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ABSTRACT One approach to therapy and training for the restoration of damaged muscles and motor
systems is rehabilitation. EEG-assisted Brain-Computer Interface (BCI) may assist in restoring or enhancing
‘lost motor abilities in the brain. Assisted by brain activity, BCI offers simple-to-use technology aids and
robotic prosthetics. This systematic literature review aims to explore the latest developments in BCI and
motor control for rehabilitation. Additionally, we have explored typical EEG apparatuses that are available
for BCI-driven rehabilitative purposes. Furthermore, a comparison of significant studies in rehabilitation
assessment using machine learning techniques has been summarized. The results of this study may influence
policymakers’ decisions regarding the use of EEG equipment, particularly wireless devices, to implement
BCI technology. Moreover, the literature review results offer suggestions for further study and new research
areas. We plan to identify the additional characteristics of each EEG equipment and determine which one is
most suited for each industry by measuring the user experience based on various devices in future research.

INDEX TERMS Brain–computer interface (BCI), EEG, electrocorticography, electroencephalogram.

I. INTRODUCTION
Rehabilitation is an approach to therapy and training aimed
at restoring damaged muscles and motor systems. A develop-
ing area of neurotechnology is the brain-computer interface
(BCI). BCI applications have found usage in diverse areas by
helping individuals suffering from neuromuscular problems
like stroke, diseases in the spinal cord, Amyotrophic Lateral
Sclerosis (ALS), and injuries in the spinal cord to improve
their quality of life. Modern prosthetic technology, aid, and
rehabilitation may be replaced by a system that combines
neurology, robotics, machine learning, and BCI. BCI may
also aid in restoring or enhancing the brain’s lost motor
abilities. Assisted by brain activity, BCI offers simple-to-
use technology aids and robotic prosthetics. BCI converts
user-triggered brain activity into the control output of suit-
able equipment to carry out any predetermined action [1].
Technology for rehabilitation relies on more sophisticated
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neurophysiologically inspired designs that help in operant
conditioning and recovery. For instance, a robot-guided sys-
tem may help the movement of an injured limb based on the
operand’s neuromotor activity [2]. BCI facilitates neuromod-
ulation and augmentation in neuromotor outcomes for stroke
survivors [3].

BCI applications are primarily intended to aid those
with significant motor impairments in daily life. Several
BCI-enabled devices have been designed to support human
activities and rehabilitation [4]. Moreover, numerous inves-
tigations have vouched for BCI to aid those with severe
disabilities like paralysis. BCI offers direct communication
between the brain and technology, which may help restore
the capabilities of a disabled person suffering from mus-
culoskeletal diseases. The distinction between invasive and
non-invasive techniques for observing brain activity depends
on where the electrodes are placed. In procedures involving
invasive operations, neurosurgery is performed in which one
or more BCI units are used for direct electrode implantation
in the cavity of the brain to monitor the brain region [5].
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The signals generated here are of excellent quality, but this
procedure has a substantially detrimental effect since it causes
the brain’s scar tissue to increase [6]. Electrocorticograph
(ECoG) which directly records brain activity from the brain
surface, illustrates an invasive technique [7].
An alternative non-invasive electroencephalogram is more

accurate, less expensive, yet uncomfortable than the inva-
sive approach [4]. For instance, an EEG uses electrodes on
the scalp to track and record brain electrical activity in the
form of waves. These wave signals are sent to a comput-
ing system based on the obtained patterns in the generated
waves. The three main signal-capturing techniques used in
the EEG primary paradigm are motor imagery (MI), P300,
and steady-state visual evoked potential (SSVEP) [8]. These
three paradigms offer different potentials and approaches.
In the P300, a high positive peak is observed in the generated
EEG waves after about 300ms of a stimuli-inducing task
involving tasks related to a human event, if the person is
intensely focused on a task.

On the other hand,motor imagery is focused on the psycho-
logical mechanism to any movements which do not involve
any muscle activity [9]. BCI can visualize specific actions,
like holding an object, and the brain directs the order towards
the controlling device that controls these movements. Some
strategies were presented to help patients regain impaired
motor control [10]. The first technique involves teaching
patients to generatemoremotor brain impulses, while the sec-
ond involves teaching patients to activate tools that enhance
motor performance. Even though people with acquired motor
deficits frequently show issues with motor connections, the
EEG approach reveals incredible gains and ongoing alter-
ations. An evaluation of 16 patients affected by chronic stroke
who used a brain-computer interface for feedback related to
arm and hand orthotics was first published in [11]. Persons
with physical disabilities are enabled by assistive technology
in different situations, such as moving, playing, and convers-
ing like regular people. The tension that caregivers experience
when considering people with impairments can be lessened
by this technology [11], [12], [13].
Although the use of EEG signals has only been partially

investigated thus far, it is abundantly evident from the litera-
ture that these methods provide essential and supplementary
data regarding several neuromotor assessment-related top-
ics [14]. Various research studies have demonstrated that the
use of such technologies enables a more efficient understand-
ing of disorders affecting the central nervous systems that
result in motor impairments, especially from a neuromotor
perspective. The EEG provides detailed insights that help
customize and modify therapy by providing doctors with per-
tinent information on motor organization. This topic has been
investigated using EEG [15] in separate investigations, and it
is in a setting that is progressing toward resource reduction,
cost containment, and rehabilitation efficiency [16].

In light of the previously mentioned considerations,
this systematic literature review seeks to review all avail-
able papers on a topic that has not been thoroughly

explored. EEG is required to guide rehabilitation and study
physio-pathological motor function. Further, there is a need
to discuss state-of-the-art techniques and foreseeable pat-
terns and directions for using EEG as a successful measure
for neural rehabilitation. Adaptive technology is a generic
term to describe improved versions of currently available
technologies that provide additional features and interaction
opportunities to assist individuals in carrying out particular
tasks [17].
The primary objective of the literature review is to locate

pertinent material using BCI technology that can support
rehabilitation. The rest of this manuscript is structured as
follows; the subsequent section elaborates on the adopted
methodology. Further, the findings from the systematic
review were then compiled to conclude the findings. A dis-
cussion was presented, conclusions were established based
on the results, and new research areas were suggested to
maximize the impact of the outcome. As shown in Table 1,
several survey articles relevant to BCI for brain rehabilitation
have been recently proposed.

II. ROLE OF EEG AND COMPUTER VISION TECHNIQUES
FOR NEURAL REHABILITATION
This section examines how these technologies are used to
help individuals recover and improve their neural functions
after suffering from neurological conditions or sickness.

• Brain-computer interfaces (BCIs) based on EEG allow
people to control external equipment with their brain
signals. EEG signals are used in motor imagery exer-
cises to aid with motor function rehabilitation [11], [12],
[75], [76], [78]. EEG-guided tasks targeting memory,
attention, and other cognitive processes are used in cog-
nitive rehabilitation. Real-time EEG data is employed
in feedback systems [18], [21] to alter and personalize
rehabilitation methods.

• Motion tracking and gesture recognition are used to
evaluate and enhance motor function and coordination.
Systems that use virtual reality (VR) and augmented
reality (AR) create immersive and interactive rehabil-
itation environments [23], [27], [31]. Visual feedback
devices that provide real-time visual cues to patients
direct their movements and activities. Gaze tracking and
eye movement analysis can help with vision rehabilita-
tion and correct coulometer problems [36], [47], [51].

• Users can operate virtual environments or pros-
thetic equipment using a combination of brain sig-
nals and visual cues in hybrid EEG-computer vision
systems [18], [32], [36].

• Multimodal feedback mechanisms involve the use of
both EEG and visual data to provide real-time coaching
and modification during rehabilitation exercises. Neuro-
feedback and visual feedback research and development
aim at improving brain plasticity and recovery outcomes
[44], [56], [59], [67]. The summary of various EED
driven BCI technologies for rehabilitation is shown in
table 2.
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TABLE 1. Comparison of this survey with existing survey.

III. BACKGROUND
BCIs are based on neuroplasticity principles, which refer to
the brain’s ability to reorganize it by creating new neural
connections. Because this reorganization might occur as a
result of neurological traumas or disorders [21], [22], [27],
[29], [31], [47], [53], BCIs provide a viable option for brain
rehabilitation. Machine learning is also critical in improving
the capabilities and efficacy of BCIs for brain rehabilitation:

• Machine learning methods such as support vector
machines (SVMs), deep neural networks (DNNs), and
random forests are used to recognize patterns in brain

signals that correspond to certain motor or cognitive
objectives [43], [58], [62], [74].

• Machine learning allows BCIs to adapt to changes in
a user’s brain signals over time. Adaptive models con-
stantly adjust their parameters in response to new data,
resulting in increased accuracy and robustness [53],
[56], [59], [60].

• Machine learning enables tailored rehabilitative inter-
ventions. Models can be trained to recognize a user’s
distinct brain patterns and alter rehabilitation methods
as needed [7], [11], [19], [41], [47], [79].
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TABLE 2. Summary of EEG-Driven BCI technologies used for rehabilitation.

• Machine learning algorithms process brain impulses in
real-time, providing consumers with rapid feedback.
BCIs combined with machine learning can produce
closed-loop systems that respond in real-time to a
user’s brain signals [13], [21], [29], [46], [53], [63].
A BCI-controlled robotic arm, for example, can adapt
its movements based on the user’s motor intentions,
increasing motor relearning.

• Using a user’s brain signals, machine learning can fore-
cast the likelihood of effective rehabilitation outcomes.
This data assists clinicians in personalizing interventions
for the best possible outcomes [53], [57], [64], [69], [71].

• Using machine learning techniques, BCIs may fuse
data from several modalities, such as EEG, fMRI,
and kinematic data, to provide a more compre-
hensive picture of brain activity and rehabilitation
progress [23], [29], [53], [69].

The combination of BCIs and machine learning technolo-
gies has the potential to completely transform neurological
rehabilitation by providing more accurate, adaptable, and
personalized therapies. These technologies hold promise for
people suffering from stroke, spinal cord injuries, traumatic
brain injuries, and neurodegenerative disorders, with the goal
of restoring lost functions and improving their quality of life.

IV. RESEARCH PROCESS
This section details the chosen methodological approach for
carrying out a systematic review of literature [13]. In light of
the research questions mentioned earlier, the pertinent liter-
ature from 2010 to 2023 has been examined for this survey.
Various scientific databases such as IEEE Xplore, ACMDig-
ital Library, ScienceDirect, SpringerLink, Taylor & Francis
Online, and Wiley Online Library were searched to obtain
scientific material, using keywords like Electroencephalog-
raphy + rehabilitation, EEG + rehabilitation, EEG + Brain
Computer Interface, Electroencephalography + BCI, EEG +

BCI+ rehabilitation, BCI+Motor control, BCI+ rehabilita-
tion. The obtained material underwent screening, validation,

and inclusion. The exclusion before screening involved the
removal of articles that occurred multiple times or were
published in languages other than English. The information
conveyed by the article’s title, abstract, and conclusion was
used to decide on the relevancy of the article for the survey.
A coherent library was built with the help of Mendeley,
in which articles were aggregated, filtered, and excluded.

The relevant articles that were chosen were rigorously
evaluated and included in the study. The Mendeley reference
management technology was used to create a consistent refer-
ence library. The collected papers were collated, categorized,
and systematically organized inside this library depending
on their thematic importance. To refine the collection, fil-
tering procedures were used to ensure that publications
were suitably organized based on their focus on EEG-based
neurological rehabilitation. This methodological technique
ensures the survey’s completeness and validity, allowing for
a thorough examination of the current literature. The sur-
vey captures a comprehensive overview of advancements
in EEG-based brain rehabilitation throughout the selected
timeframe by accessing a variety of sources and employing
targeted search phrases.

The research focuses on individuals using prosthetic arms,
gait exoskeletons, and state-of-the-art stroke rehabilitation for
Lower/Upper extremities (UE/LE). In this study, we place
particular emphasis on recent technological advancements in
BCI robotics that have the potential to be used in therapeutic
settings. Research trends include the adoption of decoding
tools such as artificial neural networks using deep learning,
portable and personal robot-wear such as soft robotics, the
development and testing of procedures investigating the use
of brain-computer interfaces for stimulation and the effec-
tiveness of various feedback modalities, and the development
of brain-computer systems that can handle heterogeneous
data, augmented with inputs that are not directly related to
the brain. Finally, the problems with existing BCI systems
and rehabilitation robotics are discussed, along with potential
future study routes. The following subsection elaborates on
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TABLE 3. Research questions and its motivation.

the use of fundamentals of EEG-driven neurotechnology used
for rehabilitation. Based on the keywords, the search string
has been generated to extract the relevant studies which have
been used for survey purposes. The search string is:

(‘‘EEG’’ OR ‘‘electroencephalography’’) AND (‘‘machine
learning’’ OR ‘‘computational intelligence’’) AND
(‘‘neural rehabilitation’’ OR ‘‘neurorehabilitation’’) AND
(‘‘survey’’ OR ‘‘review’’ OR ‘‘systematic review’’ OR ‘‘lit-
erature survey’’) AND (‘‘methods’’ OR ‘‘approaches’’ OR
‘‘techniques’’).

Throughout the search string, a total number of 80 arti-
cles have been identified through ScienceDirect, Springer-
Link, IEEE Xplore, ACM digital library and Scopus search
databases. Several research questions have been built based
on extracted studies. The research questions (RQ) along with
motivation have been presented in table 3.

A. SAMPLE VIEW OF RESEARCH QUESTION IN DATA
EXTRACTION MODE
The EEG method uses the skull to track the brain’s electri-
cal activity. EEG is used to diagnose conditions that cause
seizures and metabolic, viral, or inflammatory conditions that
alter brain activity. EEGs can be used to confirm brain death,
assess sleep problems, and track brain activity in patients who
have lost consciousness or are entirely sedated. This risk-free,
painless test can be carried out in a testing facility, a hospital,
or a controlled environment. The subject typically lies in a
chair or bed during the exam. Several cup-shaped electrodes
are placed on the scalp using a unique conducting material.
The electrodes are connected to wires, often called leads, that
transmit the brain’s electrical signals to a machine. External

stimuli may be used during an EEG recording session, includ-
ing loud noises, bright or flashing lights, or even specific
medicines. People can be instructed to alter their breathing
patterns or to open and close their eyes. An EEG device
or computer records and analyzes changes in brain wave
patterns. Typically, an EEG test lasts about one hour while an
EEG during sleep is necessary for testing disorders and takes
several hours. Additionally, researchers [56] propose a unique
method for distinguishing between EEG signals from alco-
holics and healthy controls that includes phase space dynamic
and geometrical properties. Geometrical features are also
extracted from the phase space representation of the EEG sig-
nals, representing the underlying structures and complexity.

The experimental findings shows that the suggested
method provides the best classification performance for the
twenty-three features chosen by Henry gas solubility opti-
mization using feedforward neural network (FFNN), with
99.16% accuracy, 100% sensitivity, and 98.36% specificity.
A summary of the BCI sample view throughmachine learning
and deep learning is presented in table 4.

B. NEUROTECHNOLOGY BASED ON EEG
Any technology that communicates with the neurological
system is referred to as neurotechnology. Monitoring brain
activity is one of the critical components of many neu-
rotechnological advancements. EEG monitoring enables us
to measure various brain waves, also referred to as neu-
ral oscillations. Brain control of various devices is one of
the most well-known and widely publicized uses of EEG-
based neurotechnology. Examples include keyboards for
individuals with locked-in syndrome [5] and controls for
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TABLE 4. Usage of BCI in machine learning/deep learning.

wheelchairs, drones, or robots [18], [19]. One remarkable
aspect of neurotechnology is its ability to alter our neural cir-
cuits’ function by using the nervous system’s plasticity. This
indicates that the results will last for a while after using neu-
rotechnology for a specific amount of time. Typically, this is
carried out by monitoring brain waves and delivering tailored
stimulation according to specific activity patterns decoded
by the brain. We commonly refer to this as closed-loop or
brain state-dependent feedback. Electro/magnetic stimula-
tors, robotic exoskeletons, and visual and auditory stimuli are
some standard methods used to excite the nervous system and
produce such changes.

V. RESULTS AND DISCUSSIONS
A. WHAT ARE THE MOST CURRENT INNOVATIONS AND
PATTERNS IN THE INTEGRATION OF BRAIN-COMPUTER
INTERFACES (BCIS) WITH VARIOUS APPLICATIONS?
There are several applications that are integrated with BCI
along with EEG integration as shown below.

1) BCI-ROBOTICS FOR REHABILITATING MOTOR PARADIGM
Millions of people worldwide live with motor disabilities
brought on by spinal cord injuries or strokes. Many of them
cannot execute simple tasks like picking up a glass or walk-
ing, and typical rehabilitation techniques frequently fall short
in helping patients regain their crippled functionality ofmotor
nerves.

The foundation of neurotechnology-based rehabilitation of
motor functionality is that the interdependent relationship
between the electrical activity of the human brain when
motion is attempted and the sensory feedback from outside
the central nervous system enables restoration of the sensory
circuits in motor nerve connections fosters recovery of motor
circuitry [20]. This indicates that after using the technology
for some time, the patient’s motor function will improve due
to the training’s facilitation of restructuring their brain and/or
motor pathways.

One of the most extensively investigated application areas
of non-invasive brain-computer interfaces utilizing EEG
signals is motor rehabilitation. They usually function by
recognizing when a patient is making an effort to move

(e.g., by sensing the attempt of movement from EEG) and
then assisting the sensed movement either with the aid of a
prosthetic limb [21], [22] or by electrically stimulating the
muscles [23], [24].

A prominent area where BCI solutions can be deployed for
applications involving clinical procedures is post-stroke UE
motor therapy because of the severe motor deficits brought
on by stroke and how they affect the survivor’s quality of
life. The ground-breaking study in this area, published more
than ten years ago, used magnetoencephalography as data
input for their (MEG)-BCI-controlled hand orthosis for stroke
rehabilitation [25]. Even though the participants could not
experience a meaningful therapeutic benefit, it was found
that they attained control over orthosis by learning to alter
the mu rhythm amplitude. Using numerous brain-computer
interfaces non-invasively in conjunction with input provided
by a robot or orthosis was then documented.

The role of brain-computer interfaces in UE stroke reha-
bilitation has been studied and methodically analyzed in
studies [26]. It was revealed in the study [27] that chronic
stroke patients may train their fingers to extend using a BCI
and a finger-individualized orthosis. The findings show that
finger extension ability and functional outcomes were both
improved in the participants with more robust sensorimo-
tor rhythm (SMR) modulation. BCI-robotics can incorporate
rehabilitation of both coarse and delicate hand movements.
The previous BCI research employed heavy, hard-bodied
robots that are frequently expensive, have intricate controls,
and have a limited range of motion [28].

Soft robots are a kind of wearable, lightweight robots
with flexibly mounted actuators. It has been shown that
using soft robots increases the effectiveness of hand reha-
bilitation [29]. Consequently, by combining soft robotics
with brain-computer interfaces, a nonrestrictive, intuitive, and
real-life movement can be added to the feedback mechanism.
Using a soft robotic glove controlled by EEG-BCI and task-
specific visual feedback, a stroke rehabilitation system was
described in the article [30] as pilot research in this area. The
research revealed improvements as proof of a phenomenon
known as a kinesthetic illusion in the test individuals. For
the relationship between observed activity in motor circuitry
and natural motor recovery, a substantial number of human
clinical studies and neurological data are required to support
these conclusions.

A somewhat new BCI application is post-stroke LE reha-
bilitation. An effective BCI design includes robot control in
real-time and closed-loop accurate deciphering of kinesthetic
walking intention and visuals by the BCI (or exoskeleton).
The performance of LE decoding, which has not yet been per-
fected, severely restricts the former while increasing safety
issues in the latter. A few research studies have shown that
it is possible to use BCI to decode lower limb joint kinemat-
ics and kinetics while in motion. In experiments [31], EEG
was captured when the individual practiced walking with a
robot. Moderate LE joint kinematics deciphering accuracy
based on offline analyses was observed in research [31], [32].
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TABLE 5. Non-invasive EEG apparatuses are used for assistive, adaptive, and rehabilitative purposes.
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TABLE 5. (Continued.) Non-invasive EEG apparatuses are used for assistive, adaptive, and rehabilitative purposes.

Following the gait training, functional ambulation capacity,
functional connectivity, and sensorimotor plasticity all
showed a substantial increase, according to a connectivity
analysis in the study [33]. A study [34] has also looked into
the modulations in sensorimotor rhythms and motion-related
brain potentials connected to gait decoding performance. The
spectral and temporal dynamics of the neuronal encoding of
gait patterns are also controversial, as recently examined [35].
This makes the consistent and accurate decoding of gait
using non-invasive brain data an arduous task. As a result,
no studies have been completed that demonstrate the suc-
cess of BCI-robotics in treating LE stroke. However, recent
information on BCI gait decoder technology advancements
promise high accuracy and the possibility of continuous gait
decoding.

Multiple EEG-based gait decoding techniques were
recently rigorously compared to develop a viable online
decoding system [36]. A variety of Machine Learning (ML)
approaches are used to analyze EEG signals and analyze
the effectiveness of Brain-Computer Interface (BCI) tech-
nologies for neural rehabilitation [35], [42], [47], [63].
These techniques are critical for decoding brain activity,
comprehending cognitive processes, and enabling effective
BCI-based rehabilitation solutions. EEG data is prepared
for analysis using preprocessing procedures such as arti-
fact removal [52] and feature extraction. Support Vector
Machines [45], Random Forests [47], and deep learning
architectures such as Convolutional Neural Networks [36],
[38], [45] and Recurrent Neural Networks decode brain sig-
nals and allow for precise classification of cognitive states
or motor intentions. In BCI applications, feature selection
and dimensionality reduction strategies improve model per-
formance [32], while domain adaptation and transfer learning
handle inter-subject variability. Adaptive BCI paradigms,
such as P300-based [52], motor imagery, and SSVEP-based
BCIs [15], [67] provide a variety of neurorehabilitation tech-
niques. By giving users with feedback for adaptive control,
reinforcement learning can improve BCI systems. Cross-
validation [68] and online assessment approaches are used
to examine the generalization and real-time performance of
BCI models. The study [56] extracts the graphical features
from dynamic and geometric properties of EEG data. The
geometric features [69] have been fed to a feed forward neural
network (FFNN) model for the classification of alcoholic
and healthy control factors [70]. For precision control of
BCI-based exoskeletons employing versions of recurrent

neural networks (RNN) based on offline benchmarking and
comparing approaches spanning various linear decoders as
well as RNN. It is also important to point out that a deep
neural network based on LSTM was also employed in the
recent experiment, which focused on healthy volunteers to
accomplish reliable gait reconstruction [37] assessed in both
offline and online scenarios.

2) BCI-ROBOTICS FOR MOTOR ASSISTANCE
The brain-computer interface (BCI) is a turning point device
that expressly [62] uses cognitive function for interaction
with external devices without the use of motors. Although
BCI based on motor imaging has proven efficacy in stroke
patient treatment, their usage in clinical practice has been
limited due to poor performance, non-flexible properties,
and extensive training periods. It has been demonstrated that
BCI can provide neurological regulation of a robotic arm
and exoskeleton of the lower limb using invasive intracorti-
cal recordings. The first case study describing invasive-BCI
use to enable continual voluntary regulation over a robotic
arm having multiple joints by an individual suffering from
tetraplegia can be found in [38]. Additional research has doc-
umented tetraplegic patients’ stroke-related paralysis using
neuroprosthetic control of a prosthetic arm [39], [40]. The
article [41] thoroughly evaluated the use of BCI as a commu-
nication, control, and rehabilitation tool in paralysis. Since
then, interest has risen in developing non-invasive BCI to
manage more freedom robotic arms for potential motor assis-
tance and rehabilitation.

In contrast, traditional non-invasive BCIs exclusively
use bidirectional as well as unidirectional control over
motor circuitry. Some recent experiments have shown
high-dimension continual motor control using the unique
decoding algorithms and control methodologies to work
effectively with a poor signal-to-noise ratio of non-invasive
data. Healthy volunteers [42], paralyzed patients [43], [44],
and quadriplegics [43], [44] have all been used in studies.
A closed-loop prosthetics monitoring via BCI was

described in papers [43] [44] using EEG and MEG, respec-
tively. Recently, it was demonstrated [42], [45] how to
precisely combine two sequential low-dimensional con-
trollers to operate a robotic arm with numerous degrees of
freedom. Movement-related cortical potentials in the low
frequency-time domain were used in the study [46] to show
the simulation of brain-computer interface control of a virtual
robot online.
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In addition to traditional collaborative tasks performed by
BCI robots, getting control of the robotic arm simultaneously
with the arm of the individual was described as an alter-
native [47]. Researchers developed a BCI-controlled robot
control framework that produced a continual trajectory of
robot movement out of the discontinuous BCI signals. The
outcomes of the experiments conducted on healthy partici-
pants suggest that BCI-based robotic control systems are a
more efficient and realistic way to operate robotic devices.

A robotic arm in a 3D environment is controlled by
BCI [48], powered by machine learning. Machine learning
using a multi-directional convolution neural network and a
bidirectional LSTM network was reported in the study. With
the mentioned advancements in technology, BCIs developed
non-invasively, can manage a robotic assistance device con-
tinuously and expertly.

The author describes [59] a unique method for Motor
Imagery (MI) classification in Brain-Computer Interface
(BCI) systems that employ two-dimensional modelling in
empirical wavelet transform (EWT). Using EWT, a data-
driven time-frequency analysis method, the authors presented
a new technique for extracting features from MI EEG sig-
nals. The spatial and temporal dynamics of EEG signals
during motor imagining tasks are captured using this method.
A novel method for classifying Motor Imagery (MI) in
Brain-Computer Interface (BCI) systems based on multi-
variate variation mode decomposition (MVMD) has been
employed [60]. By decomposing the data into intrinsic mode
functions, the approach tries to extract discriminative features
from MI EEG signals. MVMD enables multivariate analysis
by taking into account the interdependencies across EEG
channels during motor imagery tasks. The study [61] assesses
the efficacy of this technique in decoding MI EEG patterns,
with the goal of improving the accuracy and reliability of BCI
devices. Machine learning classifiers are used to classify the
retrieved features into several MI classes. The results provide
promising results, demonstrating that the multivariate empir-
ical wavelet transform paradigm improves the resilience of
MI decoding in BCIs. Using empirical Fourier decomposition
(EFD) and enhanced EFD (IEFD) approaches, the study [63]
provides a unique automated computerized framework for
proficient detection of motor and mental imagery (MeI) EEG
activities. Specifically, MSPCA is used to denoising EEG
data initially, and then EFD is used to divide nonstation-
ary EEG into successive modes, while the IEFD criterion
is provided for a single noticeable mode selection. Finally,
the features in the time and frequency domains are retrieved
and categorized using a feedforward neural network (FFNN)
classifier.

3) USING EEG-BASED NEUROTECHNOLOGY TO ENHANCE
AND REHAB COGNITIVE FUNCTION
The enhancement of cognitive ability can be helpful for indi-
viduals, irrespective of whether they have any brain-related
neural disorder. However, improving motor function is

explicitly focused on patients with movement impairment.
Some mental and psychological illnesses, such as depressive
disorders, attention-deficit disorders, mood disorders, and
addictive disorders, can benefit from cognitive rehabilitation
based on neurotechnology. A person with a healthy brain
would also be open to cognitive advancement (e.g., in mem-
ory or attention). Studies in neuroscience have pinpointed
distinct brain activity markers linked to cognitive function,
such as parieto-occipital alpha activity [49]. The goal of
neurofeedback approaches is to help users self-regulate such
markers to improve their behavior.

These strategies establish a causal relationship (operant
conditioning) between patterns in the brain and positive
or negative feedback, driving brain alterations. Techniques
like neurofeedback or EEG biofeedback have been sug-
gested to aid cognitive improvement in various populations.
For instance, [50] studied healthy volunteers, patients with
depression, and children with ADHD using Elevvo, a cogni-
tive training tool created by Bit brain [51].

4) THE USE OF EEG-BASED NEUROTECHNOLOGY TO
IMPROVE MEMORY DURING SLEEP
Sleeping takes up about a third of our lives. During sleep,
our bodies enter a state where control over behavior and
awareness ceases to exist. During the period of sleep, the
human body does several tasks necessary for maintaining
our vital systems. Because some of these processes occur in
the brain, improving them via neurotechnology may enhance
certain of our abilities. One crucial process when you sleep
is consolidating recently acquired memories [52]. Since it is
now possible to observe someone’s EEG while they sleep,
numerous studies have examined the precise brain corre-
lates of memory processing and consolidation. Real-time
identification of the correlations can be used to change the
occurrence, increase the effectiveness, and give brain state-
dependent stimulation. Twowell-researched neurotech-based
methods were studied to enhance the consolidation of new
memories. By delivering auditory or electrical stimulation
in time with one of the slow-wave oscillation trains linked
to information processing while you sleep, your memory
will operate better [53], [54]. When properly timed with the
appearance of sleep spindles, reactivating previously learned
events has been found to promote their consolidation [55].
Table 2 offers a summary of EEG-driven BCI technologies to
assist various types of rehabilitation.

5) NON-INVASIVE EEG-BCI APPARATUS DESIGNS
According to the studied literature, G. Tec, Compumedics
Neuroscan, and Brain Products were the most popular EEG
brands used by the research community. G. Tec’s wired EEG
equipment wasmentioned in 41 research articles, with 26 arti-
cles mentioning Compumedics Neuroscan and 15 articles
mentioning Brain Products. Biosemi revealed itself as the
fourth most popular wired equipment brand, with eight study
papers mentioning it. Among 42 research articles, a total
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of 40 studies have been work on Emotiv’s wireless tech-
nology. Notably, Brain Products and G. Tec were among
the few brands that offered both wired and wireless EEG
equipment, while other brands provided a combination of
wired and wireless BCI-based technologies. Wireless models
are a developing method, but wired solutions continue to
be the traditional answer. Table 3 summarizes the different
non-invasive wired and wireless EEG equipment that could
be used for rehabilitation and BCI.

B. WHAT TYPES OF NEURAL REHABILITATION ACTIVITIES
ARE ADDRESSED BY EEG, MACHINE LEARNING AND DEEP
LEARNING?
Here are some types of neural rehabilitation activities that can
be addressed using EEG.

• Motor Rehabilitation: EEG signals captured during
motor imagery tasks (e.g., imagining limb movements)
can be decoded using machine learning algorithms
to control external devices, such as robotic exoskele-
tons [13], [17] or prosthetics, assisting individuals with
motor impairments. EEG-based real-time feedback sys-
tems can guide users to perform specific motor tasks or
exercises, aiding inmotor skill relearning and neuroplas-
ticity [21], [23], [47], [51].

• Cognitive Rehabilitation: EEG signals can be used to
measure and enhance attention and concentration levels
through Neurofeedback techniques [8], [11], [13], [14].
Machine learning can be applied to adapt training proto-
cols based on individual cognitive states. EEG and deep
learning can help design personalized memory training
tasks by analyzing neural patterns associated with mem-
ory recall and encoding [7], [8], [13], [14].

• Neuropsychiatric Rehabilitation: EEG can be utilized to
provide biofeedback for stress and anxiety management.
Machine learning can identify stress-related patterns and
trigger relaxation interventions [10], [16], [19], [20].
EEG-based Neurofeedback can help individuals with
ADHD improve focus and attention control by reward-
ing desired brain activity patterns.

• Gait Rehabilitation: EEG and machine learning can be
integrated with motion capture systems to analyze gait
patterns and provide real-time feedback during walking
exercises [13], [14], [17], [73].

• Visual and Auditory Rehabilitation: EEG-based proto-
cols combined with machine learning can be used to
design visual and auditory training tasks for individuals
with impaired sensory perception [23], [26], [27].

• Multimodal Rehabilitation: Combining EEG with other
technologies such as functional near-infrared spec-
troscopy or virtual reality can create multimodal reha-
bilitation approaches that target a wider range of neural
functions [37], [38], [47], [51], [53].

The flexibility and adaptability of these technologies offer
promising ways to enhance rehabilitation outcomes and
improve quality of life for people with neurological disorders.

C. WHAT ARE THE MOST PREVALENT EEG SIGNAL
PROCESSING TECHNIQUES USED IN NEURAL
REHABILITATION RESEARCH?
In neural rehabilitation research, various EEG (electroen-
cephalography) signal processing techniques are used to
analyze, interpret, and extract meaningful information from
EEG data.

• Filtering: EEG signals are often contaminated with
noise and artifacts. Filtering techniques such as high
pass, low pass and notch filters [18], [26] are used to
remove unwanted frequency components and improve
signal quality.

• Artifact removal: Techniques such as Independent
Component Analysis (ICA) and Principal Compo-
nent Analysis (PCA) are used to separate and remove
artifacts such as eye blinks, muscle activity and elec-
trocardiogram (ECG) interference [28], [29], [31].

• Time Domain Features: Features such as mean ampli-
tude, root mean square value, and signal variance are
extracted to capture the temporal characteristics of
EEG signals [47], [48], [51], [53].

• Frequency domain properties: Power spectral density,
spectral entropy, and band power ratios provide insight
into the frequency distribution of brain activity [11],
[17], [18].

• Time-frequency characteristics:Techniques such as the
wavelet transform and the short-time Fourier transform
reveal how the characteristics of the EEG signal vary in
time and frequency [23], [57], [61].

• Functional connectivity: Measures such as coherence,
phase synchronization, and mutual information assess
the functional relationships between different brain
regions [51], [52], [54].

• Graph theory analysis: EEG data can be repre-
sented as networks, and graph theory metrics reveal
organizational and communication patterns in the
brain [64], [69].

• Pattern recognition and motor imagery: EEG signals
captured during motor imagery tasks are processed to
recognize specific patterns associated with imagined
movements. These patterns can be used to control
external devices [59], [60], [65], [72].

D. WHAT MACHINE LEARNING AND DEEP LEARNING
METHODS HAVE BEEN USED FOR EEG-BASED NEURAL
REHABILITATION?
In the context of EEG-based neural rehabilitation, various
machine learning and deep learning methods have been
applied to analyze EEG data and develop interventions aimed
at enhancing neural function and facilitating recovery.

• Machine learning techniques: SVMs have been used
for tasks such asmotor image classification, which uses
EEG signals to distinguish between different motor
tasks or targets. These methods are used to classify
EEG patterns associated with specific cognitive states,
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motor goals, or rehabilitation tasks. LSTMs are popular
for time series data such as EEG and are used for
tasks such as learning motor sequences and predicting
cognitive states. k-NN algorithms have been used in
EEG data for tasks such as identifying brain activity
patterns related to cognitive performance and mental
states.

• Deep learning techniques: In this section, we look at
the various DL architectures used in BCI-EEG cate-
gorization studies. DL models are classified into four
types based on their role [30]: discriminative, represen-
tative, generative, and hybrid DL models.
◦ Discriminative models: Discriminative models are

DL architectures that can learn different features
from input signals using nonlinear transformations
and classify them into pre-defined classes using
probabilistic prediction. As a result, these tech-
niques can be employed for feature extraction as
well as categorization. CNN, RNNs (and their
variants, GRU and LSTM), MLP, and ELM are
examples of discriminative models [12], [16], [31],
[37], [39], [43], [47], [51]. A CNN is a typical
deep learning model that specializes in extract-
ing local and spatial patterns. The CNN design is
made up of a series of neural networks arranged
in a specific order, each with a different size
layer that performs a specific task. The deeper
layers learn high-level features while the earlier
layers learn low-level features. Convolutional lay-
ers (for feature extraction) [31], [36], pooling
layers (for feature dimensionality reduction), and
fully connected (FC) layers (for classification) are
the three building blocks that make up CNNs.
A convolutional layer is an important component
of the CNN architecture for feature extraction.
A pooling layer does conventional down sam-
pling to reduce network processing. The pooling
layer’s output feature maps are typically flattened
layers.

◦ Representative models: Representative DL models
are DL architectures that specialize in unsuper-
vised feature extraction and can be utilized for
a variety of applications such as clustering and
classification. Deep AEs (D-AEs), deep RBMs
(D-RBMs) [31], and DBN are examples of DL
models. An autoencoders (AE) is a form of rep-
resentative artificial neural network that uses effi-
cient data coding to learn features unsupervised.
AE is made up of three major components: an
encoder, a code, and a decoder [51]. The encoder
compresses the input into a latent-space repre-
sentation called the code, which is subsequently
utilized to reconstruct the input by the decoder.

◦ Generative models: Typically, generative DLmod-
els are used to supplement and improve training
data. GAN and VAE are the most often used

generative DL models. Several researchers in this
study used non-DL data augmentation procedures,
including noise addition [11], sliding window [8],
and amplitude perturbation [13], to enhance the
quantity of training data. Two of the research eval-
uated [64], [67] used GAN and VAE networks
for DL-based data augmentation. These studies
found that utilizing GAN models for MI data
augmentation considerably improved classifica-
tion performance.

• Hybrid DL models: Hybrid deep learning models com-
bine two or more deep learning models into a single
network. In addition to the solo deep learning models
discussed above, researchers have attempted to inte-
grate several deep learning networks, with promising
results for MI classification tasks [7], [63]. This analy-
sis identifies five types of combinations: two discrim-
inative models (for example, CNN/LSTM [56], [63],
[68], [11], [17], [18], CNN/GRU [59], and CNN/MLP
[55]), representative model combined with a discrim-
inative model (e.g., CNN/SAE [60], [68]), genera-
tive model combined with a discriminative model
(e.g., CNN/GAN [64], [68], and CNN/VAE [69]), dis-
criminative model followed by SGAN.

E. WHAT PERFORMANCE INDICATORS ARE UTILIZED TO
ASSESS THE EFFICACY OF EEG-BASED NEURAL
REHABILITATION METHODS?
Here are some common performance indicators used to eval-
uate the effectiveness of EEG-based neural rehabilitation
methods:

• Classification accuracy: In tasks such as motor
imagery classification or cognitive state detection, clas-
sification accuracy measures how well an EEG-based
model can distinguish between different classes or
states [11], [13], [17], [21], [26], [27], [32], [47], [48].

• Receiver operating characteristic (ROC) curve and
area under the curve (AUC): ROC curves and AUC
values are used to evaluate the trade-off between sen-
sitivity and specificity in classification tasks [26], [29],
[33], [54].

• Mean Squared Error (MSE) or Root Mean Squared
Error (RMSE): This metric measures the difference
between the predicted and actual values, often used
in regression functions to measure the accuracy of the
prediction [13], [43], [46], [53], [63].

• R-squared (R2) or coefficient of determination: R2
measures the amount of variation in the dependent
variable that can be predicted from the independent
variables. It shows how well the regression model fits
the data [56], [57], [59], [61].

• Real-time performance metrics: For real-time applica-
tions, metrics such as response latency, response time,
and overall system latency are evaluated [55], [59],
[60], [61], [63], [65].
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F. WHAT ARE THE CURRENT RESEARCH LIMITATIONS
AND GAPS IN EEG-BASED NEURAL REHABILITATION
UTILIZING MACHINE LEARNING AND DEEP LEARNING
METHODS?
There are many gaps that are identified in the study. The
identified gaps include:

• Noise and artifacts in EEG data might impair the
accuracy of machine learning and deep learning
models. To achieve trustworthy and consistent results,
researchers must address concerns such as data
quality, pre-processing methodologies [15], [18],
[43], [44], and standardization of data gathering
protocols.

• Because of the difficulties in obtaining high-quality
EEG data from patient populations, many EEG-based
brain rehabilitation research have small sample sizes.
This can result in model overfitting and poor general-
izability [18], [23], [24], [27]. To create robust models,
additional efforts are needed to collect larger and more
diverse information.

• Monitoring progress in neural rehabilitation is fre-
quently required. However, longitudinal EEG datasets
that capture changes in brain activity while patients
undertake rehabilitation are scarce. Long-term research
is critical for determining the efficacy of various inter-
ventions and tailoring treatments accordingly [51],
[59], [63], [74].

• Deep learning algorithms excel at learning patterns
from data, but their black-box structure makes inter-
preting results difficult. To get a deeper knowledge
of the underlying neurophysiologic mechanisms con-
nected to brain rehabilitation, there is a need for
research that integrates deep learning approaches with
neuroscientific insights [15], [16], [17], [19], [26], [31].
As machine learning models get increasingly compli-
cated, physicians and researchers must ensure that the
judgments made by these models can be explained and
evaluated. Creating tools to provide insights into why
a model makes a particular decision can improve its
clinical value [51], [53], [59], [64].

• Offline analysis is highlighted in several EEG-based
brain rehabilitation techniques. Due to processing
limits and the necessity for rapid and accurate
reactions, real-time applications [31], [32], [49],
[59], in which EEG data is analyzed and acted
upon in real-time, are harder data for rehabilita-
tion poses ethical problems about patient consent,
data ownership, and privacy. These issues must be
addressed carefully to guarantee that patients’ rights are
honored.

• While EEG-based neurological rehabilitation research
is progressing, there may be a gap between aca-
demic research and clinical implementation [57],
[61], [64], [66].

G. WHAT ARE THE POSSIBLE POSSIBILITIES TOWARDS
CREATING TRENDS IN NEUROLOGICAL REHABILITATION
RESEARCH BASED ON EEG?
Developing trends in EEG-based neurological rehabilita-
tion research entails finding prospective directions that can
affect the field’s future. Here are some potential trends in
EEG-based neurological rehabilitation research that could
influence future research:

• Multimodal Approaches: By combining EEG data with
additional modalities such as fMRI, fNIRS (func-
tional near-infrared spectroscopy), or behavioral data,
researchers [13], [17], [19], [20], [43], [49] can gain
a more comprehensive understanding of brain activity
and improve the efficacy of rehabilitation methods.
Integrating numerous data sources could result in more
personalized and targeted treatments.

• Closed-Loop Systems (CLS): The potential for devel-
oping closed-loop systems that alter rehabilitation
interventions in real-time based on EEG input is enor-
mous. These devices can optimize the rehabilitation
process by automatically adjusting stimulation param-
eters or feedback mechanisms based on the patient’s
real-time brain activity.

• Neurofeedback and Brain-Computer Interfaces (BCIs):
Real-time Neurofeedback and BCIs use EEG sig-
nals to allow patients to operate external equipment
directly using their brain activity [19], [21], [27]. This
method can improve motor or cognitive training while
also promoting neuroplasticity by strengthening brain
networks. EEG can be used to interpret motor inten-
tions and aid in the control of prosthetic devices like
exoskeletons. Advances in decoding motor orders from
EEG data have the potential to revolutionize rehabili-
tation for those with motor disabilities.

• Adaptive Learning Algorithms: Using adaptive
machine learning algorithms, rehabilitation treatments
can be customized to each patient’s development and
needs. These algorithms [43], [49], [63], [65], [66],
[79] can analyze EEG data in real time and change the
complexity or character of training exercises as needed.

• Brain connection Analysis: Using EEG data to
investigate functional and structural brain connec-
tion patterns can reveal how different brain regions
interact throughout rehabilitation. This knowledge
can be used to guide the development of focused
therapies [80].

• Individualized Biomarkers: Identifying EEG biomark-
ers that correlate with various neurological diseases
and rehabilitation outcomes might help patients be dif-
ferentiated and treated more effectively. Personalized
therapies based on these biomarkers have the potential
to improve rehabilitation success [81].

• Real-World Applications and Telehealth: Research
focusing on deploying EEG-based rehabilitation
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interventions outside of clinical settings, such as at
home or via Telehealth platforms, can enhance patient
compliance and increase access.

H. WHAT IS THE CURRENT STATE OF RESEARCH IN
MACHINE LEARNING-BASED EEG-BASED NEURAL
REHABILITATION?
Machine learning algorithms were used on EEG data for
motor rehabilitation, with the goal of interpreting motor
intents and giving real-time feedback to control prosthetic
devices or exoskeletons. These treatments are intended to
restore motor function in people who had lost it due to a
stroke.

• Cognitive Rehabilitation: Using EEG data, researchers
used machine learning to create personalized cogni-
tive rehabilitation programmers [13], [17], [18], [43].
In neurodegenerative illnesses, these interventions tar-
geted issues such as attention deficiencies, memory
impairments, and cognitive decline.

• Neurofeedback and BCI: Using machine learning algo-
rithms, real-time Neurofeedback systems were devel-
oped, in which individuals receive instant feedback
regarding their brain activity [6], [31], [33], [37], [56],
[79]. By allowing users to adjust their brain activity
patterns, these systems attempted to improve neuroplas-
ticity and cognitive skills.

• BCI Biomarkers: Machine learning algorithms were
used to find predictive biomarkers from EEG data,
which indicated the likelihood of effective rehabilitation
outcomes. This enabled personalized treatment planning
and more precise intervention targeting [21], [36], [46],
[61], [71].

• Closed-Loop Rehabilitation: Researchers were looking
towards closed-loop devices that might change rehabili-
tation protocols in real time depending on EEG feedback
[49], [53], [56], [77]. These technologies optimized the
rehabilitation process by adapting training parameters to
the user’s continuous brain activity.

• Generalization of transfer learning models: Researchers
were focused on increasing the generalization of
machine learning models trained on one dataset to other
datasets or individuals [14], [21], [27], [53]. To address
the heterogeneity in EEG data across different patients
and circumstances, transfer learning techniques were
being researched.

Table 5 presents a summary of various non-invasive EEG
apparatuses that are used for assistive, adaptive, and rehabil-
itative purposes.

VI. DISCUSSIONS AND CONCLUSION
The field of BCI research shows promise in clinical appli-
cations and neurophysiologic evidence for BCI-induced
neuroplastic adjustments. However, conclusive clinical inves-
tigations demonstrating the effectiveness of BCI interven-
tions are limited, hindering its integration into accepted
clinical procedures.

BCI systems vary in design characteristics, and prim-
ing the brain before intervention has been shown to
improve functional outcomes in rehabilitation. Combining
BCI-based robotic solutions with other approaches like
BCI-neuromuscular electrical stimulation has demonstrated
favorable impacts. BCI-controlled soft robots have potential
for effective stroke rehabilitation.

BCIs and rehabilitation can help individuals become more
independent, benefiting both those with cognitive issues and
physical impairments. EEG equipment can be utilized by
healthy individuals and those with disabilities in various daily
life situations.

To create non-invasive BCI applications, researchers
should consider market needs and focus on end-user prod-
ucts. Wireless devices offer convenience and feasibility for
long-term usage and outdoor applications. Ensuring data
integrity and user experience assessments are essential for the
adoption in BCI technology in various industries.

Additionally, for a positive impact, intensive strategies
involve combining BCI-based robotic solutions with other
approaches, such as BCI-neuromuscular electrical stimu-
lation [15]. According to user satisfaction and usability
assessments [34], soft robots are reportedly appropriate in
rehabilitation applications for people with neurological dis-
abilities. Both those with cognitive issues and those with
physical impairments can benefit from assistive technology.

Overall, the EEG channel serves as a guide for adapting
the technology to various levels of limitations and impair-
ments. Furthermore, the BCI system [57] utilizes Binary
Particle Swarm Optimization (PSO) and geometrical features
collected from the Signal Order Difference Profile (SODP)
form. This method shows promise in accurately diagnosing
depression from EEG data, which could help with depression
diagnosis and management. To generate Poincaré plots [58]
using EEG data, the Discrete Wavelet Transform (DWT) can
extract graphical features. The proposed technique shows
promising results in reliably recognizing seizure occurrences
by analyzing these aspects. The experimental results show
that study has important implications for seizure detection
andmay help improve the diagnosis and treatment of epilepsy
and other seizure-related illnesses.

To create non-invasive BCI applications, researchers might
consult the market size to select the research studies that
should be supported. When it comes to gaming applications,
the BCI market is currently large and popular. Game design-
ers and different makers of consoles meant for gaming could
explore the opportunity of integrating gaming systems with
BCI solutions. When choosing the devices to utilize for an
application, BCI investors (researchers) should be able to
purchase them.

Further, the focus should be on end-user products based
on market needs. Wireless gadgets are more convenient to
roam around due to day-to-day usage in the long term and the
feasibility of use in outdoor applications. There is no need to
wash the head after using an additional, dry EEG electrode
because it is simple, doesn’t require extra tools like syringes,
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and is easy to use. The selection of the devices must consider
several variables, including the medical certificate, the dry,
saline, and gel electrode types, the size and shape of the
EEG cap, and the device type (wired/wireless). The wireless
device type was suitable for underlying body mobility and
cognitive processes in rehabilitation and sport science. With
the goal of fulfilling end users’ desires and requirements and
safeguarding the security of their sensitive information, more
user experience assessments and data integrity policies are
required.

Data integrity and user experience assessments are crit-
ical for BCI technology adoption across sectors. Finally,
while BCI technology shows promise in rehabilitation
and other areas, more research and a user-centered
approach are required to maximize its effectiveness and
impact.
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