –upper ADCS.
Proof: It can be proved by (C.2) of Theorem 3 and

Definition 11.
Theorem 5: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then
(a) A is ≽ –lower ADR ⇐⇒ A is ≼ –upper ADR;
(b) A is ≼ –lower ADR ⇐⇒ A is ≽ –upper ADR.

Proof: It can be proved by Theorem 4 and Definition 11.

Theorem 6: For decision system S = (U , AT ∪ {f }) with
A ⊆ AT, for all ∈ U we denote

≽
AT ( )=

{(
u

ATR(CL
≽) ( ) ,v

ATR(CL
≽) ( )

)
: ∈ N

}
;

≼
AT ( )=

{(
u

ATR(CL
≼) ( ) ,v

ATR(CL
≼) ( )

)
: ∈ N

}
;

≽
AT ( )=

{(
u

ATR(CL
≽
)
( ) ,v

ATR(CL
≽
)
( )

)
: ∈ N

}
;

≼
AT ( )=

{(
u

ATR(CL
≼
)
( ) ,v

ATR(CL
≼
)
( )

)
: ∈ N

}
;

Then,

(a) A is ≽ –lower ADCS ⇐⇒ for all ∈ U ,
≽
A ( ) =

≽
AT ( );

(b) A is ≼ –lower ADCS ⇐⇒ for all ∈ U ,
≼
A ( ) =

≼
AT ( );

(c) A is ≽ –upper ADCS ⇐⇒ for all ∈ U ,
≽
A ( ) =

≽
AT ( );

(d) A is ≼ –upper ADCS ⇐⇒ for all ∈ U ,
≼
A ( ) =

≼
AT ( ).

Proof: Only (a) is proved, remaining can be proven
similarly.

-L≽
A = -L≽

AT ⇐⇒ AR(CL≽)

= ATR(CL ), ( ∈ ℵ)

⇐⇒ u
AR(CL

≽) ( ) = u
ATR(CL

≽) ( ) ,

v
AR(CL

≽) ( ) = v
ATR(CL

≽) ( ) , (∀ ∈ U)

⇐⇒
≽
A ( ) =

≽
AT ( ) .
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TABLE 3. Pythagorean fuzzy dominance–based rough approxs for Table 1.

Definition 12: For decision system S = (U , AT∪{f }) and
for A ⊆ AT, we define

≽
-L =

{
( , ) ∈ U2: ∈ U , /∈ CL

≽
, = 2, 3, . . . ,

}
;

≼
-L =

{
( , ) ∈ U2: ∈ U , /∈ CL

≼
, = 1, 2, . . . , − 1

}
;

≽
=

{
( , ) ∈ U2: ∈ U , ∈ CL

≽
, = 2, 3, . . . ,

}
;

≼
=

{
( , ) ∈ U2: ∈ U , ∈ CL

≼
, = 1, 2, . . . , − 1

}
.

where,

(a) If ( , ) ∈
≽
-L , then ≽u

-L ( , ) ={
ą ∈ AT : u

ATR(CL
≽) ( ) ≼ vRą ( , )

}
, otherwise,

≽u
-L ( , ) = ∅;

(b) If ( , ) ∈
≽
-L , then ≽v

-L ( , ) ={
ą ∈ AT : v

ATR(CL
≽) ( ) ≽ uRą ( , )

}
, otherwise,

≽v
-L ( , ) = ∅;

(c) If ( , ) ∈
≼
-L , then ≼u

-L ( , ) ={
ą ∈ AT : u

ATR(CL
≼) ( ) ≼ vRą ( , )

}
, otherwise,

≼u
-L ( , ) = ∅;

(d) If ( , ) ∈
≼
-L , then ≼v

-L ( , ) ={
ą ∈ AT : v

ATR(CL
≼) ( ) ≽ uRą ( , )

}
, otherwise,

≼v
-L ( , ) = ∅;

(e) If ( , ) ∈
≽

, then ≽u
( , ) ={

ą ∈ AT : u
ATR(CL

≽
)
( ) ≽ uRą ( , )

}
, otherwise,

≽u
( , ) = ∅;

(f) If ( , ) ∈
≽

, then ≽v
( , ) ={

ą ∈ AT : v
ATR(CL

≽
)
( ) ≼ vRą ( , )

}
, otherwise,

≽v
( , ) = ∅;

(g) If ( , ) ∈
≼

, then ≼u
( , ) ={

ą ∈ AT : u
ATR(CL

≼
)
( ) ≽ uRą ( , )

}
, otherwise,

≼u
( , ) = ∅;

(h) If ( , ) ∈
≼

, then ≼v
( , ) ={

ą ∈ AT : v
ATR(CL

≼
)
( ) ≼ vRą ( , )

}
, otherwise,

≼v
( , ) = ∅.

≽u
-L ( , ), ≽v

-L ( , ), ≼u
-L ( , ), ≼v

-L ( , ), ≽u
( , ),

≽v
( , ), ≼u

( , ), ≼v
( , ) are the ≽u–lower,
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TABLE 4. ≽u–lower approximate distribution discernibility matrix.

TABLE 5. ≽v–lower approximate distribution discernibility matrix.

≽v–lower, ≼u–lower, ≼v–lower, ≽u–upper, ≽v –upper,
≼u–upper and ≼v–upper approximate discernibility sets for
pair of the objects ( , ) respectively.
The approximate discernibility matrixes are:

M≽u
-L =

{
≽u
-L ( , ) : ( , ) ∈

≽
-L

}
,

M≽v
-L =

{
≽v
-L ( , ) : ( , ) ∈

≽
-L

}
,

M≼u
-L =

{
≼u
-L ( , ) : ( , ) ∈

≼
-L

}
,

M≼v
-L =

{
≼v
-L ( , ) : ( , ) ∈

≼
-L

}
,

M≽u
=

{
≽u

( , ) : ( , ) ∈
≽

}
,

M≽v
=

{
≽v

( , ) : ( , ) ∈
≽

}
,

M≼u
=

{
≼u

( , ) : ( , ) ∈
≼

}
,

M≼v
=

{
≼v

( , ) : ( , ) ∈
≼

}
.

These are the ≽u–lower, ≽v–lower, ≼u–lower, ≼v–lower,
≽u–upper, ≽v –upper, ≼u–upper and ≼v–upper approxi-
mate discernibility matrices respectively.
Theorem 7: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then

(a) u
ATR(CL

≽) ( ) = u
AR(CL

≽) () , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≽u
-L ( , ) ̸= ∅ ∀( , ) ∈

≽
-L ;

(b) v
ATR(CL

≽) ( ) = v
AR(CL

≽) () , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≽v
-L ( , ) ̸= ∅ ∀( , ) ∈

≽
-L ;

(c) u
ATR(CL

≼) ( ) = u
AR(CL

≼) () , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≼u
-L ( , ) ̸= ∅ ∀( , ) ∈

≼
-L ;

(d) v
ATR(CL

≼) ( ) = v
AR(CL

≼) () , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≼v
-L ( , ) ̸= ∅ ∀( , ) ∈

≼
-L ;

(e) u
ATR(CL

≽
)
( ) = u

AR(CL
≽
)
( ) , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≽u

( , ) ̸= ∅ ∀( , ) ∈
≽

;

(f) v
ATR(CL

≽
)
( ) = v

AR(CL
≽
)
( ) , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≽v

( , ) ̸= ∅ ∀( , ) ∈
≽

;

(g) u
AT

≼
R(CL

≼
)
( ) = u

AR(CL
≼
)
( ) , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≼u

( , ) ̸= ∅ ∀( , ) ∈
≼

;

(h) v
ATR(CL

≼
)
( ) = v

AR(CL
≼
)
( ) , ∀ ∈ U and ∈

ℵ ⇐⇒ A ∩
≼v

( , ) ̸= ∅ ∀( , ) ∈
≼ .

Proof: Only (a) is proved, remaining can be proven
similarly.

For = 1, u
ATR(CL

≽
1 ) ( ) = u

AR(CL
≽
1 ) ( ) = 1 as

CL
≽
1 = U .
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TABLE 6. ≽u–upper approximate distribution discernibility matrix.

TABLE 7. ≽v–upper approximate distribution discernibility matrix.

For > 1, suppose there exist ( , ) ∈
≽
-L

s.t A ∩
≽u
-L ( , ) = ∅, then for every ą ∈

A, by Definition 12 u
ATR(CL

≽) ( ) > vRą ( , ).

By Definition 8 vRA
( , ) =

∨ {
vRą ( , ) : ą ∈ AT

}
,

thus u
ATR(CL

≽) ( ) > vRA
( , ). Our assump-

tion is u
ATR(CL

≽) ( ) = u
AR(CL

≽) ( ), therefore

u
AR(CL

≽) ( ) > vRA
( , ) holds, it contradicts to

u
AR(CL

≽) ( ) ≤ vRą ( , ) because u
AR(CL

≽) ( ) =∧ {
vRA

( , ) : /∈ CL
≽

}
( = 2, . . . , ). So, A ∩

≼v
-L

( , ) ̸= ∅.
Conversely, suppose there exist ∈ U and ∈ ℵ with

u
ATR(CL

≽) ( ) ̸= u
AR(CL

≽) ( ), then = 2, . . . , and

by Theorem 3 u
ATR(CL

≽) ( ) > u
AR(CL

≽) ( ). So, there

will be /∈ CL
≽ s : t vRą ( , ) < u

ATR(CL
≽) ( ), then

for each ą ∈ A, vRą ( , ) < u
ATR(CL

≽) ( ) holds, that is

A ∩
≽u
-L ( , ) = ∅, with ( , ) ∈

≽
-L . By this discussion

we conclude the required result.
Theorem 8: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then

(a) -L≽
A = -L≽

AT ⇐⇒ ∀( , ) ∈
≽
-L s:t A ∩(

≽u
-L ( , ) ∩

≽v
-L ( , )

)
̸= ∅;

(b) -L≼
A = -L≼

AT ⇐⇒ ∀( , ) ∈
≼
-L s:t A ∩(

≼u
-L ( , ) ∩

≼v
-L ( , )

)
̸= ∅;

(c) ≽
A =

≽
AT ⇐⇒ ∀( , ) ∈

≽ s:t A ∩(
≽u

( , ) ∩
≽v

( , )
)

̸= ∅;

(d) ≼
A =

≼
AT ⇐⇒ ∀( , ) ∈

≼ s:t A ∩(
≼u

( , ) ∩
≼v

( , )
)

̸= ∅.

Proof: Only (a) is proved, remaining can be proven
similarly.

If -L≽
A = -L≽

AT , then ∀ ∈ U and ∈ ℵ,
u

ATR(CL
≽) ( ) = u

AR(CL
≽) ( ) and v

ATR(CL
≽) ( ) =

v
AR(CL

≽) ( ). By Theorem 7 A ∩
≽u
-L ( , ) ̸= ∅ and

A ∩
≽v
-L ( , ) ̸= ∅ for each ( , ) ∈

≽
-L , it implies that

A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

)
̸= ∅.

Conversely, if A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

)
̸=

∅∀( , ) ∈ -L, then A ∩
≽u
-L ( , ) ̸= ∅ and A ∩

≽v
-L ( , ) ̸= ∅. By Theorem 7, u

ATR(CL
≽) ( ) =

uAR(CL ) ( ) and v
ATR(CL

≽) ( ) = v
AR(CL

≽) ( ),

it implies that -L≽
A = -L≽

AT .
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Definition 13: For decision system S = (U , AT ∪ {f }),
define

1
≽
-L =

∧
( , )∈

≽-L

((∨ ≽u
-L ( , )

) ∧ (∨ ≽v
-L ( , )

))
;

1
≼
-L =

∧
( , )∈

≼-L

((∨ ≼u
-L ( , )

) ∧ (∨ ≼v
-L ( , )

))
;

1
≽

=
∧
( , )∈

≽

((∨ ≽u( , )
) ∧ (∨ ≽v( , )

))
;

1
≼

=
∧
( , )∈

≼

((∨ ≼u( , )
) ∧ (∨ ≼v( , )

))
.

1
≽
-L , 1

≼
-L ,1

≽ ,1≼ are the≽–lower,≼– lower,≽–upper and
≼–upper approximate discernibility functions, respectively.

By employing Boolean reasoning methods, we can derive
the subsequent theorem.
Theorem 9: For decision system S = (U , AT ∪ {f }) with

A ⊆ AT, then
1) A is ≽–lower ADR ⇐⇒

∧
A is a prime implicant of

1
≽
-L ;

2) A is ≼–lower ADR ⇐⇒
∧

A is a prime implicant of
1

≼
-L ;

3) A is ≽–upper ADR ⇐⇒
∧

A is a prime implicant of
1

≽ ;
4) A is ≼–upper ADR ⇐⇒

∧
A is a prime implicant of

1
≼ ;

Proof: Only (a) is proved, remaining can be proven
similarly.

(a). If A is ≽–lower ADR, then A is also a
≽–lower ADCS. Using Theorem 8, we have A ∩(

≽u
-L ( , ) ∩

≽v
-L ( , )

)
̸= ∅,∀ ( , ) ∈

≽
-L . Then

we say that for every ą ∈ A, there exist ( , ) ∈
≽
-L s:t A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

)
= {ą} . If for

every ( , ) ∈
≽
-L there exist ą ∈

≽
-L ( , ) such that

card
(
A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

))
> 2 where ą ∈

A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

)
, let A′

= A − {ą}, then
by Theorem 8, A′ is a ≽–lower ADCS, which opposes the
notion that A is ≽–lower ADR. This implies that

∧
A is a

prime implicant of -L.
Conversely, if

∧
A is a prime implicant of -L, then by

Theorem 8. A ∩

(
≽u
-L ( , ) ∩

≽v
-L ( , )

)
̸= ∅, ∀ ( , ) ∈

≽
-L . For every ą ∈ A there exist ( , ) ∈

≽
-L s : t A ∩(

≽u
-L ( , ) ∩

≽v
-L ( , )

)
= {ą}. Consequently, for all A′

is not the –lower ADCS. Thus, it follows that A is a ≽–lower
ADR.

VI. ILLUSTRATIVE EXAMPLE
Following Example 1, we compute the ≽–lower ADR,
≼–lower ADR,≽–upper ADR and≼–upper ADR ofTable 1.
Based on Definition 12, we have the ability to derive eight
distinct types of distribution discernibility matrices. In this
context, we exclusively demonstrate ≽u–lower, ≽v–lower,
≽u–upper, ≽v–upper ADDM, as illustrated in Table 4,
Table 5, Table 6, and Table 7, correspondingly.

By using Definition 13, we calculate ≽–lower, ≽–upper
approximate discernibility functions:

1
≽
-L =

∧
( , )∈

≽-L

((∨ ≽u
-L ( , )

) ∧ (∨ ≽v
-L ( , )

))
;

1
≽
-L = (ę)

∧
(ą)

∧
(ç ∧ ḑ)

∧
(ç ∧ ę)∧

(ą ∧ ḑ)
∧

(ę ∧ ç)
∧

(ę ∧ ą) ;

1
≽
-L = (ą)

∧
(ç)

∧
(d)

∧
(e) .

1
≽

=
∧
( , )∈

≽

((∨ ≽u
-L ( , )

) ∧ (∨ ≽v( , )
))

;

1
≽

= (b̧ ∧ ę)
∧

(ą ∧ ḑ)
∧

(ą ∧ ḑ ∧ ę) ;

1
≽

= (ą)
∧

(b̧)
∧

(ḑ)
∧

(ę) .

Consequently by Theorem 9, {ą, ç, ḑ, ę} is the ≽–lower and
{ą, b̧, ḑ, ę} is the ≽–upper ADRs for Table 1. We can say
that, to retain the lower approxs based on Pythagorean fuzzy
dominance of all the ascending unions of the decision classes,
attribute b̧ can be omitted. For upper approxs attribute ç is
redundant. Similarly, it can be prove that {ą, b̧, ḑ, ę} is the ≼–
lower and {ą, ç, ḑ, ę} is the ≼–upper ADRs for Table 1. That
illustrate the validity of Theorem 12.

VII. CONCLUSION AND FUTURE WORK
Within this manuscript, we have created a comprehensive
structure aimed at facilitating the generalization of DRSA.
Our approach involves combining the idea of the Pythagorean
fuzzy set with the DRSA and establishing the notion of the
PFDRSA. Additionally, we incorporated the notion of ADRs
into the PFDRS model, four different forms of ADRs are
introduced, and the pragmatic methods for computing these
reducts are also deliberated upon. In contrast to the prior
DRSA, our dominance-based rough set model employs a
Pythagorean fuzzy dominance relation, rather than a crisp or
fuzzy dominance relation. The Illustrative example yielded
valuable rules for redundant attributes. Moreover, for the
practical application of our PFDRSA, numerous experimen-
tal analyses will be essential in the future.

Plans include expanding our research to include FF, q-ROP,
SF, and TSF settings. Additionally, we will make them using
multi-criteria decision-making techniques [49], [50], [51],
[52], which may employ to tackle diverse and complicated
engineering challenges.
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