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ABSTRACT Conflict detection plays a crucial role in ensuring flight safety and efficiency and is a critical
component of an air traffic control system. Despite the availability of tools to support air traffic controllers in
identifying potential conflicts, their quality, and accuracy remain limited due to the challenge of accurately
accounting for uncertainty when predicting flight trajectories. To tackle this issue, researchers have
explored various studies focused on using probabilistic techniques to model aircraft dynamics and trajectory
uncertainty. However, these approaches share several common shortcomings, including their assumptions
about uncertainty distributions and the high computational costs of detecting and calculating the risk of
conflicts. In response to these challenges, we propose a data-driven approach combining a multi-output
generative model with a Bayesian Optimization algorithm to effectively model the uncertainty of aircraft
trajectories and rapidly identify the probability of a conflict. Our approach employs the Heteroscedastic
Gaussian Process to capture complex trajectory patterns and uncertainty from historical data directly. The
proposed predictive model can effectively capture heteroscedastic noise from real data, leading to improved
predictions. It achieves Kullback-Leibler divergence around 1 to 1.3 for all dimensions which reduces by
> 45% for latitude, > 24% for longitude, and 4% for altitude compared to the classical homoscedastic GP
approach. The method also boasts high-performance predictions for 4D trajectories including descending,
climbing, and en-route phases. To pinpoint when two aircraft are most likely to experience a conflict, the
Bayesian Optimization algorithm is adopted, which shows good performance in terms of computational
efficiency and flexibility for probabilistic conflict detection. The proposed model achieves percentage error
< 0.25% in estimating the conflict probability with computational cost < 14s. By addressing the challenges
of uncertainty and computational complexity, our method demonstrates great potential to enhance flight
safety and efficiency.

INDEX TERMS Air traffic management, ADS-B data, Bayesian optimization, probabilistic conflict
detection, uncertainty modeling.

I. INTRODUCTION
Conflict detection and resolution (CDR) is critical in
maintaining flight safety and efficiency in an air traffic
control (ATC) system. The CDR problem is typically
decomposed into two sub-problems: conflict detection (CD)
and conflict resolution (CR). A conflict between any two
aircraft is defined as the violation of vertical and lateral
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minimum separations between them in en route airspace, e.g.,
sv ≤ 1000 feet or 10 flight level (FL) and sh ≤ 5 nautical
mile (NM) [1]. In the CD problem, the primary task is to
foresee potential conflicts between aircraft. As such, this
task heavily relies on the prediction of the aircraft’s future
locations or trajectories. The stochastic nature of the air
transportation environment poses challenges in predicting
these future locations. This stochasticity originates from
different factors such as weather, wind, unexpected airspace
closure or other events, pilots’ intention in free flight mode,
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etc. Therefore, incorporating these uncertainties during
trajectory prediction and conflict detection is important to
achieve accurate conflict detection.

Several approaches for conflict detection in structured
as well as free flight operations have been proposed in
the literature. These approaches can be classified into three
main categories: deterministic, worst-case, and probabilistic.
Probabilistic approaches are considered a promising direction
since they can incorporate different types of uncertainties in
conflict prediction. In a probabilistic setting, some studies
considered empirical distribution model of future aircraft
positions [2], [3] or modeling the dynamics of aircraft [4],
[5], [6] with certainty. Other works include a probabilistic
approach to identify conflicts at the merging waypoints [7]
and the use of random walks with unknown intents to cal-
culate the conflict probability at each moment of discretized
time [8]. Two main approaches in probabilistic conflict
detection are the analytical approach [3] and the Monte Carlo
simulation [9], [10]. The analytical approach requires an
actual closed-form solution which is often impractical due to
the complexity of the real-world scenarios. It also requires
imposing certain constraints on the aircraft dynamics and
the incorporated uncertainty for the computation of conflict
probability. Monte Carlo simulation is a more practical
approach because it can incorporate a more complicated
state-space model with flexible uncertainty modeling (e.g.,
non-Gaussian, multi-modal). Especially when additional
information, such as weather or pilots’ intent, is available,
new uncertainties can be included. However, the most
noticeable disadvantage of the Monte Carlo simulation is
the high computational resource required to run a huge
number of iterations. Yang et al. [10] propose an algorithm to
speed up Monte Carlo simulation by simplifying the aircraft
dynamics model. In one of the recent works, researchers have
used a combination of analytical and monte-carlo simulation
to address the issues of computational cost, albeit in 2-D
(latitude and longitude), without significant improvement in
computational speed [11]. The authors in [12], [13], [14],
[15], and [16] also try to detect probabilistic conflict at a
discretized time by computing the conflict probability at
each moment with assumptions about uncertainty and aircraft
dynamics. These approaches share common limitations,
such as their assumption about uncertainty distribution and
high computational cost for estimating conflict probability.
Moreover, the computational cost of conflict detection is also
a bottleneck in the study of conflict resolution and poses a
challenge for evaluating a large number of candidate resolu-
tion maneuvers. To overcome those limitations, data-driven
and machine-learning approaches have been investigated for
trajectory prediction [17], [18], [19] without the need for an
explicit model of weather and aircraft dynamics, etc. Since
there are no explicit formulae to estimate conflict probability
in these learning-based approaches, an efficient method
based on the Monte Carlo simulation method is a poten-
tial candidate for estimating conflict probability between
aircraft.

In this study, we combine the Gaussian Process (GP)
to represent the uncertainty in flight trajectories with
Bayesian Optimization (BayesOpt) to locate the point with
the maximum conflict probability efficiently. The use of
the Gaussian process for trajectory prediction is inspired
by [20]. First, the Gaussian Process is used as a generative
model to capture the complex trajectory pattern and its
uncertainty directly from trajectories. This generative model
must be able to address two primary challenges: the ability
to produce multi-output values and the heteroscedasticity
of data. Our work incorporates the 3-D position of the
aircraft (longitude, latitude, and altitude) and, thus, is a
multi-output problem. To handle this attribute, we train
three GPs, one for each dimension. Thus, our generative
model is, in fact, a set of three GP models. The work
in [21] develops a Homoscedastic GP model to capture
the consistent variance in data. In our work, the variations
in longitude, latitude, or altitude of aircraft positions vary
with time. Therefore, the heteroscedastic GP [22] is adopted
to capture the variance of the considered data, while the
classical homoscedastic GP is used as the baseline for
comparison. After the development of the generative model,
the current flight information (conditional points) such as
current position and reference route is provided to the model
for training the trajectory predictionmodel with uncertainties.
These uncertainties are obtained by considering data variation
on conditional points using a second GP. We also apply the
Bayesian optimization algorithm for probabilistic conflict
detection. We aim to obtain similar results as the Closest-
Point-of-Approach (CPA) but in a probabilistic manner by
identifying the time at which two aircraft have the highest
probability of conflict. This is called Probabilistic Closest-
Point-of-Approach (P-CPA). Since conflict is a rare event,
the cost of estimating conflict probability is high. Our
proposal method is faster and more flexible in finding
P-CPA compared to the grid-search approaches and the
existing methods. The proposed approach and the main
results are also reported as a part of the first author’s doctoral
dissertation [23].

II. ADS-B DATA
In this study, Automatic Dependent Surveillance-Broadcast
(ADS-B) data is used for training and evaluating the proposed
approach. An en-route sector (Sector 2E) within Kuala
Lumpur FIR, managed by the Singapore Air Traffic Center
(ACC) for providing air traffic service from FL120 to FL360
inclusive, is selected for further analysis. Figure 1 depicts the
spatial characteristics of the selected sector. It takes about
5 minutes on average for a typical flight to cross the sector.
The sector contains 8 waypoints and is crossed by 8 Air
Traffic Service (ATS) Route. There is one crossing in the
sector and one converging point in the south of the sector. The
spatial characteristics and the airspace structure of the sector
are simple, therefore the scenario of the sector can be easily
identified. We used the ADS-B data for December 2016 for
analysis.
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FIGURE 1. The layout of Sector 2E, with its waypoint and ATS routes.

The original ADS-B data set is a large data set with
noise and missing data points. Moreover, with the given
spatial information of Sector 2E, only a subset of trajectories
should be considered and investigated. Thus, some data
pre-processing steps are required:

1) First, we apply a 2D spatial filtering to filter out all
trajectories which do not pass through the sector. A
total of 12,141 flights that passed through Sector 2E
in Dec 2016 were extracted.

2) A second 2D spatial filtering is applied on trajectories
passing by Sector 2E to filter out data points outside of
the sector. It is separated from Step 1 since the criteria
for filtering can be changed in the future for different
information extraction.

3) To deal with missing data points, we remove all the
flight trajectories that have less than three data points in
the sector. Thus, the final dataset size for training and
evaluation of our approach is 9,082 flights.

Flight trajectories can be grouped using various metrics
such as entry/exit points, maneuvers inside the sector, flight
levels, etc. Different flight trajectory patterns between entry
and exit points can be due to the maneuver instructions
provided by the controllers or requests of pilots in response
to traffic or to avoid regions of turbulent weather. From
our observations and previous studies, given similar entry
information, we can obtain similar 4D exit points for the
flights. Thus, for en-route sectors, we propose grouping
flights based on their entry and exit information to form
flight routes, as shown in Figure 2. The variation, observed
within each group of flights, is the uncertainty of a flight
route. The final dataset contains 42 groups of flights
which are utilized for training and evaluating the proposed
approach.

III. OVERVIEW OF THE PROPOSED METHODOLOGY
The proposed approach (Figure 3) consists of two com-
ponents: a predictive model and a Bayesian optimization
model. In the first step, historical trajectories are clustered
in terms of the locations of their entry to and exit from
the airspace sector. Trajectories from the same cluster are
considered to share a common entry-exit pair; however,
due to uncertainty, their actual flight paths from the entry
to the exit are varied. As discussed, the trained generative

model is a set of three Gaussian processes. To perform
predictions for the incoming flights, recent positions and
future reference positions of the flights are provided as
conditional points. Given these conditional points, the dataset
is filtered to identify a subset of trajectories that pass through
all the conditional points. We then train our GP predictive
models using filtered trajectories and learned flight position
uncertainty.

The current work is focused on two aircraft conflict
detection. Thus, predictive models are trained to predict the
future locations of each aircraft and to be used for estimating
their conflict probability. This conflict detection problem is
formulated as an optimization problem, in which we identify
a timestamp t when the conflict probability is the highest.
The proposed Bayesian optimization algorithm is discussed
in more detail in section V. For a given a timestamp t ,
we estimate conflict probability P(t) using the Monte Carlo
simulation method. This result is stored in the memory and
also used to update a probabilistic model, called the surrogate.
The surrogate function is an approximation function of the
original function but needs less time to evaluate. Then the
acquisition function, a mathematical technique for guiding
the exploration of the parameter space during Bayesian
optimization, uses the updated surrogate function to make the
prediction of the next value of t to be used for evaluation.
The searching process stops when the number of iterations i
reaches the maximum number of evaluationsMax_Eval.

This proposed approach is designed to perform probabilis-
tic conflict detection in the short and medium term with
a time horizon varying between 5 and 20 minutes. The
predicted conflict probability can be provided to air traffic
controllers (ATCO) to improve their situation awareness.
A binary conflict detection can also extracted from this
probability by providing a threshold. Since air traffic control
and air traffic are dynamic, the appropriate threshold should
be adjustable and depending on each ATCO, which will be
investigated in our future work for conflict detection with
human input. Moreover, in this approach, the predictive
models learn the heteroscedastic noises from the historical
realization of the planned trajectory (e.g., conditional points),
sufficient data is required to provide accurate estimation.
In situations where the planned trajectory is non-nominal,
the default uncertainty distributions can be used to generate
the data for the input of this approach. In that case, the
performance of this approach approximates the accuracy of
the default uncertainty distributions which can be adopted
from state-of-the-art studies for trajectory uncertainty
modeling.

IV. PREDICTIVE MODEL FOR FLIGHT TRAJECTORY WITH
LEARNED UNCERTAINTY
A. PROBABILISTIC TRAJECTORY PREDICTION USING
GAUSSIAN PROCESS
Recently, machine learning methods such as hidden Markov
models and random forests have been used for trajectory
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FIGURE 2. Examples of grouping trajectories based on entry and exit points.

FIGURE 3. Illustrating approach for probabilistic conflict detection using Bayesian optimization.

prediction. However, when considering a predictive model
with uncertainty, the Gaussian process is a promising
approach because it can effectively model the dispersion
of a trajectory. The Gaussian process is a collection of
random variables, any finite number of which have (consis-
tent) joint Gaussian distributions [24]. A Gaussian process

f ∼ G(m(t), k(t, t ′)) is fully specified by its mean
function m(t) and covariance function k(t, t ′) which need
to be symmetric and satisfy Mercer’s condition. Since our
work involves 3-dimensional positions of aircraft over time,
we train 3 Gaussian processes with time as input and latitude,
longitude, and altitude as outputs of Gaussian processes.
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1) HOMOSCEDASTIC NOISE AS THE INPUT INDEPENDENT
NOISE
We consider a single cluster with H trajectories. For each
trajectory iwewill haveNi input vectors t paired with outputs
y. Thus, the training data is of the form: DN = {(tj, yj)}j=1..N
with N =

∑H
i=1 Ni.

Gaussian process regression is a machine learning tech-
nique for inferring likely values of y for an input t as y(t) =
f (t) + ϵ where f is a Gaussian process, ϵ ∼ N (0, σ 2) is an
input noise, and σ is a positive constant.

For the generative trajectory model, we train three
one-dimensional models with t as the time and y as either the
longitude, latitude, or altitude of the aircraft at time t . In this
manner, we can specify the noise variance for each dimension
independently. However, one drawback of this approach is
that it does not model the correlation among the noises of the
three dimensions.

2) HETEROSCEDASTIC NOISE AS THE INPUT INDEPENDENT
NOISE
Instead of inferring y for an input t as y(t) = f (t)+ ϵ where
f is a Gaussian process, ϵ ∼ N (0, σ 2) is the input noise with
σ is a positive constant, we consider the model:

y(t) = f (t)+ ϵ(t),

ϵ(t) ∼ N (0, σ (t)),

This is because it can capture the different noise levels along
the trajectories. Furthermore, we use kernel regression to fit
the noise-level function σ (t).

3) AIRCRAFT TRAJECTORY PREDICTION GIVEN CONDITIONS
POINTS
From the generative model, the mean function m∗ and kernel
k∗ are obtained and used to sample K next locations of the
aircraft D̂K = (ti, ŷi)Ki=1 = (TK , ŷK ) after observing its M
previous locations DM = (ti, yi)Mi=1 = (TM , yM ). This could
be done by using the posterior distribution:

ŷK |TK ,TM , yM ∼ N
(
k∗(TK ,TM )(k∗(TM ,TM )

+ σ (TK )I )−1yM , k∗(TK ,TK )+ σ (TK )I

−k∗(TK ,TM )(k∗(TM ,TM )+ σ (TK )I )−1k∗(TK ,TM )
)
.

(1)

Equation (1) can also be used to sample trajectories with
given conditional points by settingDM = (TM , yM ) as the set
of conditional points. A conditional point is either the current
position of the aircraft or reference points such as waypoints
in the flight route. Instead of providing the model with the
current positions only, we consider scenarios where flights
have information on the reference routes from flight plans
or from air traffic controllers. This setting can be used in
conflict resolution where eachmaneuver can be considered as
a reference flight route or set of conditional points and input
into our model.

B. EXPERIMENT 1
This experiment is designed to evaluate the ability of the
proposed probabilistic trajectory prediction model to capture
the uncertainty from data using the heteroscedastic Gaussian
process. The historical data will be utilized for training
and evaluating the proposed approach. Its performance will
be compared with a homoscedastic GP approach, adapted
from [21], for accessing the advantages of our approach in
modeling the heteroscedastic noise in real trajectory data.

The training process of the probabilistic trajectory pre-
diction model is designed and implemented following
Algorithm 1. The first part of the algorithm involves
training the Gaussian processes to model the trajectories
in each flight group with corresponding uncertainties. This
step trains one Gaussian process for each data dimension
(longitude, latitude, and altitude). In the second part, the
prediction Gaussian process models are trained using the
trained kernel of previous models as initial kernels and
conditional points as input. The algorithm requires the
following inputs for predictions: processed trajectories for
each flight route (grouped trajectories), minimum number
of trajectories (NT ), maximum number of data points for
a subset of trajectories (NPMAX ), number of conditional
points (NCP) and initial radius value of each dimension
for filtering trajectories with conditional points (1). Here,
NT is used to guarantee sufficient input data for training.
However, due to the limitation of computational power,
NPMAX can be adjusted to generate a smaller subset of data
for training the three Gaussian processes (high complexity
O(n3)). Furthermore, 1 is crucial for building training data
for the predictive model. It is multiplied with normalized
learned variance (Normalized_V ) to compute the filtering
region (within radius RadiusFiltered ) for each conditional
point. Only trajectories that pass through all filtering regions
of conditional points remain in the new data set, which is
then used to train predictive models. These input parameters
can be modified depending on the particular application.
In this experiment, several trials have been conducted for
the appropriate parameters, and as the results, the selected
parameters are [NT = 10,NPMAX = 500, NCP = 4, 1 =

[1NM , 1NM , 0.5FL]]. We use GaussianProcessRegression
from SKlearn for learning and in the case of heteroscedastic
noise, a heteroscedastic kernel, adopted from [25], is used.
The historical trajectory data, described in Section II,

are used with the train/test ratio of 70/30 for each flight
group. The training data is used to train the generative
models which capture the uncertainty of trajectories within
each group. Noting that the selected training data of each
group is sufficient for training purposes with more than
NT = 10 trajectories and NPMAX = 500 data points.
For the testing data, the conditional points are obtained by
extracting the turning points from each trajectory using the
Douglas-Peucker algorithm [26]. A set of conditional points
for each trajectory will include the start and end locations
and the set of extracted turning points. The size of those
sets may vary between 3 to 5 in our dataset, depending on
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Algorithm 1 Algorithm for Prediction Model
Input: TrajGID, NT , NPMAX , NCP, 1
Result: GPTf

1 if TrajGID ≥ NT then
2 Trajsamples ⊆ TrajGID and |Trajsamples| ≤ NPMAX
3 GPTs = Train_Gaussian_Process(Trajsamples)
4 CP(X ,Y ,Z ,Time) =

Initializing_conditional_points(NCP)
5 V = Estimating_Variance(GPTs, CP.Time)
6 Normalized_V = V/min(V )
7 RadiusFiltered = (Normalized_V [i] ∗1[i])NCPi=1
8 TrajFiltered =

Filter_Conditional_Trajectories(TrajGID, CP,
RadiusFiltered )

9 GPTf = Train_Gaussian_Process(TrajFiltered ,
kernels = GPTs.kernels)

10 end

the pattern of each trajectory. Then they are utilized as input
for Algorithm 1 to obtain the heteroscedastic GP models for
probabilistic trajectory prediction.

For comparison, a baseline probabilistic trajectory pre-
diction model using classical homoscedastic GP adapted
from [21] is implemented, trained, and tested with the same
set of data. The performances of those models are accessed
both qualitatively (e.g., visualizing and observing the varia-
tion of the predicted trajectories from both approaches) and
quantitatively (e.g., comparing the Kullback-Leibler (KL)
divergence obtained from both approaches). The Kullback-
Leibler (KL) divergence, also known as relative entropy, is a
measure of how one probability distribution diverges from
another. It is used in this experiment to quantify the difference
between the probability distributions of the prediction model
and the historical data. The formula for KL divergence
between two probability distributions P and Q is defined as:

DKL(P||Q) =
∑
i

P(i) log
(
P(i)
Q(i)

)
(2)

where DKL(P||Q) represents the KL divergence from distri-
bution Q to distribution P; P(i) and Q(i) are the probabilities
of an aircraft position i occurring in distributions P and Q,
respectively.

C. EXPERIMENTAL RESULTS AND DISCUSSION
Using threemodels to handlemulti-outputsmay lead to issues
with correlations among different dimensions. However,
Figure 4 shows our prediction result for trajectory in
2 dimensions (longitude and latitude). In which, the mean
predicted trajectories (green lines) of both models are smooth
and fit to the trajectory data. The results show that combining
predictive values from our trained models can still capture the
distribution of multi-dimensional trajectory data.

Figure 5 illustrates the results of the generative models
for three dimensions (longitude, latitude, and altitude) for

FIGURE 4. Learning ADS-B trajectory variation.

one flight route. The figures in the first column present the
normalized values of the trajectories in each dimension over
normalized time. Based on algorithm 1, the sampling step is
applied, i.e. keeping 10% of data ≈ 500 data points. This
will speed up the training of the Gaussian process and is
also similar to the case where the number of data points
is limited for fewer traffic routes. Two columns with black
scatter plots on the right-hand side show the learning results.
As we can see in columns 3 and 4 of Figure 5, the Gaussian
process with homoscedastic kernel results is consistent in its
variance over time for the three dimensions while the one
with a heteroscedastic kernel replicates the distribution of
raw data very well. Additionally, we can observe a bigger
dispersion in latitude dimension than the others which is also
reflected in the differences between the shapes of simulated
data for both types of models. The simulated latitude values
of the heteroscedastic model have a very small variance at the
beginning, which significantly increases over time.

The results for predictive models using the heteroscedastic
model for ADS-B data are illustrated in Figure 6. The second
column of figures shows the results of the filtering process.
Because the filtered radiuswill be proportional to the variance
of the group at given time stamps, the filtered trajectories can
also have big dispersion by keeping the trajectory quite far
from conditional points. The results for predictive models can
be observed in the third column of Figure 6 are interesting.
The mean predicted trajectory can be used to anticipate
the flight trajectory that flows the reference route (through
conditional points) since it fits well with the shape of the
trajectories in the data. Another interesting observation is the
learned variance or uncertainty of the model. The sampling
data from the model has shown its ability to capture not
only the dispersion of filtered trajectories but also the full
data. Moreover, the model with a heteroscedastic kernel
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FIGURE 5. Example of learning ADS-B trajectory’s variances.

FIGURE 6. Prediction results from predictive model with ADS-B data.

provides good results in capturing the uncertainty from
trajectory data as compared to the homoscedastic model. The
comparison of two types of models using Kullback-Leibler

(KL) divergence is represented in Figure 7. From the left to
the right, we can observe the results for different dimensions
(longitude, latitude, and altitude). The heteroscedastic model
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FIGURE 7. Comparing Kullback-Leibler divergences of heteroscedastic
and homoscedastic models.

achieves robust performance with KL divergence around 1 to
1.3 for all dimensions. The performance of the two altitude
predictive models is similar with the difference ≈ 4%, even
though the median value of the heteroscedastic model is
slightly smaller. A possible explanation is that the variance
of altitude dimension in raw data is consistent over time
which eliminates the benefits of our proposed approach.
Our proposed approach outperforms the classical Gaussian
process in modeling both longitude (> 24% reduction)
and latitude (> 45% reduction), especially since there is
a significant improvement in the performance of the model
for latitude. We can conclude that heteroscedastic modeling
can significantly better capture model trajectory data than
homoscedastic modeling.

V. PROBABILISTIC CONFLICT DETECTION USING
BAYESIAN OPTIMIZATION
A. BAYESIAN OPTIMIZATION
Bayesian Optimization is a class of machine-learning-based
optimization methods that focuses on solving the problem

maxt∈AF(t),

where A is the feasible set and F is a ‘‘black-box’’ objective
function or is costly to be evaluated.

In contrast to GS, the BayesOpt algorithm keeps track of
the past evaluation results to update a probabilistic model
which maps the given parameters to the probability of a score
s from objective function F(t). The probabilistic model P(s|t)
is called a ‘‘surrogate’’ function with an input parameter, t ,
and a predicted score s. Bayesian optimization consists of five
main steps:

1) Building surrogate probability model of objective
function: The surrogate function is the probability rep-
resentation of the objective function. There are several
different forms of the surrogate function including
Gaussian processes, Random Forest regression, and
Tree-structured Parzen Estimator [27] which is used
in this study. Instead of directly representing P(s|t),
the Tree-structured Parzen Estimator (TPE) applies the
Bayes rule to get surrogate probability P(s|t):

P(s|t) =
P(t|s)P(s)
P(t)

where P(t|s) is the probability of the parameter t given
the score s of the objective function and is defined as:

P(t|s) =
{
l(t) if s < s∗

g(t) if s ≥ s∗

Here, s∗ is the threshold value of the objective function.
l(t) and g(t) are two Gaussian Mixture Models (GMM)
in which l(t) is fitted using the data points in which their
corresponding objective values are less than s∗ and g(t)
is fitted using the remaining data points.

2) From the surrogate function, finding the next parameter
t to be evaluated using Acquisition Function: Given the
surrogate function, the acquisition function AEI (t) is
the criteria to find the next parameter. This study uses
the most common choice of this criteria, which is the
expected improvement:

AEI (t) = EIs∗ (t) =
∫
−∞

s∗(s∗ − s)P(s|t)ds

In this equation, t is the proposed parameter, and s is the
actual value of the objective function using parameter
t . The aim of this method is to maximize the Expected
Improvement with respect to parameter t or find the
best parameters t under the surrogate function P(s|t).
If EIs∗ (t) > 0, the parameter t is expected to yield a
better result than the threshold value.

3) Apply the new parameter to the original objective
function.

4) Update the surrogate model incorporating the new
result.

5) Repeat steps 2-4 until maximum iterations or time is
reached.

B. PROBABILISTIC CLOSEST POINT OF APPROACH - PCPA
We model the uncertainty in two trajectories by two sets of
Gaussian processes f 1 and f 2 which are fitted to data, with the
format f (t) = (GPlongitude(t), GPlatitude(t), GPaltitude(t)).
Our purpose is to find the time in which two aircraft have
the highest probability of conflict:

t̄ = argmaxt∈TP(t), (3)

where P(t) = P(∥f 11,2(t) − f 21,2(t)∥ ≤ sh, |f 13 (t) − f 23 (t)| ≤
sv), with f1,2(t) = (GPlongitude(t), GPlatitude(t)), and f3(t) =
GPaltitude(t). In this work, we set sh = 5NM and sv = 10FL.
Taking the advantage of Gaussian process, we can

approximately compute P(t) by Monte Carlo simulation:

P(t) ≈
1
Ns

Ns∑
i=1

IAi(t),

where Ns is the number of MC runs, Ai(t) is the event
{∥f 1,i1,2(t) − f 2,i1,2(t)∥ < sh, |f 1,i3 (t) − f 2,i3 (t)| < sv},

{f 1,i1,2(t)}i=1,...,Ns
i.i.d
∼ Pf 11,2(t), {f

2,i
1,2(t)}i=1,...,Ns

i.i.d
∼ Pf 21,2(t) and

{f 1,i3 (t)}i=1,...,Ns
i.i.d
∼ Pf 13 (t), {f

2,i
3 (t)}i=1,...,Ns

i.i.d
∼ Pf 23 (t).

As discussed air traffic conflicts are rare events. As a result,
estimating the conflict probability at each time t requires
a large number of simulation runs Ns. We also need to
evaluate the maximum value of P(t) with respect to t (refer
equation (3)). Therefore, the computational load is very high.
To overcome this situation, we apply the BayesOpt technique
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by choosing Tree Parzen Estimators (TPE) for the surrogate
probability model and using Expected Improvement for the
selection function.

C. EXPERIMENT 2
This experiment’s main purpose is to evaluate BO’s advan-
tages for quickly estimating accurate conflict probability
between a pair of aircraft. Algorithm 2 describes the conflict
probability estimations of two flights (with uncertainty) using
Bayesian optimization (BayesOpt). At a given timestamp
t , we perform the sampling with size Ns for both flights:
[P11..Ns ], [P

2
1..Ns

]. Then, for each pair, the distance between
two aircraft Dist(P1k ,P

2
k ) is compared with the minimum

separation allowed (constraints). The conflict probability is
computed directly from the number of pairs which violate
the constraints over Ns. The output of these algorithms
is the maximum conflict probability (CProb), the time to
probabilistic closest point of approach (Time − to − PCPA),
and the computational cost (Cost). The hyperopt Python
package is used for the BayesOpt algorithm. Since we want to
avoid any assumption about the search space for t , a uniform
distribution is used to sample t . It is worth noting that the
used package tries to minimize our defined objective function
while our objective is to maximize conflict probability. Thus,
the returned probability is multiplied by a negative one in the
objective function. In BayesOpt, there are two terminating
conditions: the convergence of maximum objective values
or maximum number of evaluations (max_evals) is reached.
In this study, we use max_evals as the terminating criterion.

Algorithm 2 Bayesian Optimization Method
Input: N, GP1_2, GP2_2, Duration, Threshold
Result: CProb, Time-to-PCPA, Cost

1 def objective(t):
2 Traj_1 = GP1_2.sample_y(t, N2)
3 Traj_2 = GP2_2.sample_y(t, N2)
4 Dist = Distance(Traj_1,Traj_2)
5 Prob_t = Conflict_Prob(Dist, Threshold)
6 return -Prob_t
7 end
8 space = hp.uniform(‘t’, 0, Duration)
9 algo = tpe.suggest #Tree Parzen Estimators
10 trials = Trials()
11 Start_time = time.time()
12 Time-to-PCPA = hp.fmin(objective, space, algo,

trials, max_evals)
13 CProb = get_max_prob(trials, Time-to-PCPA)
14 Cost = time.time() - Start_time

Algorithm 3, which is based on Grid-Search (GS) is
developed as the baseline for comparison. The algorithm has
steps similar to Algorithm 2, but the difference is how they
find the value of t for evaluation. GS algorithm evaluates
all values of t in a given range. Since the time interval (R)
is given, only a predefined set of values t is evaluated. This

approach is mentioned and commonly used for probabilistic
conflict detection, especially when finding the maximum
conflict probability [12], [13], [14], [15], [16]. On the other
hand, BayesOpt determines a sequence of values t depending
on historical evaluations. This sequence of values of t can
be continuous. By employing BayesOpt, the sample size
is reduced, and consequently, lower computational cost is
required.

Algorithm 3 Grid-Search Method
Input: N, R, GP1_2, GP2_2, Duration, Threshold
Result: CProb, Time-to-PCPA, Cost

1 Start_time = time.time()
2 Prob_T = []
3 for t ← 0 to Duration by R do
4 Traj_1 = GP1_2.sample_y(t, Ns)
5 Traj_2 = GP2_2.sample_y(t, Ns)
6 Dist = Distance(Traj_1,Traj_2)
7 Prob_t = Conflict_Prob(Dist, Threshold)
8 Prob_T.append(Prob_t)
9 end
10 CProb = max(Prob_T)
11 Time-to-PCPA = argmax(Prob_T)
12 Cost = time.time() - Start_time

For accessing the performance of those approaches,
a scenario of two aircraft, illustrated in Figure 8, is generated
by randomly sampling a pair of trajectories from two different
groups of trajectories from historical data, mentioned in
Section II. The first group, called group A, is the group of
north-south flights that start near waypointUKASAUKASA,
passing by waypoint PEKLA and heading to waypoint
PIBAP to exit the sector. The second group, called group
B, is the group of east-west flights that start from waypoint
LENDA, passing by waypoint PEKLA and heading to
waypointVMR to exit the sector. The travel time of flights in
each group varies between 12 to 16minutes. The starting time
of the east-west flight is modified by adding an appropriate
delay to ensure a certain level of conflict probability. In this
case, the time differences at the crossing points of those two
trajectories are limited to 1minute. This is a crossing scenario
where the conflict happens because of the uncertainty in the
position of the aircraft at the given timestamp t . The learning
process is applied and at the end, we can obtain two predictive
models for two routes (called A, and B). These models are
then used for evaluating BayesOpt as a probabilistic conflict
detection algorithm.

Detecting aircraft conflict is a safety-critical task where
the accuracy of the algorithm may have a strong impact on
the decision of ATCO. In this work, a large number of MC
simulations (e.g., sampling size Ns from [0.5M , 1M , 2M ])
will be used to accurately estimate the potential conflict
between any pairs of aircraft under high trajectory uncer-
tainty. Besides, 5 different values of sampling interval R
([1s, 5s, 10s, 30s, 60s]) of the Grid-Search algorithm are
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FIGURE 8. Illustration of the two nominal routes (referred to as route A in
black and route B in yellow) for generating the scenarios for experiment
2. Route A represents a group of north-south flights, called group A, that
pass by waypoints UKASAUKASA, PEKLA and PIBAP. Route B represents
a group of east-west flights, called group B, that pass by waypoints
LENDA, PEKLA, and VMR. Groups A and B are groups of flights from
historical data.

selected by considering the common trajectory sampling
rates which are usually used in trajectory prediction and
conflict detection. Therefore, the GS simulation method
is evaluated with 15 different configurations (3 different
values of Ns and 5 different values of R). BayesOpt’s
performance is experimented with and reported for 3 values
of terminating condition, Max_Eval ∈ [50, 100, 200].
These parameter values are increased by a factor of 2 to
perform parameter tuning and the following experimental
results have shown their appropriateness for investigation
of our approach’s performance. For the convenience of
discussion, all experimental models are named with a similar
format {Method}{Parameter}, e.g., GS01, GS05, or BO100.
To distinguish models from the same methods for different
sampling sizes, a corresponding prefix will be added to the
name, e.g., 0.5M - GS01 vs. 2M - GS01. In this study, each
model is evaluated 100 times to obtain the average model’s
performance.

The computational cost and final results for P-CPA (e.g.,
Time to P-CPA and maximum P-CPA) will be reported and
compared between different settings. Because the exhaustive
search has been performed, the results of the GS with
sampling interval 1s and sampling size 2M are chosen as
the baseline for comparison in terms of the Time to P-CPA
and Maximum P-CPA. The difference (e.g., percentage error
PE) in the conflict probability (P-PCA) between the other
models’ estimation VPredicted and the baseline VBaseline will
be extracted and discussed to highlight the advantages and
disadvantages of the proposed BO approach.

PE =
|VPredicted − VBaseline|

|VBaseline|
× 100%

D. RESULT
The experimental is conducted as described and the average
T-PCPA, P-CPA and computational cost are captured for
discussion. First of all, all models can achieve the average
T-PCPA values which approximate the T-PCPA at 2M-GS01.

FIGURE 9. Illustration of the convergence of the P-CPA estimation with
the increases in sampling size of Monte Carlo simulation (from 05.M to
2M). The PE values of GS30 and GS60 are excluded from the figure (e.g.,
PEs ≥ 13.5% and 29.5%, respectively).

FIGURE 10. Illustration of the reduction in standard deviation (std) of the
model’s estimation with the increases in sampling size of Monte Carlo
simulation. The baseline (e.g., 100%) is the std of the Grid-Search 1s
(GS01) with 2M MC simulation.

Moreover, the GS01 shows the sign of convergence at Ns
= 1M, in which the PE of 1M-GS01 and 2M-GS01 is
just 0.05%. All BO models approximate the baseline with
(Ns ≥ 1M ) with the PE < 0.25%. On the contrary, all
GS methods with R ≥ 5s have high PE and only achieve
PE > 0.65% at Ns = 2M. Since with R ≥ 5s, the GS
models can only evaluate the conflict probability at those
discrete points (as their predicted T-PCPAs) with the expected
deviation (approximately R

2 ) from the actual T-PCPA. Thus,
the fine level of the grid or the value of R has a strong
impact on the accuracy of the GS models’ estimation. The
PEs for GS30 and GS60 are very high, e.g., 15% and 30%
respectively, even at Ns = 2M. Those convergence behaviors
can be observed in Figure 9. Since the PE values of GS30
and GS60 are too large, they are excluded from the figure for
better visibility. Furthermore, with the increase in sampling
size, the uncertainties of the estimation also decrease. For
comparison, the standard deviation (std) of 2M - GS01 is
used as the baseline (e.g., 100%) for computing the relative
percentage of the std of the other models. Figure 10 depicts
the reduction in relative std or uncertainties in the estimation
of the evaluated models. Expectedly, the observed reductions
are proportional to the increase in the sampling size of the
MC simulation. F

Since the computational cost strongly depends on the
sample size of MC simulation, the results, in Figure 11,

109350 VOLUME 11, 2023



D.-T. Pham et al.: Probabilistic Conflict Detection

FIGURE 11. The computational cost (s) of all evaluated methods with the
increases in sampling size.

FIGURE 12. Illustration of the trade-off between the computational cost
to find the maximum probabilistic and the of the P-CPA estimation with
the increases in sampling size of the Monte Carlo simulation (from 05.M
to 2M). The PE values of GS30 and GS60 are off the chart and excluded
from the figure (e.g., respectively 13.5% and 29.5%).

show a linear increase in terms of computational costs for
all algorithms when the number of samples (Ns) is increased.
When R increases, there are more values of t that should be
evaluated, and hence, the cost of GS models also increases.
Therefore, even though GS01 can achieve high accuracy in
estimating P-CPA, its computational cost is much higher than
the rest of the models. It needs more than 330 seconds to
estimate the conflict probability with Ns = 1M while the
others just need less than 120 seconds. For the given conflict
scenarios, with 20-minute trajectories, the cost for BayesOpt
with 100 evaluations (BO100) is close to that of GS10
(with 120 evaluations). Moreover, the BO50 can achieve high
performance with significantly less computational costs (e.g.,

<14s seconds at Ns = 1M). The only models that execute
faster than BO50 are GS30 and GS60 but with a significant
trade-off in model performance. For the GS05 model, it still
needs 4.5x the running time of BO50 and 2.3x the running
time of BO100 with a 2.6x increase in PE. Those trade-off
between PE and computational costs, at Ns = 1M, is depicted
in Figure 12. Since GS01 has a too-large computational cost
(>320s), GS30 and GS60 have too-large PE (>13.5% and
>29.5%), they are omitted from the figure for better visibility.
As observed from the figure, BO50 and BO100 outperform
the othermodels in both speed and accuracy for estimating the
probability of conflict between a pair of aircraft. In short, the
1M - BO50 model can be considered as the ‘‘best’’ model
with PE < 0.25% and computational cost < 14s.

VI. CONCLUSION
The results demonstrate the potential of our approach for
trajectory prediction and conflict detection. Heteroscedastic
Gaussian process regression can learn the uncertainty from
data and perform better aircraft position prediction. Although
some recent approaches try to increase the confidence of
prediction by usingmore data and advancedmachine learning
techniques, the uncertainty from data still exists because of
various reasons including human intervention and incomplete
information. Our approach for predictive modeling can
successfully capture heteroscedastic noises in trajectory data
with robust performance. It achieves KL divergence around
1 to 1.3 for all dimensions which reduces by > 45% for
latitude, > 24% for longitude, and 4% for altitude compared
to the classical homoscedastic GP approach. Moreover, the
results in experiment 2 have highlighted the benefits of
BayesianOptimization over the classical Grid-Searchmethod
in terms of speed and accuracy. The algorithm can work
with continuous time, which means it can locate the conflict
position without the impact of the selection of the sampling
interval. The proposed approach can achieve less than 0.25%
percentage error compared to the baseline with only 1/23
of the computational cost. Especially, when computing the
conflict probability is expensive, the contribution of this
method is more significant.

For future work, we believe that improving the
multi-output problem could enhance the performance
of the predictive model and speed up the training. Besides, the
BayesOpt approach for probabilistic conflict detection can be
generalized to work for the whole sector with multiple flights
and conflicts.
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