
Received 15 September 2023, accepted 25 September 2023, date of publication 2 October 2023, date of current version 4 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3321274

Benchmarking Container Technologies on
ARM-Based Edge Devices
SHAHIDULLAH KAISER 1, ALI ŞAMAN TOSUN2, AND TURGAY KORKMAZ 1
1Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
2Department of Mathematics and Computer Science, The University of North Carolina at Pembroke, Pembroke, NC 28372, USA

Corresponding author: Shahidullah Kaiser (shahidullah.kaiser@my.utsa.edu)

This work was supported by the Army Research Office under Grant W911NF-23-1-0187.

ABSTRACT Internet-of-Things (IoT) devices continuously gather data and send the data to the cloud for
further processing. However, with the recent trend of increasing number of IoT devices, billions of devices
are anticipated to send data to the cloud, eventually impacting performance and cost. To solve this problem,
one way is to process data locally inside edge nodes. The edge nodes are closer to the IoT devices and
improve the overall performance of the system by distributing cloud tasks in edge devices. Edge devices
are generally resource-constrained with limited RAM, CPU, and storage. Container technologies are ideal
in edge nodes due to their isolation and being lightweight. A benchmarking scheme for containers on
edge devices can help compare container technologies, hardware devices and architectures, and software.
However, there is not sufficient research in this direction. So, in this work, we take a step towards developing
this benchmark. We explore and evaluate the performance, efficiency, and suitability of different container
technologies, including Docker, Podman, and Singularity, in the context of edge computing on ARM-
based devices. Our experiments include evaluating computer vision applications that employ Haar Cascades,
HOG, CNN with YOLO algorithm, and data science workloads commonly encountered in edge computing
scenarios. We devised sets of performance metrics to assess container technology, including waiting time,
receiving time, processing time, resource utilization, and throughput. Besides, we investigate how different
container technologies optimize resource utilization and compare their efficiency on ARM-based edge
devices. Our benchmarking analysis yielded valuable insights into the strengths and limitations of each
container technology. Our results reveal that Docker, Podman, and Singularity containers exhibit diverse
resource consumption patterns and network efficiency. Docker container has better CPU andRAMutilization
for most applications. Docker also boasts the lowest waiting time of approximately 0.9 seconds, comparable
to native performance. In terms of processing time, Docker excels in Car detection (0.12 seconds),
while Singularity and Podman outperform Docker in Object detection. Notably, native systems exhibit
a remarkable improvement over containers (average of 1.2 seconds) in Object detection (0.98 seconds),
highlighting the challenges of resource-intensive deep neural network algorithms on edge devices. Based
on our findings, we offer practical advice for picking the best container technology for specific use cases in
ARM-based edge computing. We also offer a set of benchmarking approaches and metrics that can be used
to drive future research on container technologies on ARM platforms.

INDEX TERMS Edge computing, container, Docker, singularity, Podman, Internet of Things (IoT),
benchmark, computer vision, data science.

I. INTRODUCTION
The Internet of Things (IoT) encompasses a wide network
of interconnected smart objects implanted with sensors,

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos .

processing capabilities, and networking functionality,
enabling advanced features. Millions of these sensors
generate and gather substantial amounts of data, necessitating
data transmission across the network to enable their
operation. However, the computing capability of IoT devices,
comprising storage, processing, and networking resources,

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 107331

https://orcid.org/0000-0003-0086-0708
https://orcid.org/0000-0002-5529-673X
https://orcid.org/0000-0003-1517-6757


S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

is insufficient to conduct compute-intensive activities locally.
The increased number of connected devices generates a
large volume of data, posing another problem for today’s
networks to handle adequately [1], [2]. Edge computing is
a feasible option to classify and filter large amounts of IoT
data before transmitting them to the cloud center [3]. Edge
computing enables processing compute-intensive operations
on resource-constrained IoT devices that cannot be completed
locally [4], [5]. Besides, edge computing has the potential to
cut network expenses, reduce transmission delays, prevent
service failures, avoid bandwidth limits, and provide better
control over sensitive data transfer. Moreover, load times
are reduced, and deploying online services closer to users
enables both dynamic and static caching possibilities.
Research shows that utilizing edge computing can enhance
response times by 80-200 milliseconds and decrease energy
consumption by up to 40% for certain applications [6], [7].
Container technology is gaining popularity in IoT and

Edge Computing due to its portability, faster deployment,
lightweight and easier management [8]. Sensors and embed-
ded devices in the IoT collect huge amounts of data from the
natural environment or industry and transfer it to public or
private cloud servers [9], [10]. Besides, these IoT devices
employ lightweight operating systems and software that
require frequent maintenance and protection. Containers are
in handy in this circumstance. They enable developers to
design an application and execute it on any platform that
supports containers without concerns about dependencies
or compatibility issues. This simplifies the deployment and
management of applications in distributed contexts such
as IoT devices and edge servers. Containers also provide
advantages such as enhanced resource use, faster deployment
times, and easier application scaling. Moreover, they help
to improve security by isolating apps from one another and
the underlying system, ensuring enhanced protection for
sensitive data. In summary, containers serve as a valuable
tool for developing and deploying applications in IoT and
edge computing contexts, addressing the challenges of data
management, maintenance, and security while facilitating
efficient and scalable application deployment.

Containerization has started gaining popularity on the
ARM architecture to utilize hardware resources better and
enhance energy efficiency [11], [12]. Companies have started
deploying containers and well-known cloud vendors provide
container services for ARM architecture, such as Amazon
Fargate [13] and Microsoft Azure Kubernetes [14]. Besides,
containerization in ARM-based edge devices is a popular
area of study. Rancher lab [15] is creating AI-enabled
infrastructure by merging rugged, low-power ARM devices
with K3 in order to run small Kubernetes clusters that
effectively transport data. The lab ensures that leveraging
ARM not only enhances connectivity but also can save costs.
Their goal is to widely deploy K3 as container orchestration
on edge, and ARM is projected to be the edge leader
in the near future. Containers being compatible with both
single-board devices and clusters makes it well-suited for

building cloud-based Edge device clusters. Several academic
and scientific institutes have created ARM-based Raspberry
Pi clusters including 9-node TinyTitan [16] by Oakridge
National Lab’s, Online RPi simulator [17] by Microsoft, and
32-node RPi cluster project by Boise State University [18].
Edge-Cloud is created by combining Cloud and IoT, which
necessitates constrained hardware and lightweight virtual-
ization. Containerization is a solution to this lightweight
virtualization, and containers are especially important for
cloud computing as Platform-as-a-Service (PaaS). One of the
requirements for edge cloud PaaS are cost-efficiency, lower
power consumption, and robustness [19]. Implementing
containers on Raspberry Pi can fulfill these requirements
efficiently.

The fundamental motivation for writing this article is to
benchmark and assess the key container tools for the edge
domain to assist in selecting appropriate container technology
for edge computing solutions. We used four computer
vision applications, e.g., Face Detection (Haar Cascades
Algorithm), Vehicle Detection (Haar Cascades Algorithm),
Body Detection (HOG Algorithm), and Object Detection
Algorithm (CNN by YOLO) to benchmark the container
technologies studied in this study. Besides, we use Fitness
Tracker data to evaluate the data science workload. The goal
is to provide insights into the advantages and disadvantages
of different container technologies in Computer VisionAppli-
cations and Data Science and identify the best solutions for
specific use cases. We also aim to quantify the performance
impact of using container virtualization technology compared
to native execution and to evaluate the security and isolation
of container-based systems. The benchmarking results can
help users make informed decisions when selecting container
technologies for edge computing and specific applications.

The contributions of the paper are as follows:
• The study reviews prominent container technolo-
gies such as Docker, Podman, and Singularity on
ARM-based edge devices. We provide insights into the
feasibility of each container technology for edge com-
puting environments by comparing their performance
and resource consumption characteristics.

• Instead of relying on synthetic benchmark tools which
do not accurately reflect IoT-Edge scenarios, we devel-
oped a set of applications to benchmark image data and
stream data performance.

• Conducting a detailed performance benchmarking anal-
ysis of the containers. We measure key performance
indicators such as receiving time, waiting time, process-
ing time, memory, and CPU usage. This benchmarking
enables a quantitative comparison of the containers’
efficiency and performance in handling image data
processing tasks.

• Explore the utilization of data science workloads, such
as Fitbit fitness tracker data processing, to evaluate the
performance of containers for stream data. The paper
provides a broader perspective on the containers’ perfor-
mance in handling diverse workloads in edge computing

107332 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

scenarios by considering CPU usage, sending time, and
memory usage for data science workloads.

• Highlight the strengths and limitations of each con-
tainer technology, aiding developers and practitioners
in selecting the most suitable container technology for
specific edge computing use cases.

We have made all the sender, receiver script, and imple-
mentation of algorithms available in [20]. The researchers can
utilize them for their research.

The rest of the paper is organized as follows: Section II
presents the review of related work and Section III discusses
background study. Section IV introduces the proposed
scheme.We explained our benchmark design and benchmark-
ing criteria in V. The results are presented in Section VI.
Section VII discusses the important aspects of the results. The
paper concludes in section VIII and discusses future works.

II. RELATED WORK
The usability of containers at the edge has been well
documented. Research work [21] explores and evaluates the
performance of Docker and Containered runtimes as well
as Kubernetes and Docker Swarm container orchestration
tools for IoT devices. The authors conducted experiments
using synthetic benchmarking tools to test the performance of
CPU, memory, disk, and network to evaluate the performance
of containers. The results showed that container technology
suits low-power and resource limited IoT devices.

Morabito conducted a complete performance evaluation
to demonstrate the advantages and disadvantages of various
low-power devices when managing container virtualiza-
tion [22], [23]. In their experiment, they used five different
devices: a Raspberry Pi 2 Model B, a Raspberry Pi 3 Model
B, an Odroid C1+, an Odroid C2, and an Odroid XU4.
The devices were all built on ARM-based single-board
processors. They only use Docker container and Native to
measure CPU, power consumption, memory, network, and
disk performance. The temperature of the board was also
measured. The results demonstrated that adopting container
virtualization technology on single-board computers (SBC)
had no performance impact compared to native execution.

Buyya and Srirama [24] evaluated a lightweight con-
tainer middleware for edge cloud architectures. They used
microservices and container-based clustered environments to
address limitations in orchestration and DevOps in the cloud
context. They also discussed using blockchain technology
for provenance management and other security concerns.
The final outcome of their work is the demonstration that
containers are the most suitable technology platform for an
edge cloud PaaS, and the proposal of a fourth-generation
PaaS that bridges the gap between IoT and cloud technology.

A performance benchmarking of containers, hypervisor,
and unikernel was done for ARM and x86 in [25]. They
selected Docker as the container, KVM as the hypervisor, and
Rumprun and OSv as unikernels. The evaluation tools were
synthetic benchmarks, i.e., Sysbench (CPU), Iperf (Network-
ing), and STREAM (Memory). The results demonstrated

that containers and unikernels perform slightly better than a
hypervisor for CPU and memory-related workloads on x86
architecture.

Recent research efforts have extended into benchmarking
studies that assess technology performance and robustness
within specific application domains. Notably, a study in the
field of autonomous driving presents a comprehensive bench-
mark on the corruption robustness of 3D object detection
models [26]. This study evaluates the performance of various
models across different corruption types on datasets from
KITTI, nuScenes, and Waymo. The findings provide insights
into the effects of corruptions, the comparative robustness
of different models, and the efficacy of data augmentation
strategies. The correlation between corruption robustness and
clean accuracy, as well as the trade-off between robustness
under image and point cloud corruptions, is thoroughly
explored. This benchmark study not only contributes valuable
insights to the field of autonomous driving but also serves
as a guiding reference for developing more robust 3D object
detection models. Besides, research work [27] reveals the
vulnerability of common image classifiers to the generated
adversarial viewpoints. The author implemented ‘ViewFool:
Adversarial Viewpoint Misclassification’ which provides
valuable insights into the necessity of evaluating model
robustness under viewpoint changes. By introducing a novel
method and a dedicated dataset, the study offers a foundation
for enhancing viewpoint robustness and highlights the
broader challenge of distribution shifts in visual recognition
models.

The use of edge computing in the Rocket system for video
analytics was discussed in [28]. Ganesh et al. evaluated the
performance requirements of video-analytic systems used
in smart cities, self-driving cars, and smart vehicles. The
research concludes that edge computing is a viable approach
for meeting the real-time requirements of live video analytics.
Edge computing brings computation and data storage closer
to the data sources. So, they reduce latency and increase the
effectiveness of data processing and analysis. They concluded
that edge computing is appropriate for video-analytic systems
that require quick response times and real-time processing.

Ali et al. [29] developed a scalable and efficient
edge-enhanced video stream processing system to process
video streams in real-time. They deployed all stages on
edge and utilizing in-transit resources. By doing so, the pro-
posed system achieves real-time performance of 100 frames
per second. In contrast, the cloud-only approach achieves
only 15 frames per second, highlighting the significant
performance improvement offered by the proposed system.
This developed model has the potential to improve the
efficiency and effectiveness of vision data analysis activities
significantly.

Besides container runtime, container orchestration tools
are also used in Edge computing. Research work [30]
explored container orchestration performances. They imple-
mented the Phoronix test suite benchmarks to evaluate the
performance of Docker Swarm and Kubernetes. They put the

VOLUME 11, 2023 107333



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

processor through its paces with compression, audio encod-
ing, video encoding, and SQLite. Memory performance was
measured using synthetic benchmark RAMspeed, STREAM,
and CacheBench. They assess the disk performance using
AIO and IOzone. The final outcome of the research was
Docker Swarm is more lightweight and Kubernetes has
higher overhead than Docker Swarm.

Liu et al. [31] evaluates the performance of con-
tainerization in edge-cloud computing stacks for industrial
applications from a client perspective. The authors introduce
a methodology for assessing the latency and processing
capability of machine learning tasks across the entire stack.
To validate their approach, experiments are conducted using
Microsoft Azure IoT Edge and a Raspberry Pi 3B+ board.
The results show that while containerization offers flexibility
and scalability, it does not necessarily improve latency
performance compared to cloud deployment. The study
concludes that the current edge-cloud infrastructure needs
to improve to fulfill industry automation needs and suggests
that a static partitioning strategy can be utilized for industrial
applications.

Benchmarking container orchestration was done in [32].
They proposed a benchmarking framework called COFFEE
for container orchestration frameworks, which includes
seven core requirements and associated performance metrics.
The approach is exemplified through case studies of the
Kubernetes and Nomad frameworks, both in a self-hosted
environment and on the Google Cloud Platform. The author
concluded that COFFEE can capture several performance
metrics for container orchestration frameworks and that
Kubernetes outperforms Nomad in many scenarios.

Assessing the performance of container technologies
represents a compelling avenue of research. Investigations
into performance evaluations among containers and virtual
machines have been undertaken [33]. Additionally, studies
have delved into the comparison of container performance
by employing synthetic tools to scrutinize CPU, RAM,
and network efficiencies [34], [35]. The findings of these
inquiries consistently underscore Docker’s supremacy among
containers, outperforming virtual machines as well.

Table 1 provides an overview of prior research efforts in the
domain of container technology within edge computing. The
majority of these studies have focused on the deployment of
different container runtimes or container orchestrators within
edge computing environments. However, it is noteworthy
that only a limited number of these investigations have
specifically utilized ARM architecture for container deploy-
ment. Additionally, many of these research endeavors have
employed synthetic benchmarking tools such as Sysbench,
Sockperf, Ramspeed, and Tiobench to assess the performance
of container technology.

Prior research on container technology benchmarking
primarily relies on synthetic benchmarking tools, which
execute predefined programs inside containers. For instance,
Sysbench is commonly used for calculating prime numbers.
In contrast, our study introduces a novel approach by

designing specific applications tailored for benchmarking
computer vision and data science tasks within containers.
Moreover, none of the previous research addresses container
efficiency for Edge computing. So, in order to find a
suitable container for edge computing, we benchmark the
popular container technologies. We quantitatively compare
the performance of different container technologies, going
beyond qualitative assessments. This numeric comparison
enables developers and practitioners to make informed
decisions based on specific performance metrics. To the best
of our knowledge, this is the first work in the field of container
benchmarking that focuses on evaluating performance for
computer vision and data science applications.

III. BACKGROUND
The section focuses on the term Container technology and
Edge Container. We explain the technical term container
runtime and the different containers used in our experiment.

A. CONTAINER TECHNOLOGY
Containers are operating system-level virtualization that
provides an isolated environment on a single host rather than
utilizing a distinct operating system like virtual machines.
Because of the Namespace and Cgroup kernel mechanisms,
this isolation is achievable. Container runtimes, on the
other hand, execute and manage the components required
to run a container. As a result, container runtimes are an
essential component of containermanagement, and they often
make secure execution and efficient container deployment
easier [50]. In summary, a container is a packed application
with dependencies, whereas a container runtime is the
software that runs and manages containers on a specific
system. In our experiment, we use Docker, Podman, and
Singularity containers.

Docker stands out as the most extensively adopted con-
tainer technology that is directly managed by the host kernel.
Docker containers are configured through a Dockerfile,
which comprises command-line interface (CLI) instructions
and initial tasks. Docker images are generated using these
Dockerfiles, encompassing all the executable source code,
libraries, and dependencies required to instantiate Docker
containers. These images are immutable and consist of
multiple layers, with new layers added at the top whenever
modifications are introduced using specific Docker com-
mands. Images can be created from scratch or downloaded
from Docker Hub [51].

Podman [52] is an OCI-compliant, daemonless container
engine for developing, managing, and running OCI (Open
Container Initiative) containers and container images. Pod-
man follows the standards set by the OCI, enabling direct
integration with the kernel, containers, image registry, and
images. One notable feature of Podman is its ability to run
containers as either root or rootless. Due to its robust isolation
capabilities and user privilege management, Podman offers
enhanced security compared to other container technologies.
When running a container, Podman further enhances security

107334 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

TABLE 1. Related work implemented Container technology for edge Computing.

by implementing an additional isolation layer through UID
separation mechanisms utilizing namespaces.

Singularity [53] is a container technology designed
primarily for High-Performance Computing (HPC). It is
based on Linux containers, and in a single configuration file,
it integrates multiple software stacks. This single file(.sif)
can create and distribute containers across several platforms.
Singularity solves some of the critical concerns of containers,
such as compute mobility, reproducibility, HPC support,
and security. The Singularity runtime supports integration
and separation, making it easy to read and write data to
the host system while also taking advantage of high-speed
interconnects and GPUs. Furthermore, Singularity Registry
HPC (shpc) facilitates the portability and reproducibility of
complicated software stacks.

B. EDGE CONTAINER
Edge containers refer to decentralized containerized applica-
tions or workloads deployed at the edge of a network. Edge
containers are located as close as the data source or end-user
devices. It leverages container technology to enable efficient
and scalable deployment of applications in edge computing
environments. The difference between cloud containers and
edge containers is location. In comparison, cloud containers
run in distant continental or regional data centers, and
edge containers run at the network’s edge, significantly
closer to the end user. Edge containers have become a key
tool for organizations looking to decentralize their services.
By moving key application components to the edge of the
network, organizations can trim their network costs while
also improving response times. This shift in intelligence
deployment is proving to be a powerful strategy for modern
organizations seeking to optimize their operations. Edgegap,
a revolutionary gaming firm, unveiled a gaming platform
in 2019 that reduced latency by 58% by utilizing real-time
telemetry and edge containers.

IV. BENCHMARKING APPROACH
In our experiment, we implement a container-based edge
system where IoT devices send data to the edge nodes.

We use Raspberry Pi 4 as an edge node. An overview of
our proposed system is shown in Figure 1. We meticulously
designed benchmarking schemes to evaluate the performance
of various container technologies on ARM-based edge
devices. These schemes encompassed a series of systematic
steps and metrics to ensure a comprehensive assessment. The
components and functionality of our benchmark are shown
in 2.

The benchmarking process commences by receiving data
from IoT devices and subsequently processing it within the
container deployed as an edge node. Comprehensive details
of our benchmark are outlined below.

■ Containers are inside the edge nodes. We used three
container technologies, i.e., Docker, Podman, and Sin-
gularity. The container has all the necessary libraries
and packages. The edge node receives images and Fitbit
fitness tracker data from IoT devices, performs image
and data analysis, and conducts necessary actions. Then
the analyzed image and data are sent to the cloud for
further processing.

■ To benchmark the containers, we have two connection
types: wired and wireless connection. We run the
experiment for wire-to-wire and wireless-to-wireless.
Wired and wireless connections connect both IoT
devices and edge nodes.

■ We have two sets of applications: Computer vision
and Data Science. Every second, the container receives
an image or chunk of data from IoT sensors. In case
I, the images are sent by IoT sensors to the edge
node along with their name and size for processing.
When the container receives the image, it does the
detection process, saves the output image within the
container, and finally saves time and resource usage in
the file. The container saves the output image as per the
detected name, e.g., Face, Vehicle, Body, or Object, and
with a JPG extension. Regarding fitness data, we set
specific tasks for data analysis. The container receives
all the data, saves it inside, conducts data cleaning,
performs analysis of the data, and transmits the desired
data to the cloud.

VOLUME 11, 2023 107335



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 1. Overview of proposed System.

■ The metrics to benchmark containers are computing
power and network performance. By employing these
metrics, we comprehensively evaluate the performance
and efficiency of different container technologies in
various scenarios, encompassing computer vision and
data science workloads. This multifaceted approach
ensures a holistic assessment of container technologies’
capabilities and limitations, providing valuable insights
for selecting the most appropriate technology for
specific edge computing use cases.

1) Waiting Time:Measures the time an application spends
in a queue before it starts executing. It provides insights
into the efficiency of container scheduling and resource
allocation.

2) Receiving Time: This metric gauges the time taken by
containers to receive data or images from IoT devices.
It reflects the responsiveness of containers to incoming
data streams.

3) Processing Time: The processing time metric quanti-
fies the duration taken by containers to analyze and
process data or images. It indicates the efficiency of the
underlying algorithms and computational capabilities.

4) Resource Utilization: This metric assesses how effec-
tively containers utilize system resources, including
CPU and RAM. It provides insights into the efficiency
of resource management within containers.

5) Throughput: Throughput measures the rate at which
a container can process a certain number of tasks or
requests. It gives an indication of the container’s overall
processing capacity.

V. BENCHMARK DESIGN
This section introduces the benchmarking framework for
container technology.

A. EXPERIMENTAL SETUP
Our experiment deploys classic container runtime on the
Raspberry Pi 4 as edge nodes, a single-board computer based

TABLE 2. Specification of experimental setup.

on the low-power, low-cost ARMprocessor architecture. This
looks and feels like Ubuntu on a PC, but users can encounter
an entirely new approach to architecture and devices behind
the scenes. We utilized the most recent Raspberry Pi 4 model.
Table 2 gives an overview of the specification of our
experimental setup.

We use Ubuntu 22.04, a 64-bit OS, on the Raspberry Pi.
Besides, we use an ASUS RT-N56U Dual Band Wireless
N600 Gigabit router for wired and wireless configuration
to conduct the network experiments. It features 802.11 N
wireless technology and 10/100/1000 Mbps LAN ports.
We utilize psutil python system and process utilization library
and docker stats, podman stats command to monitor the
resources consumed by each running container.

B. CONTAINER BUILDUP
In our experiment, we created three different types of
containers using Ubuntu 22.04 operating system. For the
Docker container, we wrote the necessary packages and
dependencies in Dockerfile. We downloaded the OpenCV
library needed to run the computer vision application. For the
Podman and Singularity containers, we build the container
using the Dockerfile to maintain similar installation and
dependencies in both containers. After building the container,
we remove all the unnecessary packages and temporary files
to receive optimized containers for our experiment.

107336 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 2. Benchmark components dataflow.

C. APPLICATION USED FOR BENCHMARKING
To benchmark container performances, we deploy four
computer vision applications, i.e., Face detection, Body
detection, Vehicle detection, and Object detection The
computer vision applications use different algorithms i.e.,
Haar Cascades, Histogram of Oriented Gradients (HOG),
and Convolutional Neural Networks (CNN) with YOLO
algorithm to identify the image. These algorithms are often
used in edge computing for object detection. In addition, they
provide excellent real-time object detection performance,
enabling the fast and efficient processing of video streams or
live camera feeds. As IoT sensors send real-time data to edge
devices, these algorithms are a perfect fit for our scenario. All

the algorithm implementation and sender scripts are available
in GitHub [20].

D. BENCHMARK CRITERIA
For each application, we collected various metrics, including
waiting time, receiving time, processing time, CPU usage,
and RAM usage. We consider the CPU usage of the container
as percentages, RAM usage as MB, the total number of
bytes received and transmitted over the network as NET I/O,
Total number of bytes written and read from the container
file system as BLOCK I/O. These metrics were recorded
by the containers, and statistical analyses such as average,
mean, median, maximum, minimum, and standard deviation

VOLUME 11, 2023 107337



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

were calculated to benchmark their performance. Tomaintain
uniformity, we utilized the same OpenCV library, sender,
and receiver scripts across all containers and native systems,
written in Python.

In the computer vision application experiments, each
application was tested within each type of container using a
dataset consisting of 1000 images with dimensions of 1280×

720 pixels. Two distinct sets of images were employed: the
face and body detection applications shared one set, while
the vehicle detection application utilized a separate set of
1000 images. The object detection application combined
500 images from the first set (face and body) with 500 images
from the second set (vehicle) to form its dataset. i For the
data science workload, we use Fitbit fitness tracker data [54].
We only work with Daily Activity datasets to maintain
consistency and standard parameters for each container. It has
some attributes, e.g., ActivityDate, TotalSteps, TotalDistance,
Calories etc. We send the data to each of the containers. The
container receives the data, cleans, processes, and analyzes
it. The final expected outcome was to calculate the average
number of total steps for each user and find the user with
a maximum number of average steps. Each container saves
processing time, CPU, and RAM usage for performing the
task.

E. NETWORKING CONFIGURATION
We examined two types of network connections: wired
and wireless, to assess the impact of network conditions
on container performance. Realistic network scenarios were
emulated to simulate practical edge computing environments.

F. DATA COLLECTION
The containers were configured to collect data on each of the
benchmarking metrics during the execution of applications.
This data was recorded and analyzed for subsequent
evaluation. We obtain the images from two video clips
for our experiment [55], [56]. In addition, we deploy data
science workload to benchmark containers for stream data.
We simulated stream-like behavior by processing the Fitbit
data in smaller chunks or batches, mimicking the processing
of real-time or streaming data.

By meticulously implementing these benchmarking
schemes, we were able to obtain comprehensive insights into
the strengths and limitations of each container technology in
the context of ARM-based edge devices. The resulting data
not only informed our conclusions but also offered practical
guidance for selecting the most appropriate container
technology for specific edge computing use cases.

VI. EXPERIMENTAL RESULTS
In this section, we discussed the outcome of the experiment.
Each container or system executed one application at a
time, ensuring consistency and standardized comparison.
By comparing the performance of different containers,

we aimed to assess their suitability and effectiveness for edge
computing scenarios.

A. DATA SCIENCE WORKLOAD
For the Data Science workload, data is sent in chunks or
batches every 5 seconds. We observed consistent waiting
times for both containers and native systems. Among the
containers, Singularity demonstrated excellent performance,
with processing and receiving times almost matching native
systems. Interestingly, Singularity even outperformed the
native system in terms of processing time for the given
task. Regarding CPU usage, Docker containers exhibited the
highest consumption (0.28%), while Singularity containers
showed the lowest CPU usage (0.25%), comparable to the
native system. However, Podman containers consumed the
most memory (72.51MB) compared to all other containers,
whereas the native system utilized only 50.91MB. The
comprehensive results for the data science workload are
presented in Figure 3.

The findings indicate that Singularity containers are
well-suited for data science workloads, delivering near-native
performance and efficient resource utilization. Singularity’s
superior performance compared to other containers in the
context of the data science workload can be attributed
to several key factors. Singularity containers are designed
to run with minimal overhead. They are optimized for
high-performance computing (HPC) environments and sci-
entific workloads, where performance and efficiency are
critical. Unlike traditional container runtimes like Docker,
Singularity does not require a separate daemon to manage
containers, reducing unnecessary overhead.

B. COMPUTER VISION APPLICATION
In the wireless-wireless experiment, we observed varying
CPU usage for each application across different containers.
For the Vehicle detection application, the containers exhibited
an average CPU usage ranging from 26% to 27%, while
the native system showed approximately 25% CPU usage.
Notably, the Docker container had an average CPU usage
of 51.44% for Face detection, the lowest CPU usage
of all containers. Figure 4 provides an overview of the
CPU usage across different containers for all applications.
Regarding Body and Object detection, both Podman and
Singularity containers demonstrated slightly better CPU
utilization compared to Docker. It is worth mentioning that
for these applications, the average CPU usage nearly doubled
compared to face and vehicle detection. This increase in CPU
usage can be attributed to the implementation of deep neural
network algorithms, which require substantial computational
resources for processing and classifying various object
classes.

We also examined the RAM usage patterns across different
containers for each application. Figure 5 illustrates the
trends in RAM utilization. For both the Face and Car
detection applications, we observed similar ranges of RAM

107338 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 3. Average receiving, processing, waiting time and average CPU and RAM usage for different containers for data science application.

FIGURE 4. Average CPU usage for different containers for computer vision application in wireless-wireless connection.

usage, ranging from 90-96 MB for the containers and
approximately 79 MB for the native systems. The Body
detection application exhibited relatively lower RAM usage,
averaging around 80-84 MB. However, the RAM usage
significantly increased for the object detection application,
which can be attributed to the utilization of deep neural
network algorithms.

We further benchmark container performance based on
receiving, processing, and waiting time. They are critical in
edge computing because they affect real-time responsiveness,
low latency, and bandwidth efficiency. Figure 6 illustrates
the overall scenario for computer vision applications. In the
case of receiving images from IoT sensors, containers have
shown better performance than native systems in Car, Face,
and Body detection. However, in the case of object detection
applications, the receiving time is the same for both the
podman container and the native system. The singularity
container has the slowest receiving rate among the containers.

The average receiving time ranges between.09-.15 seconds
for all computer vision applications.

Regarding waiting time, containers perform similarly
for Car, Face, and Body detection applications. However,
it varies in Object detection applications. Docker container
has the lowest waiting time among containers, with around .9
seconds, giving a similar performance as the native system.

The average processing or execution time for an appli-
cation defines how much time it is needed for containers
to identify an image correctly. The average processing time
for Car detection, Face detection, and Body detection is
.12, .2, and .4 seconds, respectively. For object detection,
Docker spent the most time among containers for processing,
with an average of 1.3 seconds; however, Singularity and
Podman performed better in this case. The native systems
have shown the most improvement in detecting an Object
with an average of .98 seconds. Overall, the Car detection
application has the fastest processing time for all containers,

VOLUME 11, 2023 107339



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 5. Average RAM usage for different containers for computer vision application in wireless-wireless connection.

FIGURE 6. Average receiving, processing, and waiting time for different containers for computer vision application in wireless-wireless connection.

followed by Face detection and Body detection. The Object
detection application shows the slowest processing time.
The experiment highlights the processing time as a key
performance metric when evaluating the effectiveness of the
Object detection algorithm. The extended execution time
observed in the Object detection application deployed on
edge devices can be attributed to the resource-intensive nature
of deep neural network algorithms utilized. These algo-
rithms demand significant computational power and memory
resources to classify awide range of object classes effectively.
Particularly, the Object detection algorithm employed in this
study encompasses the identification and classification of
over 20 distinct object classes, necessitating the utilization of
a Graphics Processing Unit (GPU) for optimal performance.
Consequently, when relying solely on the Central Processing
Unit (CPU) for executing the object detection application,
the available RAM becomes heavily utilized, resulting in
prolonged execution times.

Our findings show that network connection does not have
a notable impact on CPU and RAM for containers but for
native systems. The containers have consistency in CPU and
RAM consumption in wired-wired networks. On the other
hand, The native system in a wired-wired connection has
lower RAM consumption and higher CPU consumption than
wireless-wireless. Figure 7 and Figure 8 show the trend of
CPU and RAM usage for computer vision applications.

For Car detection applications, the average CPU usage
for containers is 26% and 32.93% for native systems. For
Face detection, the CPU usage ranges between 54-55.6% for
containers and 62.15% for the native. The containers have
almost similar CPU usage for Body detection applications,
ranging between 128.55-129.44%, and the native system has
155.48%. The containers exhibit near-native performances
in these three applications; however, for Object detection,
the Podman container has the lowest CPU usage. One
possible explanation is that there might be some background

107340 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 7. Average CPU usage for different containers for computer vision application in wired-wired connection.

FIGURE 8. Average memory usage for different containers for computer vision application in wired-wired connection.

tasks that stress native systems CPU. However, containers
are isolated from the host, so those background tasks
can not stress the container CPU. All the containers have
more RAM consumption than the native system for all
four applications. The containers are consistent in terms of
RAM usage.

Our findings reveal that waiting and processing times
for both containers and native systems are consistent for
wired-wired connections. Figure 9 shows that containers
achieve near-native performance for all computer vision
applications regardingwaiting and processing time. However,
the receiving time varies between containers and native
systems. We found the native system has a performance
overhead regarding receiving time. For Car, Face, and Body
detection applications, the receiving time is more than
.1 seconds for the native system, whereas it is around

.06 seconds for containers. As receiving time is a crucial
criterion in edge computing, this can be a determining factor
for choosing containers and communication types.

Our benchmark results are summarized in Table 3. Docker
exhibits superior performance across most applications,
with Singularity outperforming others in the context of
data science workloads. Furthermore, we compare our
findings with related research on container performance,
presented in 4. Consistently, previous studies align with
our results, highlighting container technology is suitable for
edge computing and Docker has a performance advantage
over other containers. Prior research has predominantly
overlooked network latency, primarily due to limitations in
synthetic benchmarks that cannot simulate data transmission
to various devices. Consequently, the transmission of actual
data from IoT devices to edge devices has been a neglected

VOLUME 11, 2023 107341



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

FIGURE 9. Average receiving, processing, and waiting time for different containers for computer vision application in wired-wired connection.

aspect. In this study, we aim to fill this void by addressing this
critical research gap.

VII. DISCUSSIONS
This section focuses on the critical aspects of the benchmark
results, covering network connectivity, receiving, processing
and waiting time, Memory and CPU utilization, and Operat-
ing systems. These factors are essential for achieving optimal
performance and benchmarking computer vision and data
science applications deployed within containers.

A. CONTAINER SELECTION
In the realm of ARM architecture, almost all popular
container technologies are supported, although some may
lack certain features specific to ARM. Among these
technologies, Docker stands out as the most popular and
feature-rich choice. It offers rapid deployment, a small
footprint, and excellent performance. Docker’s versatility
in shifting between different locations makes it particularly
well-suited for edge computing and IoT scenarios. Addition-
ally, Docker Hub provides extensive support for pre-built
images designed for computer vision and data science appli-
cations. With its vast ecosystem of tools and libraries, Docker
emerges as the most suitable and widely adopted container
technology.

Podman presents a similar user experience to Docker but
with the added advantage of being daemonless and providing
enhanced security. Recent advancements in Podman include
automating the management of unhealthy containers, which
is crucial in remote and critical systems. As edge computing
demands self-robustness, self-healing capabilities, and auto-
mated deployments, Podman becomes an appealing choice
for edge computing scenarios.

Singularity containers operate within the user space,
ensuring identical user permissions inside and outside the
container. Singularity is well-suited for high-performance
computing (HPC) and computer vision applications involving
large-scale batch-scheduling jobs. It seamlessly integrates

with HPC clouds, offering near-native performance and
leveraging cloud features such as simplified management and
deployment.

We also started the experiment with the LXC container.
While experimenting, we found issues with data receiving
from IoT devices.Moreover, LXCwill discontinue its support
in 2027. So, we did not include it in our benchmarking.

B. NETWORK CONNECTION
The type of network connection, whether wireless-wireless
or wired-wired, can have a significant impact on edge
computing depending on the workload and application type.
Each connection type has its own characteristics that can
influence the performance and reliability of containers or
native systems in an IoT-Edge scenario. If the connection is
stopped every time after sending an image or a chunk of data,
the system will be optimized and speed up the transmission
time. However, it can also slower overall transmission
time and may generate congestion. Further experiments
are necessary to evaluate the impact of the optimization,
considering factors like container runtime, network types,
image sizes, and processing speeds. Careful assessment
of potential drawbacks is vital before implementing the
approach in real systems.

C. CPU USAGE
The analysis of CPU usage has provided valuable insights
into the performance of container technologies in the context
of edge computing on ARM-based devices. The results
demonstrate variations in CPU utilization across different
container types and applications. We found CPU utilization
was consistent for all three containers in the wired-wired
version. However, in wireless Singularity container has the
best CPU utilization among the containers. With more
complex applications like Object detection applications
which consume more CPU, Singularity excels among the
containers. The observed higher CPU usage in Object
detection applications, driven by deep neural network

107342 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

TABLE 3. Benchmarks for container runtimes for computer vision and data science application on ARM-based edge device.

TABLE 4. Performance comparison of container technologies and baseline solutions.

algorithms, raises the importance of optimizing algorithms
and container technology for improved CPU efficiency in
edge environments.

Incorporating a GPU has the potential to significantly
enhance processing speed and efficiency, which could effec-
tively address any concerns related to CPU usage. To delve
deeper into this prospect, conducting comprehensive tests
and comparisons involving the GPU would be advantageous.
This could entail running identical tasks with and without the
GPU to discern potential disparities in CPU utilization. Such
investigations would provide valuable insights into the impact

of GPU acceleration on containerized edge applications,
guiding the optimization of resource utilization and overall
performance in edge computing environments.

D. MEMORY USAGE
Our findings underscore the importance of considering
memory usage as a key factor in selecting container
technologies for edge computing on ARM-based devices.
We found memory usage has not posed any significant
bottlenecks in the current system, with no reported issues.
The majority of our applications exhibit low memory

VOLUME 11, 2023 107343



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

consumption, typically utilizing less than 3% of the available
memory. However, the object detection application stands
out as an exception, consuming approximately 5-6% of the
memory.

Among the container runtimes evaluated, Docker, Podman,
and Singularity exhibited varying patterns of RAM uti-
lization. Docker showcased efficient memory management,
maintaining consistent and relatively low RAM usage for all
tested applications. Podman, as a daemonless alternative to
Docker, also demonstrated commendable RAM efficiency,
making it a suitable option for resource-constrained edge
devices. On the other hand, Singularity exhibited slightly
higher RAM usage for certain applications.

Optimizing memory usage in edge computing is crucial
due to the limited resources available on edge devices.
Containers with efficient memory management help max-
imize resource utilization and enhance the scalability of
edge applications. Minimizing RAM usage is essential to
avoid potential bottlenecks and ensure the smooth operation
of multiple containers on edge devices. Container image
size and content play a significant role in determining
RAM usage. Adopting smaller and more optimized con-
tainer images, removing unnecessary dependencies, and
using lightweight base images can help reduce memory
overhead.

E. RECEIVING TIME
The performance evaluation of different container technolo-
gies (Docker, Podman, Singularity) is crucial to determine
their suitability for processing vast amounts of data generated
by IoT devices. The efficiency of container technologies in
handling data reception can significantly impact the real-time
processing capabilities of edge devices.

It is essential to highlight that for containers, wired connec-
tions do not exhibit notable issues concerning receiving time.
This observation is likely attributed to the inherent advantages
of wired connections, which provide a stable and reliable
data transmission environment unaffected by external factors
like wireless signal interference. As a result, the receiving
time for wired versions remains consistent and dependable
for containers, contributing to the overall efficiency of edge
computing systems.

The results of our analysis demonstrate variations in
receiving time in wireless-wireless connection. Docker
exhibited efficient(lowest) receiving times for most appli-
cations. Podman also demonstrated promising receiving
times(closer to Docker), making it a viable option for edge
computing environments. Singularity containers, known for
their suitability in HPC and large-scale batch scheduling
jobs, showed overall higher receiving times in wired-wired
connections for computer vision applications but lowest for
Data Science workload.

F. PROCESSING TIME
In the context of processing time, our experimental
results revealed significant variations among the different

container technologies. Docker exhibited competitive pro-
cessing times across various computer vision and data
science applications, making it a suitable choice for
resource-constrained edge environments. Podman showcased
efficient processing capabilities, particularly beneficial for
critical systems and remote locations. However, it slightly
trailed behind Docker in certain scenarios. Singularity,
designed for high-performance computing and large-scale
batch scheduling jobs, demonstrated remarkable processing
capabilities for computer vision applications that involve
extensive algorithmic computations. The variations in pro-
cessing time can be attributed to the unique design principles
and optimizations employed by each container technology.
Docker’s widespread adoption and rich ecosystem have
contributed to its optimized performance, while Podman’s
secure and self-healing features are favorable for edge
computing scenarios. Singularity, tailored for HPC tasks,
exhibited promising results for specific computer vision
applications where performance is paramount. To fur-
ther enhance processing efficiency, future research could
explore container orchestration and scheduling mechanisms
that intelligently allocate computing resources based on
real-time demands. Additionally, optimizing containe1r
images and fine-tuning runtime configurations can con-
tribute to better performance across various application
scenarios.

G. WAITING TIME
One of the essential aspects of benchmarking containers is
waiting time in the IoT-Edge environment. However, waiting
time depends mostly on how the experimental setup is done
and on the application type. Our benchmark results indicate
that Docker and Podman showcased relatively low waiting
times, making them efficient choices for edge computing
environments with rapid task execution demands. Docker’s
mature ecosystem and widespread usage have contributed
to its optimized scheduling capabilities, allowing for quick
task deployment and execution. Similarly, Podman’s recent
features for the automated handling of unhealthy containers
have contributed to its reduced waiting time. Conversely, Sin-
gularity, designed primarily for high-performance computing
(HPC) applications, exhibited marginally higher waiting
times in certain scenarios. This outcome could be attributed
to Singularity’s focus on batch scheduling and its priority
for larger-scale HPC tasks rather than quick task execution
typical in edge computing scenarios.

H. OPERATING SYSTEM
The decision to use Ubuntu as the operating system was
based on its popularity and the wide range of available
packages, ensuring a comprehensive evaluation of container
performance. The benchmark can be used with other OS
too. This is one of the advantages of container technology,
as they can easily be ported into any OS. In the future,
we will experiment with the benchmark for other OS,

107344 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

i.e., Apline or Debian. These alternative operating systems
may offer different advantages and trade-offs, particularly
concerning container size and resource usage. The bench-
mark can determine the best-fit OS for ARM-based edge
devices.

VIII. CONCLUSION
Our benchmarking study emphasizes the suitability and
effectiveness of container technologies, such as Docker,
Podman, and Singularity, for deploying computer vision
and data science applications on ARM-based edge devices.
We benchmark the containers based on resource consumption
and network types. Our experiment detects that resource
usage varies for containers and applications. We found Sin-
gularity containers perform well for data science workloads,
while Docker containers have lower CPU usage for face
detection as computer vision applications. This suggests
that different container technologies may have strengths and
limitations depending on the specific workload. Besides,
Network connection does not significantly affect CPU and
RAM usage for containers, but it does for native systems.
Containers achieve near-native performance in terms of
waiting and processing time. However, the receiving time
varies between containers and native systems. This indicates
that containers can provide efficient and real-time process-
ing capabilities in edge computing scenarios. Moreover,
we found that containers provide real-time responsiveness,
low latency, and bandwidth efficiency, making them a
practical solution for handling IoT data streams and real-time
processing tasks. The choice of container technology should
be based on specific application requirements and resource
constraints. Containers offer a valuable tool for optimizing
resource utilization and enhancing overall performance in
edge computing scenarios with real-time object detection and
data science workloads.
The insights gained from this study can guide developers
and practitioners in selecting the most appropriate container
technology for their edge computing use cases, ultimately
contributing to the advancement of edge computing and IoT
applications on ARM-based devices. However, we acknowl-
edge that our study has limitations. We primarily focus on
ARM-based edge devices and do not explore the broader
spectrum of other edge computing architectures. Future
research should expand the scope to include various hardware
architectures, enabling a more comprehensive understanding
of container performance in diverse edge environments.

In the future, our scope will expand to benchmark more
container technologies and unikernels. Additionally, we plan
to include more applications such as Voice Recognition and
Human Activity Recognition tasks using containerization
technology, further enhancing our understanding of container
performance in various edge computing scenarios. We will
also add scalability to our benchmark in order to see
how performance differs when the number of containers is
increased.

ACKNOWLEDGMENT
The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government.
The U.S. Government is authorized to reproduce and
distribute reprints for government purposes notwithstanding
any copyright notation herein.

REFERENCES
[1] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi,

‘‘A computation offloading method over big data for IoT-enabled cloud-
edge computing,’’ Future Gener. Comput. Syst., vol. 95, pp. 522–533,
Jun. 2019.

[2] L. Tu, S. Liu, Y. Wang, C. Zhang, and P. Li, ‘‘An optimized cluster storage
method for real-time big data in Internet of Things,’’ J. Supercomput.,
vol. 76, no. 7, pp. 5175–5191, Jul. 2020.

[3] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
‘‘Complementing IoT services through software defined networking and
edge computing: A comprehensive survey,’’ IEEE Commun. Surveys Tuts.,
vol. 22, no. 3, pp. 1761–1804, 3rd Quart., 2020.

[4] A. J. Ferrer, J. M. Marquès, and J. Jorba, ‘‘Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and
edge computing,’’ ACM Comput. Surveys, vol. 51, no. 6, pp. 1–36,
Jan. 2019.

[5] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[6] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[7] I. Sittón-Candanedo, R. S. Alonso, Ó. García, L. Muñoz, and
S. Rodríguez-González, ‘‘Edge computing, IoT and social computing
in smart energy scenarios,’’ Sensors, vol. 19, no. 15, p. 3353,
Jul. 2019.

[8] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, ‘‘Docker ecosystem—
Vulnerability analysis,’’ Comput. Commun., vol. 122, pp. 30–43,
Jun. 2018.

[9] A. Singh, S. Garg, S. Batra, N. Kumar, and J. J. P. C. Rodrigues,
‘‘Bloom filter based optimization scheme for massive data handling in
IoT environment,’’ Future Gener. Comput. Syst., vol. 82, pp. 440–449,
May 2018.

[10] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. Maasberg, and
K.-K.-R. Choo, ‘‘Multimedia big data computing and Internet of Things
applications: A taxonomy and process model,’’ J. Netw. Comput. Appl.,
vol. 124, pp. 169–195, Dec. 2018.

[11] R. Mijat and A. Nightingale, ‘‘Virtualization is coming to a platform near
you,’’ ARMWhite Paper, 2011.

[12] S. A. R. Shah, A. Waqas, M.-H. Kim, T.-H. Kim, H. Yoon, and S.-Y. Noh,
‘‘Benchmarking and performance evaluations on various configurations
of virtual machine and containers for cloud-based scientific workloads,’’
Appl. Sci., vol. 11, no. 3, p. 993, Jan. 2021.

[13] Amazon-Fargate. Accessed: Apr. 3, 2023. [Online]. Available: https://aws.
amazon.com/fargate/

[14] Kubernetes. Accessed: May 21, 2023. [Online]. Available: https://docs.
microsoft.com/en-us/learn/modules/intro-to-azure-kubernetes-service/

[15] K3s—Lightweight Kubernetes. Accessed: May 5, 2022. [Online]. Avail-
able: https://rancher.com

[16] Onlabs. Tiny Titan: A Supercomputer for the Classroom. [Online].
Available: https://tinytitan.github.io/software

[17] D. Tech. Microsoft is Building an Online Raspberry PI
Simulator. [Online]. Available: http://developer-tech.com/news/2017/
jun/21/microsoft-building-online-raspberry-pi-simulator/

[18] J. Kiepert, ‘‘Creating a raspberry pi-based Beowulf cluster,’’ Boise State,
2013.

[19] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, ‘‘A container-based
edge cloud PaaS architecture based on raspberry Pi clusters,’’ in Proc.
IEEE 4th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Aug. 2016, pp. 117–124.

[20] Experimental Code. Accessed: Jun. 13, 2023. [Online]. Available:
https://github.com/dipu134420/Benchmarking-Container-Technology-on-
ARM-Device

VOLUME 11, 2023 107345



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

[21] Y. Jing, Z. Qiao, and R. O. Sinnott, ‘‘Benchmarking container technologies
for IoT environments,’’ in Proc. 7th Int. Conf. Fog Mobile Edge Comput.
(FMEC), Dec. 2022, pp. 1–8.

[22] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[23] R. Morabito, ‘‘A performance evaluation of container technologies on
Internet of Things devices,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 999–1000.

[24] R. Buyya and S. N. Srirama,ALightweight ContainerMiddleware for Edge
Cloud Architectures, 2019, pp. 145–170.

[25] A. Acharya, J. Fanguède, M. Paolino, and D. Raho, ‘‘A performance
benchmarking analysis of hypervisors containers and unikernels on
ARMv8 and ×86 CPUs,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC),
Jun. 2018, pp. 282–9.

[26] Y. Dong, C. Kang, J. Zhang, Z. Zhu, Y. Wang, X. Yang, H. Su, X. Wei,
and J. Zhu, ‘‘Benchmarking robustness of 3D object detection to common
corruptions in autonomous driving,’’ 2023, arXiv:2303.11040.

[27] Y. Dong, S. Ruan, H. Su, C. Kang, X. Wei, and J. Zhu, ‘‘ViewFool:
Evaluating the robustness of visual recognition to adversarial viewpoints,’’
2022, arXiv:2210.03895.

[28] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, ‘‘Real-time video analytics: The killer
app for edge computing,’’ Computer, vol. 50, no. 10, pp. 58–67,
Oct. 2017.

[29] M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert, and
M. Parashar, ‘‘RES: Real-time video stream analytics using edge enhanced
clouds,’’ IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 792–804,
Apr. 2022.

[30] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, and R. Sinnott, ‘‘A
performance comparison of cloud-based container orchestration
tools,’’ in Proc. IEEE Int. Conf. Big Knowl. (ICBK), Nov. 2019,
pp. 191–198.

[31] Y. Liu, D. Lan, Z. Pang, M. Karlsson, and S. Gong, ‘‘Performance eval-
uation of containerization in edge-cloud computing stacks for industrial
applications: A client perspective,’’ IEEE Open J. Ind. Electron. Soc.,
vol. 2, pp. 153–168, 2021.

[32] M. Straesser, J. Mathiasch, A. Bauer, and S. Kounev, ‘‘A
systematic approach for benchmarking of container orchestration
frameworks,’’ in Proc. ACM/SPEC Int. Conf. Perform. Eng. New
York, NY, USA: Association for Computing Machinery, Apr. 2023,
pp. 187–198.

[33] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, ‘‘KVM, Xen
and Docker: A performance analysis for ARM based NFV and cloud
computing,’’ in Proc. IEEE 3rd Workshop Adv. Inf., Electron. Electr. Eng.
(AIEEE), Nov. 2015, pp. 1–8.

[34] Á. Kovács, ‘‘Comparison of different Linux containers,’’ in Proc.
40th Int. Conf. Telecommun. Signal Process. (TSP), Jul. 2017,
pp. 47–51.

[35] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, ‘‘Performance evaluation
of container runtimes,’’ in Proc. 10th Int. Conf. Cloud Comput. Services
Sci., Jan. 2020, pp. 273–281.

[36] P. Krivic, M. Kusek, I. Cavrak, and P. Skocir, ‘‘Dynamic scheduling of
contextually categorised Internet of Things services in fog computing
environment,’’ Sensors, vol. 22, no. 2, p. 465, Jan. 2022.

[37] I. Cilic, I. P. Žarko, and M. Kušek, ‘‘Towards service orchestration for the
cloud-to-thing continuum,’’ in Proc. 6th Int. Conf. Smart Sustain. Technol.
(SpliTech), Sep. 2021, pp. 1–7.

[38] W. Wong, A. Zavodovski, P. Zhou, and J. Kangasharju, ‘‘Container
deployment strategy for edge networking,’’ in Proc. 4th Workshop
Middleware Edge Clouds Cloudlets (MECC), New York, NY,
USA: Association for Computing Machinery, Dec. 2019,
pp. 1–6.

[39] C. Cicconetti, M. Conti, and A. Passarella, ‘‘A decentralized frame-
work for serverless edge computing in the Internet of Things,’’
IEEE Trans. Netw. Service Manage., vol. 18, no. 2, pp. 2166–2180,
Jun. 2021.

[40] S. Taherizadeh, V. Stankovski, and M. Grobelnik, ‘‘A capillary computing
architecture for dynamic Internet of Things: Orchestration of microser-
vices from edge devices to fog and cloud providers,’’ Sensors, vol. 18, no. 9,
p. 2938, Sep. 2018.

[41] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
‘‘Orchestration of microservices for IoT using Docker and edge comput-
ing,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 118–123, Sep. 2018.

[42] C. Pahl, N. E. Ioini, S. Helmer, and B. Lee, ‘‘An architecture pattern for
trusted orchestration in IoT edge clouds,’’ in Proc. 3rd Int. Conf. Fog
Mobile Edge Comput. (FMEC), Apr. 2018, pp. 63–70.

[43] D. Ermolenko, C. Kilicheva, A. Muthanna, and A. Khakimov, ‘‘Internet
of Things services orchestration framework based on Kubernetes and
edge computing,’’ in Proc. IEEE Conf. Russian Young Researchers Electr.
Electron. Eng. (ElConRus), Jan. 2021, pp. 12–17.

[44] A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga, and M. Marcos, ‘‘Quality
of service aware orchestration for cloud-edge continuum applications,’’
Sensors, vol. 22, no. 5, p. 1755, Feb. 2022.

[45] S. Yang, Y. Ren, J. Zhang, J. Guan, and B. Li, ‘‘KubeHICE: Performance-
aware container orchestration on heterogeneous-ISA architectures in
cloud-edge platforms,’’ in Proc. IEEE Intl Conf Parallel Distrib. Process.
Appl., Big Data Cloud Comput., Sustain. Comput. Commun., Social
Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom), Sep. 2021,
pp. 81–91.

[46] D. Lan, A. Taherkordi, F. Eliassen, L. Liu, S. Delbruel, S. Dustdar, and
Y. Yang, ‘‘Task partitioning and orchestration on heterogeneous edge
platforms: The case of vision applications,’’ IEEE Internet Things J., vol. 9,
no. 10, pp. 7418–7432, May 2022.

[47] J.-M. Fernandez, I. Vidal, and F. Valera, ‘‘Enabling the orchestration of IoT
slices through edge and cloud microservice platforms,’’ Sensors, vol. 19,
no. 13, p. 2980, Jul. 2019.

[48] S. Kim, E. Yang, and C.-H. Youn, ‘‘An accelerated edge computing with a
container and its orchestration,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Oct. 2019, pp. 1283–1288.

[49] L. Yin, P. Li, and J. Luo, ‘‘Smart contract service migration mechanism
based on container in edge computing,’’ J. Parallel Distrib. Comput.,
vol. 152, pp. 157–166, Jun. 2021.

[50] S. Kaiser, M. S. Haq, A. S. Tosun, and T. Korkmaz, ‘‘Container
technologies for ARM architecture: A comprehensive survey of
the state-of-the-art,’’ IEEE Access, vol. 10, pp. 84853–84881,
2022.

[51] Docker Hub. Web Page. Accessed: Oct. 3, 2021. [Online]. Available:
https://hub.docker.com/

[52] Podman.Web Page. Accessed: Nov. 11, 2021. [Online]. Available: https://
podman.io/

[53] (Nov. 2021). SINGULARITY. [Online]. Available: https://sylabs.io/
docs/

[54] Fitbit Fitness Tracker Data. Accessed: Jun. 12, 2023. [Online]. Available:
https://www.kaggle.com/datasets/arashnic/fitbit

[55] Image Sample. Accessed: May 5, 2023. [Online]. Available: https://drive.
google.com/file/d/1QUClOAWRVqNJII1crbCbdStJYzq9Uhfx/view

[56] Image Sample. Accessed: May 5, 2023. [Online]. Available: https://www.
youtube.com/watch?v=5vjn9gfHwkY

[57] G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C. F. Chiasserini,
‘‘Characterizing Docker overhead in mobile edge computing scenarios,’’
in Proc. Workshop Hot Topics Container Netw. Networked Syst. New
York, NY, USA: Association for Computing Machinery, Aug. 2017,
pp. 30–35.

[58] E. Casalicchio and V. Perciballi, ‘‘Measuring Docker performance: What
a mess!!!’’ in Proc. 8th ACM/SPEC Int. Conf. Perform. Eng. Companion.
New York, NY, USA: Association for Computing Machinery, Apr. 2017,
pp. 11–16.

[59] Z. Kozhirbayev and R. O. Sinnott, ‘‘A performance comparison of
container-based technologies for the cloud,’’ Future Gener. Comput. Syst.,
vol. 68, pp. 175–182, Mar. 2017.

[60] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. De Rose, ‘‘Performance evaluation of container-based vir-
tualization for high performance computing environments,’’ in Proc.
21st Euromicro Int. Conf. Parallel, Distrib., Network-Based Process.,
Feb. 2013, pp. 233–240.

[61] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai,
‘‘Using Docker in high performance computing applications,’’ in
Proc. IEEE 6th Int. Conf. Commun. Electron. (ICCE), Jul. 2016,
pp. 52–57.

[62] H. Lee, K. Satyam, and G. Fox, ‘‘Evaluation of production serverless
computing environments,’’ in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 442–450.

107346 VOLUME 11, 2023



S. Kaiser et al.: Benchmarking Container Technologies on ARM-Based Edge Devices

SHAHIDULLAH KAISER received the B.Sc.
degree in computer science and engineering from
the Islamic University of Technology (IUT),
in 2017. He is currently pursuing the Ph.D. degree
in computer science with The University of Texas
at San Antonio. He has been a Graduate Assistant
with the Department of Computer Science, since
2019. His research interests include container
technology, the Internet of Things, edge comput-
ing, and privacy policy analysis.

ALI ŞAMAN TOSUN received the B.S. and M.S.
degrees in computer engineering from Bilkent
University, Ankara, Turkey, in 1995 and 1997,
respectively, and the M.S. and Ph.D. degrees in
computer science and engineering from The Ohio
State University, in 1998 and 2003, respectively.
From 2003 to 2021, he was an Assistant Professor
with the Department of Computer Science, The
University of Texas at San Antonio. He is currently
the Allen C.Meadors Endowed Chair of Computer

Science with The University of North Carolina at Pembroke. His research
interests include network security, software-defined networks, the Internet
of Things, storage systems, and large-scale data management.

TURGAY KORKMAZ received the B.Sc. degree
(Hons.) in computer science and engineering from
Hacettepe University, Ankara, Turkey, in 1994,
the M.Sc. degree in computer engineering from
Bilkent University, Ankara, in 1996, the M.Sc.
degree in computer and information science from
Syracuse University, Syracuse, NY, USA, in 1997,
and the Ph.D. degree in electrical and computer
engineering from The University of Arizona,
in December 2001, under the supervision of

Dr. M. Krunz. In January 2002, he joined the Department of Computer
Science, The University of Texas at San Antonio, as an Assistant Professor.
He is currently a Full Professor with the Department of Computer Science.
He is also involved in the areas of computer networks, network security,
network measurement and modeling, and internet related technologies. His
research interest includes quality-of-services (QoS)-based networking issues
in both wireline and wireless networks.

VOLUME 11, 2023 107347


