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ABSTRACT Speech emotion recognition aims to automatically identify and classify emotions from
speech signals. It plays a crucial role in various applications such as human-computer interaction, affective
computing, and social robotics. Over the years, researchers have proposed different approaches for speech
emotion recognition, leveraging various classifiers and features. However, despite the advancements, existing
methods in speech emotion recognition still have certain limitations. Some approaches rely on handcrafted
features that may not capture the full complexity of emotional information present in speech signals,
while others may suffer from a lack of robustness and generalization when applied to different datasets.
To address these challenges, this paper proposes a speech emotion recognition method that combines
Mel spectrogram with Short-Term Fourier Transform (Mel-STFT) and the Improved Multiscale Vision
Transformers (MViTv2). The Mel-STFT spectrograms capture both the frequency and temporal information
of speech signals, providing a more comprehensive representation of the emotional content. The MViTv2
classifier introduces multi-scale visual modeling with different stages and pooling attention mechanisms.
MViTv2 incorporates relative positional embeddings and a residual pooling connection to effectively model
the interactions between tokens in the space-time structure, preserve essential information, and improve
the efficiency of the model. Experimental results demonstrate that the proposed method generalizes well
on different datasets, achieving an accuracy of 91.51% on the Emo-DB dataset, 81.75% on the RAVDESS
dataset, and 64.03% on the IEMOCAP dataset.

INDEX TERMS Speech, speech emotion, speech emotion recognition, spectrogram, mel spectrogram, mel
spectrogramwith short-time Fourier transform, vision transformer, improved multiscale vision transformers,
Emo-DB, RAVDESS, IEMOCAP.

I. INTRODUCTION
Speech emotion recognition is a significant task within the
field of signal processing and machine learning, focused
on detecting and analyzing emotional information conveyed
through speech signals. Previous research has employed
various techniques to extract emotional cues and classify
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them into discrete emotional states. However, most exist-
ing approaches rely on handcrafted time and frequency
domain features, which possess potential limitations. These
limitations include limited resolution in the time and
frequency domains, impacting classification accuracy and
discriminative power.

To overcome these limitations, some studies have explored
the use of deep learning models such as Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
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(LSTM) networks for speech emotion recognition. CNNs
excel at capturing local patterns and spectral information,
but struggle with modeling long-term dependencies and
sequential dynamics present in speech signals. In contrast,
LSTM networks effectively model temporal dependencies
but face challenges in capturing intricate spectral character-
istics. These potential limitations emphasize the necessity
for novel approaches that overcome the shortcomings of
handcrafted features and explore sophisticated architectures
capable of capturing both spectral and temporal dynamics in
speech emotion recognition.

To address this, this paper proposes the ‘‘Mel-MViTv2’’
method, which combines the strengths of Mel spectro-
gram with short-time Fourier transform (Mel-STFT) and
Improved Multiscale Vision Transformers (MViTv2). Mel-
STFT merges the concepts of short-time Fourier transform
(STFT) andMel-frequency spectrogram to provide a descrip-
tive representation of speech signals. STFT captures the
sinusoidal frequency and phase content of local signal
sections over time, while the Mel-frequency spectrogram
applies a non-linear transform to the frequency axis using
theMel-scale, emphasizing perceptually important frequency
ranges.

Additionally, the paper employs Improved Multiscale
Vision Transformers (MViTv2) to learn and classify the
Mel-STFT representation. MViTv2 incorporates multi-scale
visual modeling by utilizing different stages instead of
single-scale blocks in the Vision Transformer architecture.
The network gradually expands the channel width while
reducing the resolution from input to output stages. MViTv2
also incorporates relative positional embeddings to capture
relative location distance between input tokens, enhancing
shift-invariance properties. Furthermore, it employs resid-
ual pooling connections to enhance information flow and
aid in training pooling attention blocks while maintain-
ing low-complexity attention computation. This approach
allows MViTv2 to extract features from multiple scales
and resolutions, capturing fine details and larger context
simultaneously, thereby enhancing the accuracy of speech
emotion recognition.

The combination of Mel-STFT and MViTv2 demonstrates
remarkable performance in speech emotion recognition.
Mel spectrograms provide visual representations of speech
signals, highlighting frequency content relevant for emotion
analysis. MViTv2, with its multiscale feature hierarchies
and transformer-based architecture, classifies and recognizes
emotional patterns within the Mel spectrograms. The hier-
archical nature of the MViTv2 model captures complex
relationships between different scales of features, facilitating
the identification and understanding of emotional cues
in the visual representations of speech. Subsequently, the
generalization capabilities of the Mel-MViTv2 method are
evaluated on three speech emotion datasets that encompass
diverse characteristics such as gender, language, and record-
ing environments. This evaluation assesses how effectively
the Mel-MViTv2 method can adapt to variations in these

important factors, providing insights into its robustness and
applicability across different contexts. The main contribu-
tions of this paper are:

• The utilization of Mel-STFT in speech representation
provides a descriptive and informative representation
that effectively captures the intricate temporal and spec-
tral characteristics of speech signals, thereby enhancing
the discriminative power and interpretability of speech
analysis in the context of speech emotion recognition.
Mel-STFT comprehensively captures both the nuanced
temporal dynamics and the perceptually significant fre-
quency components, facilitating precise characterization
of emotional content within speech signals.

• The adoption of ImprovedMultiscale Vision Transform-
ers (MViTv2) for representation learning and classifi-
cation of Mel-STFT further enhances the capability of
the model. MViTv2 excels in extracting hierarchical
and multi-scale features, enabling the model to capture
fine-grained variations and contextual information in
the representation. This multi-scale feature extraction
allows the model to capture both fine details and larger
context simultaneously, resulting in higher accuracy
and improved generalization ability in speech emotion
classification.

• The performance evaluation on three diversified speech
emotion datasets, namely the Berlin Database of Emo-
tional Speech (Emo-DB), the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS),
and the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) to assess the generalization capabilities of
the model.

II. RELATED WORKS
Recognizing emotions from speech signals is a complex
task due to the inherent variability in speech patterns and
the subjective nature of emotional expression. Researchers
have made significant progress in this field by employing
various approaches ranging from traditionalmachine learning
techniques to deep learning models. However, there are still
challenges that need to be addressed, such as the impact of
cross-cultural differences in emotional expression and the
need for larger annotated datasets. This section provides
an overview of the existing research in speech emotion
recognition.

Zeng et al. [1] introduced a deep neural network architec-
ture called Gated Residual Neural Networks (GResNets) for
recognizing emotions in speech. This architecture combines
the power of Deep Residual Networks with a gate mechanism
that helps minimize the gradient exploding problem and
identify more informative features from the spectrogram.
The output of this feature representation was evaluated on
two tasks: emotion recognition from speech and speaker
accent recognition. On the RAVDESS dataset, GResNets
recorded an accuracy of 64.48% for multi-task recognition,
demonstrating its potential in speech emotion recognition
tasks.
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A deep belief networks (DBN) for speech emotion
recognition was proposed by Latif et al. [2]. The proposed
method utilized a cross-language and cross-corpus transfer
learning technique to improve the performance of speech
emotion recognition. The speech signals were represented
using eGeMAPS feature set, which includes 88 features
such as frequency, energy, spectral, cepstral and dynamic
information. The proposed DBN obtained a recognition
accuracy of 54.77% on the IEMOCAP dataset and 72.38%
on the Emo-DB dataset.

Singh et al. [3] performed speech emotion recognition
using a kernel-based support vector machine (SVM) with
radial basis function (RBF). The researchers utilized the scat-
tering transform to extract both frequency domain and time
domain feature representations from the audio signals. Three
feature representations were extracted using the scattering
transform, namely frequency scattering (F-ScatNet), time-
domain scattering (ScatNet), and mel-frequency cepstral
coefficients (MFCC). The performance of the proposed
RBF with SVM model was evaluated using these features.
The F-ScatNet feature representation achieved the highest
accuracy among all three features, with 74.59% accuracy on
the Emo-DB dataset, 51.81% accuracy on the RAVDESS
dataset, and 61.55% accuracy on the IEMOCAP dataset.

Han et al. [4] suggested a parallel method for speech
emotion recognition, called ResNet CNN-Transformer which
combines the Residual Neural Network (ResNet) and Convo-
lutional Neural Network (CNN). A transformer encoder was
implemented to classify the frequency distribution of each
emotion. The proposedmethod utilizedmel spectrograms and
MFCC feature representations for training. The performance
of the proposed ResNet-CNN-Transformer was evaluated on
the RAVDESS dataset and yielded an accuracy of 80.89%.

Similarly, Pandey et al. [5] proposed a combination
speech emotion recognition model by combining the CNN
and Bi-directional Long Short-Term Memory (Bi-LSTM)
classifier. The proposed model was trained on three dif-
ferent feature representations, namely spectrogram, mel
spectrogram, and MFCC. The results showed that the best
performance was achieved with MFCC features, with an
accuracy of 82.35% on the Emo-DB dataset.

Moreover, Swain et al. [6] devised a Concatenated
Convolution Neural Network model that applied Gated
Recurrent Unit (CGRU). The GRU was utilized to learn
the small sequences of information from the prosodic and
spectral features. The proposed method was evaluated on the
RAVDESS dataset and recorded an accuracy of 73.26%.

Kerkeni et al. [7] utilized multiple classifiers and major-
ity voting approach for speech emotion recognition. The
approach used two classifiers, K-Nearest Neighbors (KNN)
and SVM in combination with multiple feature extraction
techniques. To select the most relevant features, an iterative
neighborhood component analysis (INCA) technique was
applied. The INCA worked by selecting a subset of features
that capture the most relevant information in the input. Then,
the highest correlation target input was passed into the two

classifiers for voting. The proposed INCA with majority
voting method achieved 80.76% accuracy on the RAVDESS
dataset.

Likewise, Jha et al. [8] leveraged various machine learning
models for speech emotion recognition, such as Gaussian
Naive Bayes (GNB), Random Forest (RF), KNN, SVM,
and Multilayer Perceptron (MLP). The proposed approach
combined prosodic and spectral features, including MFCC,
linear frequency cepstral coefficients (LFCC), spectral cen-
troids, formants, pitch, and intensity. The RAVDESS dataset
was used to evaluate the performance of the machine
learningmodels. The best performance was achieved byMLP
classifier using combined features, achieving an accuracy of
79.62%.

Zhang et al. [9] proposed a parallel model named
Heterogeneous Parallel Convolution Bi-LSTM (HPCB) that
combined CNN and Bi-LSTM classifiers for speech emotion
recognition. The model used low-level descriptors (LLD)
and high-level statistical functions (HSF), including Chroma,
MFCC, mean of Chroma, and variance of MFCC. A total of
70 acoustic features were used to train the HPCB model. The
HPCB model obtained an accuracy of 84.65% on the Emo-
DB dataset.

Andayani et al. [10] combined the Long-Short Term
Memory with Transformer (LSTM-Transformer) for speech
emotion recognition. The audio signals were first processed
using MFCC to extract the relevant features and then fed into
the proposed LSTM-Transformer model for classification.
The proposed model shown an accuracy of 75.33% on the
RAVDESS dataset.

In a recent study, Ong et al. [11] proposed a speech
emotion recognition method with Light Gradient Boosting
Machine (LightGBM) referred to as the Emo-LGBMmethod.
The data augmentation techniques, time stretching and pitch
shifting, were applied to expand the dataset for model
training. Following that, seven frequency domain and time
domain features were extracted from the augmented audio
samples. Subsequently, the extracted features were utilized
as input for the LightGBM method to classify the emotional
state conveyed in speech. The proposed method achieved
84.91% accuracy on the Emo-DB dataset, 67.72% on the
RAVDESS dataset, and 62.94% on the IEMOCAP dataset.

III. SPEECH EMOTION RECOGNITION WITH MEL-STFT
AND IMPROVED MULTISCALE VISION TRANSFORMERS
The research paper presents a methodology for speech
emotion recognition that utilizes the Mel Spectrogram with
Short-Time Fourier Transform (Mel-STFT) as a feature
representation technique. The Mel-STFT captures relevant
acoustic features by applying the STFT equation to short-time
frames of the audio signal and converting the magnitude
spectrum into the Mel scale using triangular filterbanks.

To improve classification performance, the methodology
incorporates the Improved Multiscale Vision Transformers
(MViTv2) as the classifier. MViTv2 introduces multiple
stages for capturing information at varying granularity
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FIGURE 1. The system flow of Mel-MViTv2.

levels, resulting in a comprehensive representation of the
input data. It addresses limitations of its predecessor by
incorporating relative positional embeddings to enhance
space-time interaction modeling and utilizing a residual
pooling connection technique to minimize information loss
during pooling attention operations. Figure 1 shows the
system flow of the proposed Mel-MViTv2.

A. MEL SPECTROGRAM WITH SHORT TIME FOURIER
TRANSFORM
The Mel Spectrogram with Short-Time Fourier Transform
(Mel-STFT) is a powerful audio visualization technique
that converts audio signals into visual representations. The
Mel-STFT combines the Short-Time Fourier Transform
(STFT) with frequency-to-Mel scale conversion to create a
more perceptually relevant representation of audio. To gen-
erate the Mel-STFT, the audio signal is first divided into
short-time frames using the Hann window function, w(n).
This window function is applied to a small segment of the
audio signal at a time and then shifted to cover the entire
signal. The Hann window function helps in reducing the
spectral leakage and improving frequency resolution. The
STFT equation is used to calculate the frequency content of
the audio signal at each point in time. The equation is given
as follows:

X (m, k) =

N−1∑
n=0

x(n+ mH ) × w(n) × e−j2πn
k
N (1)

wherem is the frame index, k is the frequency bin index, and j
is the imaginary unit. TheN refers to the length of the window
function used to segment the audio signal into shorter frames.
The Hann window function w(n) is applied to each frame to
reduce spectral leakage and improve frequency resolution.
The hop size H determines the amount of overlap between
adjacent frames, affecting the time resolution of the STFT.

To convert the frequency bin index k into Mel-scale, the
following equation is applied:

Mel(k) = 2595 × log10(1 + f (k)/700) (2)

where f (k) is the frequency corresponding to the frequency
bin in Hz. The resultingMel-scale is used to apply a filterbank

FIGURE 2. An example of a Mel-STFT showing the distribution of energy
in different frequency bands over time.

of triangular filters to the magnitude spectrum obtained
from the STFT. The filterbank computes the energy in each
filter, which represents the distribution of energy in different
frequency bands over time. The resulting energy distribution
is known as the Mel-spectrogram with Short-Time Fourier
Transform.

The parameters of the Mel-STFT, such as the frame
length and hop size, affect the time and frequency resolution
of the spectrogram. In this experiment, a frame length of
4096 samples and a hop size of 256 samples are used.
An example of a Mel-STFT is shown in Figure 2, illustrating
the distribution of energy in different frequency bands over
time.

B. IMPROVED MULTISCALE VISION TRANSFORMERS
The Improved Multiscale Vision Transformers (MViTv2)
[12] are an upgrade to MViTv1 [13] that introduces different
stages for multi-scale visual modeling, instead of single-scale
blocks in Vision Transformer. The channel width is slowly
expanded, while the resolution is reduced from input to output
stages of the network. To perform downsampling within a
transformer block, MViTv1 introduces Pooling Attention.
This mechanism applies linear projections followed by
pooling operators to query, key, and value tensors. Pooling
attention enables resolution and computation reduction
between different stages by pooling the query, key and
value tensors. Given the input sequence X ∈ RL×D with
sequence length L and channel widthD, the pooling attention
operations are defined as:

Q = PQ
(
XWQ

)
,K = PK (XWK ) ,V = PV (XWV ) (3)

where WQ,WK ,WV ∈ RD×D denote the linear projections
for query tensor Q, key tensor K and value tensor V , while
PQ,PK ,PV denote the pooling operators for Q, K , and V .
However, MViTv1 has some potential improvements,

which are addressed in the MViTv2. The first issue addressed
is the modeling of the interactions between tokens in the
space-time structure, which relies solely on the ‘‘absolute’’
positional embedding to offer location information. This
ignores the fundamental principle of shift-invariance in
vision, where the way MViT models the interaction between
two patches will change depending on their absolute position
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in images even if their relative positions stay unchanged.
To address this issue,MViTv2 incorporates relative positional
embeddings, which only depend on the relative location
distance between input tokens into the pooled self-attention
computation. The relative distance between two input tokens
i and j with spatial position p(i) and p(j) is encoded
into a positional embedding Rp(i),p(j). More specifically, the
computation of Rp(i),p(j) is decomposed as:

Rp(i),p(j) = Rhh(i),h(j) + Rww(i),w(j) (4)

where Rh and Rw are the positional embeddings along the
height and width axes. The symbols h(i) and h(j) represent
the vertical position of the token i and j, while w(i) and
w(j) denote the horizontal position of the token i and j. The
positional embedding is then integrated into the self-attention
module as:

Attn(Q,K ,V ) = Softmax
((
QK⊤

+ E (rel)
)

/
√
d
)
V

where E (rel)
ij = Qi · Rp(i),p(j) (5)

The second issue addressed is the possible information
loss in the pooling attention while reducing computation
complexity and memory requirements in attention blocks.
To this end, the MViTv2 model employs a pooling technique
known as residual pooling connection with pooled Q tensor
which significantly enhances the information flow and assists
in training pooling attention blocks. This technique helps to
maintain low-complexity attention computation with large
strides in the key, K and value V pooling, thereby improving
the overall efficiency of the model. By applying the pooling
connection in the query Q tensor, the input sequence size
remains unchanged and there is no additional learning
computation cost. The equation for the residual pooling
connection is defined as:

Z := Attn(Q,K ,V ) + Q (6)

The MViTv2 model integrates features from multiple
scales, which enables the model to capture information at
different granularity levels, leading to improved accuracy and
performance. Additionally, MViTv2 utilizes the decomposed
relative position embedding and residual pooling connection
to preserve essential information at a lower computation cost.
Figure 3 illustrates the architecture of MViTv2.

C. DATASETS
In order to ensure an objective evaluation of the proposed
Mel-MViTv2 method, it has been tested on three speech
emotion datasets: the Berlin Database of Emotional Speech
(Emo-DB), the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS), and the Interactive Emotional
Dyadic Motion Capture (IEMOCAP).

The Emo-DB [14] is a well-established speech emotion
recognition dataset consisting of 535 audio samples from
ten professional German speakers, including an equal rep-
resentation of 5 male and 5 female actors. This dataset

FIGURE 3. The architecture of improved multiscale vision transformers.

TABLE 1. Speech emotion recognition datasets.

covers 7 distinct emotions, namely anger, boredom, neutral,
happiness, anxiety, sadness, and disgust.

Another widely recognized dataset employed in this
evaluation is the RAVDESS [15]. It comprises 1440 audio
samples in the English language, recorded by 24 professional
actors, with an equal distribution of 12 male and 12 female
speakers. RAVDESS covers a wide spectrum of emotions,
encompassing neutral, calm, happy, sad, angry, fearful,
disgust, and surprised.

The IEMOCAP [16] dataset, chosen for its extensive
content and prior utilization in related research, consists
of 5507 English-language audio samples recorded by five
male and five female actors. In line with previous studies, our
research focuses on analyzing four specific emotions within
IEMOCAP: neutral, happiness, anger, and sadness.

IV. EXPERIMENTS AND ANALYSIS
To ensure consistency and compatibility, the data samples
were resampled at a frequency of 44.1kHz. Subsequently,
these samples were transformed into Mel-STFT spectro-
grams and resized to a resolution of 244 × 244, meeting
the input size requirements of the MViTv2 classifier. The
obtained spectrograms were then utilized as input for the
MViTv2 model to perform speech emotion recognition.
To ensure a fair comparison with existing works, the three
datasets were divided into training and testing sets using an
80:20 ratio.
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TABLE 2. Experimental results of different spectrograms with MViTv2 as
the classifier. [Optimizer = Adam, Learning rate = 0.02].

A. EXPERIMENTAL RESULTS WITH DIFFERENT
SPECTROGRAMS
The effectiveness of speech emotion recognition using the
MViTv2 model was evaluated by comparing four different
spectrograms on three datasets: Emo-DB, RAVDESS, and
IEMOCAP. Table 2 presents the results for the spectrograms,
which were Linear-STFT, MFCC, CQT, and Mel-STFT with
same optimizer and learning rate. The results indicate that
among the four different spectrograms, the Linear-STFT
spectrogram exhibited the lowest accuracy. In contrast,
the Mel-STFT spectrogram displayed exceptional accuracy
and efficiency across all three datasets. While the MFCC
spectrogram provides reasonable accuracy, it exhibited
comparatively lower performance than the other methods.
Although the CQT spectrogram yielded satisfactory results,
its overall performance across the three datasets fell short of
the Mel-STFT spectrogram.

B. HYPERPARAMETER TUNING
Hyperparameter tuning is a critical process aimed at
determining the optimal hyperparameter settings for the
Mel-MViTv2 method. By utilizing grid search, the hyperpa-
rameter tuning phase focuses on two key hyperparameters:
the optimizer and the learning rate. The optimizer plays a
central role in the model training procedure, as it aims to min-
imize the loss function and guide the model towards attaining
an optimal configuration of parameters that yield superior
performance. Simultaneously, the learning rate, a scalar
hyperparameter, governs the step size by which the optimizer
adjusts the model’s parameters during each training iteration.
The optimizer and learning rate collectively determine the
magnitude of parameter updates and exert influence over
the speed and quality of the model’s convergence. In the
hyperparameter tuning phase, several popular optimizers
were evaluated, including Adaptive Moment Estimation,
Rectified Adam, and Quasi-Hyperbolic Adam. Additionally,
three distinct learning rates, specifically 0.01, 0.02, and 0.03,
were tested to explore their impact on model performance.

Table 3 shows the hyperparameter tuning results of the
Emo-DB dataset, the highest accuracy of 91.51% was
achieved using the Quasi-Hyperbolic Adam (QHAdam) [17]
optimizer with a learning rate of 0.03. QHAdam is an opti-
mizer that combines the advantages of the quasi-hyperbolic
momentum (QHM) algorithm with Adam. While Adam

TABLE 3. Experimental results in accuracy (%) on Emo-DB dataset with
different optimizers and learning rates.

is widely recognized for its effectiveness in large-scale
training, QHAdam proves to be particularly valuable when
working with small datasets. QHAdam introduces a new
weight update rule by controlling the influence of the current
and past gradient. By appropriately adjusting the unmod-
ified and previous gradients, QHAdam strikes a balance
between momentum and adaptive gradient scaling, leading
to improved convergence behavior. Hence, the QHAdam
optimizer and learning rate of 0.03 are chosen as the optimal
optimizer for the proposed Mel-MViTv2 method on the
Emo-DB dataset.

The hyperparameter tuning results of the RAVDESS
dataset are presented in Table 4, the highest accuracy of
81.75%was achieved using the AdaptiveMoment Estimation
(Adam) [18] optimizer with a learning rate of 0.02. Adam
is a first-order gradient-based optimization algorithm that
utilizes adaptive estimates of lower-order moments. While
Adam performs well in various scenarios, it offers particular
advantages for medium-sized datasets. One of its key features
is adaptive learning rate adjustment, where the learning rate
for each parameter is adapted based on the magnitude of the
gradients and historical gradient information. This adaptivity
enables Adam to automatically adjust the learning rate during
training, making it well-suited for handling medium-sized
datasets effectively. Therefore, the Adam optimizer and
learning rate of 0.02 are the optimal selection for the proposed
Mel-MViTv2method when applied to the RAVDESS dataset.

Table 5 outlines the hyperparameter tuning results of the
IEMOCAP dataset, the highest accuracy of 64.03% was
achieved using the Rectified Adam (RAdam) [19] optimizer
with a learning rate of 0.02. RAdam is a variant of the
Adam optimizer that aims to address the limitations of the
original Adam optimizer, specifically the issue of unstable
adaptive learning rates during the early stages of training
when dealing with large datasets. RAdam incorporates
a rectified behavior beyond a specific threshold, which
enhances the stability of the learning rate and improves the
overall training process. By adjusting its behavior, RAdam
provides improved performance during the early training
iterations, resulting in enhanced optimization outcomes. The
RAdam optimizer and learning rate of 0.02 are chosen for
the proposed Mel-MViTv2 method when working with the
IEMOCAP dataset.

C. COMPARATIVE RESULTS WITH EXISTING WORKS
Based on the results presented in Table 6, the proposed
Mel-MViTv2 method demonstrated superior performance
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TABLE 4. Experimental results in accuracy (%) on RAVDESS dataset with
different optimizers and learning rates.

TABLE 5. Experimental results in accuracy (%) on IEMOCAP dataset with
different optimizers and learning rates.

compared to existing methods in the field of emotion recogni-
tion in speech. On the Emo-DB dataset, the proposed method
achieved an impressive accuracy of 91.51%. This accuracy
outperformed all existing methods, whose accuracies ranged
from 58.39% to 84.91%. The diverse nature of the emotional
data in Emo-DB requires robust and adaptive methods
for accurate recognition. The high accuracy achieved by
the proposed Mel-STFT with MViTv2 approach, suggests
that the method can effectively capture and analyze the
discriminative emotional features present in the database.

For the RAVDESS dataset, the proposed Mel-MViTv2
method yielded an accuracy of 81.75%. This method
demonstrated an improvement of 0.86% compared to the
best-performing method, ResNet-CNN-Transformer [4]. The
RAVDESS dataset is known for its relatively challenging
nature, primarily due to the larger number of speakers it
encompasses. This larger speaker count leads to inherently
higher inter-subject variations, making emotion recognition
more complex and demanding.

All existing methods tend to exhibit relatively lower
performance on the IEMOCAP dataset, primarily due to
its unique characteristics. The dataset captures emotional
expressions in dyadic sessions, where interactions between
actors occur, potentially resulting in mixtures of emotions
within the samples. However, despite this challenge, the
proposed Mel-STFT with MViTv2 method managed to
record an accuracy of 64.03%. This accuracy surpassed the
range of 55.54% to 62.94% achieved by the methods in
comparison.

The results indicate that the proposed Mel-MViTv2
method outperforms existing methods on all three datasets,
namely Emo-DB, RAVDESS, and IEMOCAP. Themel-STFT
features are effective in capturing relevant acoustic infor-
mation related to speech, such as spectral characteristics
and energy distribution. The mel-frequency scale represents
the perception of pitch and frequency in a manner more
aligned with human hearing, allowing the model to focus

TABLE 6. Comparative results on Emo-DB, RAVDESS, IEMOCAP dataset.

on important aspects of the audio signal. The MViTv2
architecture leverages the power of the transformer model
to capture complex patterns and long-range dependencies
in sequential data, making them well-suited for analyzing
mel-STFT spectrograms. Not only that, multiscale feature
hierarchies, a key aspect of the MViTv2 architecture,
facilitate the modeling of mel-STFT at multiple levels of
abstraction. Mel-STFT spectrograms contain both local and
global acoustic information, and the hierarchical nature
of the MViTv2 architecture enables the extraction of
meaningful features across different scales. The stages in
the MViTv2 architecture hierarchically expand the channel
capacity while reducing the spatial resolution. This allows the
model to capture fine-grained details as well as higher-level
semantic information from the spectrograms, enhancing the
discriminative power of the features.

Figure 4 and Figure 5 present the confusion matrices
obtained from evaluating the proposed Mel-MViTv2 method
on the Emo-DB and RAVDESS datasets. These matrices
offer a comprehensive view of the classification performance
by comparing the predicted classes against the ground truth
labels. It is noteworthy that the misclassification rate tends to
be higher for classes with limited sample sizes, primarily due
to the scarcity of training data available for these classes. This
phenomenon can be attributed to the similarities in acoustic
features, such as pitch variations, intensity fluctuations, and
speech rate alterations, which pose challenges in distin-
guishing between certain emotions. Moreover, accurately
classifying speech emotion is further complicated by the
inter-individual variability in the expression of emotions.

In the case of the IEMOCAP dataset, the confusion matrix
in Figure 6 provides insights into the performance of the
proposedMel-MViTv2method. This dataset poses additional
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FIGURE 4. Confusion matrix of the Emo-DB.

FIGURE 5. Confusion matrix of the RAVDESS dataset.

FIGURE 6. Confusion matrix of the IEMOCAP dataset.

challenges as it comprises dyadic speech with multiple
sources simultaneously. Analyzing the confusion matrix
reveals that happiness and sadness are particularly prone to
misclassification. This can be attributed to the intricate nature
of emotional expression, where inter-individual differences,
the presence of mixed emotions within samples, and the
subjectivity involved in emotion labeling contribute to the
classification difficulties encountered.

V. CONCLUSION
This paper presents a speech emotion recognition method,
known as ‘‘Mel-MViTv2’’ using Mel-STFT spectrograms
and MViTv2 as a classifier. The Mel-STFT leverages
the Short-Time Fourier Transform technique along with

frequency-to-Mel scale conversion to generate perceptually
relevant visual representations of audio signals. By dividing
the audio signal into short-time frames using a window
function, such as the Hann window, and applying the
STFT equation, the frequency content of the audio signal
at each time point is obtained. The resulting magnitude
spectrum is then transformed into the Mel scale through
triangular filterbanks, yielding the Mel-STFT representation.
This technique effectively captures acoustic features such as
pitch changes, intensity variations, and speech rate, which are
relevant for speech emotion classification.

The MViTv2 introduces different stages for multi-scale
visual modeling, improving the capture of information at
different granularity levels. MViTv2 incorporates relative
positional embeddings that consider the relative distance
between input tokens, enhancing the modeling of token
interactions. Furthermore, MViTv2 employs a pooling tech-
nique called residual pooling connection to mitigate potential
information loss during pooling attention while maintaining
computational efficiency. This technique enhances infor-
mation flow and facilitates training of pooling attention
blocks. By integrating features from multiple scales and
incorporating relative positional embeddings and residual
pooling connections, MViTv2 improves the accuracy and
efficiency of speech emotion recognition models. The pro-
posed Mel-STFT with MViTv2 model achieved promising
results, recording the highest accuracy of 91.51%, 81.75%,
and 64.03% on the Emo-DB, RAVDESS, and IEMOCAP
datasets, respectively.
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