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ABSTRACT This study addressed the autonomous planning of three-dimensional (3D) underwater inspec-
tion paths for autonomous underwater vehicles (AUVs) in marine ranching by integrating differential
evolution and particle swarm optimization (PSO) algorithms. First, a modified PSO algorithm incorporating
swap operators, mutation, and crossover strategies was employed to enable autonomous obstacle avoidance
during the inspection of offshore net cages in fish farms situated within a 3D marine environment. This
approach addresses the problem of planning full-traversal paths for multiple inspection points. Second, the
performance of the proposed algorithm was assessed through comparative tests with other algorithms. The
proposed algorithm demonstrated significant improvements in convergence speed, accuracy, and stability
under complex scenarios involving multiple optima and intense oscillations. To validate the superiority and
overall planning proficiency of the modified method, an experimental setup comprising of two distinct 3D
marine cage environments with a series of checkpoints was utilized. The experimental results demonstrated
the ability of the proposed algorithm to generate an optimal path while traversing all inspection points of fish
farm offshore net cages. By ensuring the safety of AUVs and closely adhering to the surfaces of offshore net
cages during the inspection process, the algorithm exhibits remarkable adaptability to specific application
scenarios, effectively mitigating concerns related to local optima and premature convergence.

INDEX TERMS Differential evolution, marine ranching, particle swarm optimization, path planning,
three-dimensional space.

I. INTRODUCTION marine net cages and acquisition of information regarding

As terrestrial resources become increasingly scarce, the uti-
lization and development of marine resources have become
prominent research targets worldwide. Ocean ranching is
an environmentally friendly and innovative technique that
provides a new direction for the marine aquaculture industry.

Currently, multiple challenges exist in the construction
of intelligent marine ranches. Notably, the maintenance of
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fish population growth are significant hurdles. Traditional
underwater inspection operations rely on manual inspections,
which suffer from low efficiency, high costs, and concerns
regarding driver safety. Therefore, researchers have proposed
the use of remotely operated vehicles (ROVs) [1], [2] and
omnidirectional surface vehicles (OSVs) [3] as alternatives
to manual underwater inspection. Nevertheless, the utiliza-
tion of ROVs commonly necessitates the deployment of a
substantial OSV outfitted with sophisticated tether manage-
ment systems and dynamic positioning capabilities, making
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ROV operations arduous and financially burdensome [4].
Moreover, the operational scope of OSVs is limited to water
surfaces, which further limits their potential applications [5].
Compared to manned vessels, floating platforms, and other
exploratory underwater vehicles, autonomous underwater
vehicles (AUVs) have the advantages of high maneuverability
and advanced intelligence, making them more suitable for
underwater inspection tasks on marine farms [6]. These tasks
include cage damage inspection and autonomous monitoring
of fish growth. In the studies described in [7] and [8], AUVs
were employed to inspect marine farms, thereby enhancing
the efficiency of routine examinations conducted in aquacul-
ture cages and the organisms within them and highlighting
the crucial role of AUV inspection in marine ranching.

Path planning aims to determine the optimal path between
the start and end points by satisfying a series of constraints
while avoiding potential threat obstacles. In the inspection
path planning of marine ranches, while ensuring the safety
of the AUV itself, the inspection path must be ensured to fit
the surface of the cage to monitor the cage and the organ-
isms inside. To enable AUVs to navigate, assess, and avoid
threats autonomously over long distances and to improve
their survivability and adaptability, efficient and intelligent
optimization algorithms are required to solve the three-
dimensional (3D) underwater path planning problem. The
evaluation criterion for the algorithm involves determining
the shortest path that visits all the predefined points in a
traversal. In recent years, many intelligent algorithms have
been widely applied to underwater path planning for AUVs.
These methods include the ant colony optimization (ACO)
algorithm [9], [10], [11], [12], tuna algorithm [13], whale
algorithm [14], [15], [16], grey wolf optimization algorithm
[17], [18], artificial jellyfish search algorithm [19], water
wave optimization algorithm [20], genetic algorithm (GA)
[21], [22], and other methods [23].

Particle swarm optimization (PSO) effectively balances
global and local search capabilities and is an intelligent
and efficient swarm intelligence algorithm that effectively
balances global and local search capabilities. It has a
simple algorithm structure, high search precision, fast conver-
gence speed, and no strict requirements for differentiability,
derivability, and continuity of the optimization function.
Therefore, it demonstrates prominent adaptability in solv-
ing complex underwater 3D path planning problems. Thus
far, many scholars have made improvements to the PSO
algorithm to cater to the path-planning needs of AUVs in
complex underwater environments. Wang et al. [24] merged
the PSO algorithm with an adaptive step-size cuckoo search
algorithm. The enhanced algorithm empowers AUVs with
efficient obstacle avoidance and path-planning capabilities in
3D environments. Sui et al. [25] proposed a two-layer hybrid
algorithm that combines the ACO, PSO, and A* algorithm
for 3D path planning. Experimental results have shown that
this algorithm can generate optimal collision-free paths with
short lengths and high safety. Zhang and Shi. [26] proposed
an algorithm based on a deep Q-network and quantum particle
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swarm optimization that exhibits superior performance com-
pared with traditional methods in 3D path planning. Li and
Yu [27] proposed an improved compressed factor particle
swarm optimization algorithm that achieved better planning
efficiency and path quality and shorter planning time in 3D
path planning tasks. The aforementioned methods can plan
safe paths to avoid obstacles; however, they are not suitable
for AUV inspection path planning close to the cage in marine
ranch application scenarios, and they still face challenges
such as local optimum trapping and premature convergence
when solving 3D problems in complex scenarios.

Considering the requirements of intelligent marine ranch-
ing for net cage inspection, this article proposes a modified
fusion algorithm based on the PSO and differential evolu-
tion (DE) algorithms. The algorithm utilizes the crossover
strategy of the DE algorithm to help escape from local
optima while optimizing using the PSO algorithm based on
the exchange operator and adaptive weights. The primary
objective is to make the AUV close to the cage during the
inspection of the predetermined point of the fish cage and
achieve shortest-path planning and intelligent obstacle avoid-
ance, thereby facilitating low-power autonomous underwater
inspection. Through simulation experiments, we compared
the proposed algorithm with two improved PSO algorithms
and found that the DE-PSO algorithm exhibited better con-
vergence stability, effectively avoiding local optima and
premature convergence. In addition, the developed algorithm
can plan a shorter path, which will help AUVs realize the
inspection of cages in marine ranching application scenarios,
reduce energy consumption, and improve endurance.

The remainder of this paper is organized as follows.
Section II presents a detailed description of the specific
application background and a problem statement for the
experimental research. Section III provides the essential
preparatory knowledge for problem solving, including the
basic models of the PSO and DE algorithm, and mathematical
foundations of swap operators and sequences. Section IV
provides the design of the DE-PSO algorithm, and presents
the benchmark function test results of the DE-PSO algorithm
along with the underwater 3D map construction and obstacle
avoidance strategy. Section V describes the simulation results
based on real-world applications and problem-solving sce-
narios. Finally, Section VI summarizes the achievements of
this study and outlines potential future research directions and
plans based on the test results and simulation experiments.

Il. PROBLEM DESCRIPTION

In the context of autonomous net cage inspection in marine
ranching, this article presents a novel optimization approach
for AUV path planning that seeks to determine the optimal
path for a vehicle during underwater operations.

This study was focused primarily on the application sce-
nario of underwater submersible path planning. As shown in
Fig. 1, marine ranching net cages are spherical fish-farming
enclosures of various sizes and depths. To avoid collisions
with the fish cage surface, AUVs were monitored at a certain

VOLUME 11, 2023



Y. Hu et al.: Three-Dimensional Marine Ranching Cage Inspection Path Planning

IEEE Access

Shoal of Fish

Net Cage

FIGURE 2. Schematic diagram of underwater AUV inspection route.

distance from the outer boundary of the cage sphere. For
each fish farm cage, two monitoring points were established
with the following specifications: the fish cage sphere had a
radius of R and the monitoring sphere had a radius slightly
greater than R. A monitoring point was randomly selected
on the center-point plane of the monitoring sphere. The
symmetric point of this selected point with respect to the
center of the fish cage sphere was designated as the second
monitoring point. As AUVs cannot pass through fish cages,
fish cages can be treated as spherical obstacles when planning
inspection paths. While traversing each monitoring point, the
AUV avoided static obstacles around the fish cages to ensure
operational safety. As shown in Fig. 2, the AUV was treated as
a point mass. To obtain information from the farm fish cages
efficiently and expeditiously, we employed a path-planning
algorithm in this study to determine the shortest path that tra-
verses all monitoring points. Simultaneously, an AUV must
avoid static obstacles during inspection. After traversing all
monitoring points, the vehicle returned to its starting point to
collect and provide feedback on the fish cage information.
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The following sections expand on the principles of the
PSO and DE algorithms. Additionally, a 3D obstacle map
constructed for path planning simulation experiments is pre-
sented. Based on the experimental results, the fitness of the
DE-PSO algorithm in the aforementioned application sce-
nario is discussed.

Ill. PRELIMINARY KNOWLEDGE

A. PSO ALGORITHM THEORETICAL FOUNDATION

1) FUNDAMENTAL PSO MODEL

The PSO algorithm is based on swarm intelligence that
migrates individuals within a swarm to the optimal solution
region according to their fitness in the environment.

In the fundamental PSO algorithm, because each parti-
cle consistently tracks the current optimal particle, particle
x; updates its velocity and position using the following
formulas:

Vig (k + 1) = vig (k) + c1 - r1 (pbest; (k) — xiq (k))
+ 2 - 1y (gbesty (k) — xiq (k) ()
Xig (k + 1) = xiq (k) +vig (k + 1), 2

where v;(k) represents the velocity of particle i, x;(k) repre-
sents the position of particle i, pbest ;(k) represents the current
optimal position of an individual particle, and gbest (k) repre-
sents the current optimal position of the entire swarm. r| and
rp are random numbers between 0 and 1 that follow a uniform
distribution. ¢; and ¢, are the acceleration coefficients (or
learning factors), typically set between O and 2, represent-
ing the extent of trust of a particle in individual cognition
and social knowledge, respectively, where d = 1,2,--- ,n
represents the dimension of the problem being solved.

2) LINEARLY DECREASING INERTIA WEIGHT (LDIW) PSO
The inertial weight w describes the influence of the
previous-generation velocity of a particle on its current veloc-
ity. The global and local search capabilities of the algorithm
can be controlled by adjusting the value of w. To make
the algorithm more adaptable to path planning requirements,
an attempt was made to change the inertia weight w dynam-
ically, leading to the proposal of LDIW-PSO [28]. In this
algorithm, the value of w is updated using the following
equation:

(Tmax - T)

Tmax

w(k) = * (Wini — Wend) + Wend, 3)
where wjy,; represents the initial value and w4 corresponds to
the value of the maximum iteration (generation) for the inertia
weight. wjp; > wepg and T denote the current and maximum
iteration counts, respectively.

3) LINEARLY CHAOTIC PARTICLE SWARM OPTIMIZATION
(LCPSO)

The fundamental concept underlying the chaotic inertia
weight entails the use of a chaotic mapping technique to
determine the inertia weight coefficient [29]. The logistic
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mapping formula is as follows:
u=p-u-(1—u). @)

u was initialized to a random value of (0, 1). When 3.57 <
p < 4, the logistic map appears chaotic.

In light of the introduction of inertia weight in the PSO
algorithm, Nkwanyana and Wang [30] devised the LCPSO
algorithm, which utilizes both a linearly decreasing inertia
weight and chaotic inertia weight, with the aim of further
refining the convergence performance of the algorithm. The
expressions of linear decreasing inertia weight w' [31] and
chaotic inertia weight w* [29] are as follows:

Aw
-t

Wl = Wmax — (5)
max
¢ At
w' = Aw - + Winin - U (6)
tmax
At = tmax — t (7)
AW = Wmax — Wnin, (8)

where w4y and wy,;, are the maximum and minimum values
of the inertial weight, respectively, and f,,,, and ¢ are the
maximum and current numbers of iterations, respectively.

Let ¢ represent the parameter that governs the propor-
tion of weights. The fusion of two distinct weights into
w? is accomplished through the utilization of the following
equation:

wé = ¢ +w)
w At
-+ (Aw -

max max
Imax * (2Wmax — Wmin - ) — Aw - At — ¢ - AW]

= - [(Wmax — + Win - )]

tmax

C))

Then, the velocity update formula of the particle becomes
as follows:

viatk +1) = w* - via (k)

+ c1 - ri(pbesti(k) — xia(k))

+ c2 - ra - (gbestg(k) — xia (k). (10)
B. PSO ALGORITHM BASED ON SWAP OPERATORS AND
SWAP SEQUENCE
The fundamental PSO and PSO algorithms that utilize swap
operators and sequences to solve the multi-objective point-to-
point shortest path problem exhibit significant differences in
terms of particle encoding, particle update rules, and objec-
tive function computation methods.

The fundamental PSO algorithm is commonly applied
to continuous optimization problems, whereas the PSO
algorithm that utilizes swap operators and sequences is
primarily used to solve discrete optimization problems.

The specific operations of the modified PSO algorithm
incorporating swap operators [32] are as follows:

o = pia (t) — Xia () (11)
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2 o YES Output the optimal
PEOD solution

Mutation

Crossover
Selection

Input :
particlesize = particle population size

i = an individual particle within the population
a,b = two different random particle individuals

¢ = randomly generated decimals between 0 and 1

CR=c

over rate

F = scal
for i =1 — particlesizes do
while a! =i do
| a < round(rand()*(particlesize-1)+1)
end
while 0! = a and b! =i do

| b« round(rand()*(particlesize-1)+1)
end
M; « f; +F*(fo+ fo)
if ¢ < CR then
| fieM;
end
end

FIGURE 3. Flowchart and pseudocode of DE algorithm.

B = pga (1) — xig (1), 12)

where « represents the difference between the individual best
positions pjy (t) and x;4 (¢), and B represents the difference
between the global best positions pgq(f) andx;g (¢). Both «
and B are basic swap sequences. Moreover, update the weight
coefficient w through the following formula:

ot =w— a)——OOl (13)
Particle size

C. THEORETICAL FOUNDATIONS OF DE ALGORITHM
The DE algorithm is based on the GA and follows the fun-
damental idea of randomly selecting a target vector and two
reference vectors from a swarm. The algorithm generates
new offspring mutation vectors by utilizing the differences
between the target and reference vectors and employing vari-
ous differential strategies. New test vectors were obtained by
crossing these mutation vectors with reference vectors with a
certain probability. The fitness of the target and test vectors
were compared, and the individual with the highest fitness
was selected as part of the next-generation population for the
iteration. This process was continued until the termination
conditions were satisfied.

The flowchart and pseudocode of the DE algorithm are
shown in Fig. 3.

1) POPULATION INITIALIZATION

Initially, NP individuals with D dimensions are randomly
generated as the Oth generation population. Each vector is
a feasible solution within the search range. The individual
vectors can be generated as follows [33]:

xij(k) = x} + rand (0, 1) % (xjh — x?) 7

! (14)
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F: Variation factor
vi: Mutation vector
Xr ector
xr2/xr3: Reference vector

FIGURE 4. lllustration of mutation operation.

xi xi,1 ‘ Xi,2 ‘ Xi,3 ‘ Xid ‘ Xi,5 ‘ Xi,6 ‘ Xi,7 ‘
l l l l otherwise
ui ui,1 ’ ui,2 ui,3 ‘ ui,4 ‘ ui,5 ‘ ui,6 ‘ ui,7 ‘
rand(0,1)<CR or j=jr

S

FIGURE 5. Schematic diagram of binomial crossover.

where i represents the individual vector i in the swarm, j
represents the jth dimension component of the individual
vector, le is the lower bound of the jth dimension component,

and x/h is the upper bound of the jth dimension component.

2) MUTATION OPERATION
We selected the ith individual vector x; (k) in the swarm as
the target vector. The mutation operation for the target vector
was performed using the DE /best /1/bin.

DE /best /1/bin is a widely used differential strategy. Tak-
ing the binomial crossover as an example, the mutation vector
vi(k) of generation k can be represented as [34]

Vi (k) = Xpest + F (xr1 (k) — X2 (k))

where F is the mutation factor. The process of generating
vector v;(k) is illustrated in Fig. 4.

15)

3) CROSSOVER OPERATION

To increase the swarm diversity, the DE algorithm introduces
a discrete crossover operator. The mutation and target vec-
tors are combined using a crossover operator to generate a
new test vector, u;(k). Commonly used crossover operators
include the binomial, exponential, and orthogonal operators
[33].

Fig. 5 illustrates the binomial crossover operation.

4) SELECTION OPERATION
The fitness function f(x) is defined as follows:

fx)=

where distance(x) represents the distance of the path rep-
resented by vector x, which is calculated as the Euclidean

_, 16
distance (x) (16)

VOLUME 11, 2023

distance between the nodes. The fitness function takes the
reciprocal of the distance and transforms the problem into a
PSO that seeks the minimum.

DE conducts selection operations
subsequent equation:

employing the

u; (k) ,
x; (k) ,

f(ui (k) = f (xi (k)

. (17
otherwise.

m&+D=[

The selection operator in DE retains the best individual
between the target vector and its corresponding test vector,
ensuring that the fitness value of the offspring is always
superior to that of the parent. This mechanism drives the
swarm to evolve continuously towards the optimal solution,
gradually converging towards the position of the global or
satisfactory solution.

IV. ALGORITHM DESIGN
A. DE-PSO ALGORITHM
1) BASIC IDEA
As a swarm-intelligence search method, the PSO algorithm is
highly sensitive to the quality of the initial swarm. When the
initial swarm exhibits significant diversity, the PSO algorithm
is prone to becoming stuck in local optima, converging
prematurely, and failing to reach the global optimal solution.
To improve the solving efficiency, convergence rate, preci-
sion, and stability of the PSO algorithm, this paper proposes
a novel approach called DE-PSO, which integrates the DE
approach into the PSO algorithm. In this integration pro-
cess, the scaling factor F and crossover probability CR are
introduced along with the mutation, crossover, and selection
operations. Section IV presents an experimental analysis to
investigate the effects of the two introduced parameters F
and CR on the performance of the algorithm. The DE-PSO
algorithm generates a mutated particle using the position
difference between any two distinct particles in the current
swarm. It probabilistically selects whether the mutated par-
ticle should replace the original particle to participate in
the next generation of evolution. By combining the strate-
gies and characteristics of both algorithms, the DE-PSO
algorithm effectively enhances swarm diversity, enabling it to
escape local optima and avoid premature convergence while
demonstrating superior stability and robustness when solving
optimization problems.

2) DE-PSO ALGORITHM DESIGN
The DE-PSO algorithm follows a fundamental framework
similar to that of the conventional PSO algorithms. How-
ever, the key difference lies in the iterative update process
of the particles, in which the idea of a mutation operation
from the DE approach is incorporated to improve the local
search strategy. In addition, a mutation perturbation strategy
is introduced to perturb each particle in the current swarm
with a certain probability.

The specific implementation process of the integrated
algorithm is as follows:
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Step 1: Initialization of particle swarm and parameters.

In the search space, set swarm size M, randomly generate
initial solutions X = {Xi, X, ---, Xy}, and set the initial
velocity v; (k) and initial position x; (k) for each particle,
where k represents the current iteration (generation). The
specific parameter initialization includes the learning factors
c3, ¢4, scaling factor F C [0, 2], crossover rate CR C (0, 1),
and maximum iteration count iter ;.

Step 2: Evaluate individuals and determine the current
optimal solution within the swarm.

Determine the current optimal position pbest; (k) for each
particle. Calculate the fitness value f for each particle in the
swarm using the fitness function, and determine the current
optimal position within the swarm gbest , (k).

Step 3: Update particle velocity and position.

As each particle continuously tracks the current optimal
particle, particle X; updates its velocity and position using the
following formulas:

vitk+1) =w-v; (k)
+ ¢3 - r1 (pbest; (k) — x; (k))
+cq4-1 (gbestg k) — x; (k))
xitk+ D) =xik)+vik+1),

(18)
19)

where 1 and r, are random numbers in the range (0, 1).
Step 4: Perform mutation operation on current particles.
For a specific particle X; within the current particle swarm

with a positional vector x; characterized by three coordinate

elements xyz, six particles from the current particle swarm
were randomly selected and denoted as X1, Xp1, X402, Xp2,

X3, and Xp3. Assuming that the vector of the mutated particle

is represented as X,,,;, and its corresponding positional vector

Xmi 18 defined by the three coordinate elements Xy , Xy, and

Xmiz» the formula governing the update of the position of the

mutated individual is as follows:

Xmix = Xix + F - (Xa1x — Xp1x)
Xmiy = Xiy + F - (vay - bey)
Xmiz = Xiz T F - (Xa3z — Xp32)-

(20)

Step 5: Perform crossover and selection operations on
current particles.

For element x;, of positional vector x;, a random number
Cix(0 < Cjr < 1) was chosen. If the random number is less
than crossover rate CR, the mutated positional element x;;;x
is selected and accepted. Similarly, for elements x;, and x;;,
random numbers C;,(0 < Cjy < 1) and C;;(0 < Ci; < 1)
are taken, and the aforementioned process is repeated. After
completing the mutation of Xj, its fitness f;,; is calculated, and
the subsequent step of optimal comparison is performed.

Step 6: Update individual and global optimal solutions.

Step 7: Increase the iteration count, and verify whether the
termination condition is satisfied.

Set k = k + 1, and check whether the maximum iter-
ation count M or the convergence requirement is reached.
If the termination condition is not satisfied, return to Step 3.
Otherwise, proceed to the next step.
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Population and
Parameter Initiali

Evaluate Individuals and Determin the
Optimal Solution of the Population

> Update Particle Velocity and Position

i

Perform Mutation Operation to Three
Dimensions Respectively

}

Generate Random Number

Random Number <
Crossover Rate

YES

[ Accept the Mutation Particle ]
Te

&
Update Individual Optimal Solution and
Population’s Optimal Solution

Satisfy Termination
Condition

YES

[ Output the Optimal Solution ]

Input :

marnum = maximum iteration count

particlesize = particle population size

2; = an individual particle within the population

mutated individual

2 th1, T2, Tpz = six different random particle individuals
e coordinate element of a specific particle

z
Ta
z

v velocity

3 = randomly generated decimals between 0 and 1
pest; = the particle with the minimum fitness

Output:
gbest, = global optimum
while k <= maznum do
for i = 1 — particlesizes do

vilk +1)
—vi(k)+ezerix
2i(k +1) ik

sty (k) — Xi(k))+caxrax(gbesty (k) —a:(k))

miz 4 iz + F # (Tass + Tys:)
f Cix < CR then
& Tonix

[

end

if Cyy, < CR then
| Tiy & Tmiy
end

if Cy. < CR then
| Tix & Tmiz
end

if x; < pbest; then
| phest; «— a;
end

end

gbest, = min(plbest)
end

FIGURE 6. Flowchart and pseudocode of DE algorithm.

Step 8: Output the optimal solution of the particle swarm.
The specific flow and pseudocode of the integrated
algorithm are shown in Fig. 6.

B. PERFORMANCE TESTING AND ANALYSIS OF THE
MODIFIED ALGORITHM
The performance of the proposed DE-PSO algorithm was
evaluated by conducting performance tests using six repre-
sentative benchmark test functions. The selected test func-
tions are as follows:

(1) Spherical function (single-peak spherical functions)

minf; (X) = lez (21)

i=1
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TABLE 1. Test function-related parameter settings.

Function Theoretical optimal  Search range
value
fi 0 [-5.5]
fa 0 [-5.5]
fs 0 [-5.5]
fi 0 [-5.5]
fs 0 [-5.5]
fe 0 [-5,5]

(2) Rosenbrock function (single-peak continuous function):

n—1

minfs () = > [100 (x,-+1 - x,?)z ¥ — 1)2} 22)

i=1
(3) Ackley function (multimodal, multilocal minimum
function)

minf; (X) =20+e¢—20exp | —0.2

(23)

] n
— exp |:; Z cos (an,-):|
i=1

(4) Rastrigin function (multimodal infinite extreme-value
function)

n
minfy (X) = 100+ [x? — 10cos (ani)] (24)
i=1
(5) Griewank function (multi-peak function)
i X — — 1 25
minfs (X) = 4000 L cos (\/;) + (25)

(6) Schaffer F6 function (highly oscillating multi-peak

function)
sin? \ /xl2 + x22 —-0.5
1 +0.001 (x? + x3)

The theoretical optimal values and search ranges of the test
functions are listed in Table 1.

The local convergence curves of the LDIW-PSO, LCPSO,
and DE-PSO algorithms for the various test functions are
shown in Fig. 7. To mitigate randomness in the stochastic
search algorithms, all methods were executed 50 times, and
the convergence rates and mean values of the algorithms were
statistically analyzed. The test results are presented in Table 2,
where the optimal data for each test result are in bold.

Fig. 7 shows that both the modified DE-PSO and
LCPSO algorithms converged faster than the conventional
LDIW-PSO algorithm across all tested functions. Moreover,
except for f3, the newly proposed DE-PSO algorithm out-
performed the LCPSO algorithm in terms of convergence
speed. Table 2 shows that all algorithms exhibited high con-
vergence rates when handling single-peak or multimodal

minfe (X) = +0.5

(26)
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multiextremal functions. In addition, in terms of optimization
accuracy, both the modified DE-PSO and LCPSO algorithms
showed some improvements compared to the conventional
algorithm. However, the DE-PSO algorithm proposed in this
study surpasses the LDIW-PSO algorithm by to 1-2 orders
of magnitude in functions such as fi, f2, f3, and f4, indi-
cating its superior performance. Furthermore, the DE-PSO
algorithm maintained a 100% convergence rate when solv-
ing the infinitely extreme value function, demonstrating
exceptional performance. Moreover, when dealing with mul-
timodal, multi-local minimum problems with insignificant
changes, such as function f3, the LCPSO algorithm exhib-
ited an optimal convergence rate and accuracy. For handling
the multi-peak function (f5), the modified DE-PSO and
LCPSO algorithms achieved comparable convergence accu-
racy, outperforming the conventional LDIW-PSO algorithm.
However, when handling a highly oscillating multi-peak
function (fg), the LCPSO algorithm shows no significant
advantage over the conventional LDIW-PSO algorithm in
terms of convergence accuracy. Nevertheless, the DE-PSO
algorithm proposed in this study exhibits superior perfor-
mance in solving this problem. Regarding the convergence
rate, although the DE-PSO algorithm demonstrates a slightly
higher convergence than the LDIW-PSO and LCPSO algo-
rithms, the improvement is not substantial.

The above analysis indicates that the DE-PSO algorithm
exhibits faster convergence than the existing approaches.
It also demonstrates higher convergence accuracy in
low-dimensional problem solving. However, it does not
exhibit a significant advantage in terms of the accuracy
or convergence rate in high-dimensional problem solving.
Overall, the DE-PSO algorithm, which incorporates mutation
and crossover strategies, maintains swarm diversity when
dealing with both single-peak and multimodal problems,
enabling it to escape the local optima and achieve significant
improvements in solution accuracy.

To investigate further the influence of the scaling factor
and crossover probability on the performance of the proposed
DE-PSO algorithm, we selected the Rosenbrock function
(f2), Rastrigin function (fy), and Schaffer F6 function (fs)
to represent the single-peak, multimodal, and multi-peak
functions, respectively, for the experimental analysis of the
performance of the algorithm. First, we fixed the scaling
factor F to 2 and sequentially set the crossover probability
CR values to 0.2, 0.4, 0.6, and 0.8, for comparative simu-
lation experiments. The DE-PSO algorithm test results for
the different functions under the aforementioned settings are
shown in Fig. 8. Next, by fixing the crossover probability at
0.6, we sequentially set the scaling factor F values to 0.2,
0.8, 1.2, and 1.8 for comparative simulation experiments.
The convergence test results of the DE-PSO algorithm for
different test functions under these parameter settings are
shown in Fig. 9. Each test group was tested 50 times to ensure
the robustness of the experiments, and the convergence rate
and mean values of the algorithm results were statistically
analyzed. Furthermore, based on the selected test functions,
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FIGURE 7. Local convergence curves of PSO and DE-PSO on various test functions.

the convergence speeds of the algorithm were compared for
different values of CR and F, as shown in Figs. 10 and 11,
respectively.

The results in Fig. 11 indicate that increasing the crossover
probability CR or scaling factor F in the modified DE-PSO
algorithm leads to improved convergence rates, and this
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TABLE 2. Comparison of results for different algorithms on test functions.

Function Algorithm Convergence Mean value
rate

LDIW-PSO 50/50 7.8651e-07

f1 LCPSO 50/50 4.6575e-07
DE-PSO 50/50 7.0499¢-09
LDIW-PSO 50/50 1.1512e-07

f2 LCPSO 50/50 1.4388¢-08
DE-PSO 50/50 3.7607¢-09
LDIW-PSO 50/50 8.5541e-07

f3 LCPSO 50/50 2.8521e-08
DE-PSO 50/50 3.2401e-08
LDIW-PSO 48/50 7.1538e-07

fa LCPSO 45/50 2.3734e-08
DE-PSO 50/50 2.0941e-08
LDIW-PSO 36/50 7.4131e-07

fs LCPSO 40/50 1.3029¢-08
DE-PSO 38/50 2.0517e-08
LDIW-PSO 26/50 1.8907¢-08

fe LCPSO 26/50 1.9607e-08
DE-PSO 27/50 1.2824¢-09

improvement is particularly significant when dealing with
multi-peak problems. However, the convergence accuracy
of the algorithm may exhibit certain fluctuations. Overall,
it still shows a tendency to improve. However, after increasing
the values of CR and F, the convergence speed decreased.
Conversely, reducing the values of CR and F can lead to a
faster convergence speed but may result in lower convergence
rates and accuracies. Therefore, when applying the DE-PSO
algorithm, the practical problem must be considered and the
settings of parameters CR and F must be comprehensively
evaluated. In particular, the parameter settings have a more
significant impacts on the performance of the algorithm in
high-dimensional multi-peak problems.

C. THREE-DIMENSIONAL ENVIRONMENTAL MODELING
AND OBSTACLE AVOIDANCE STRATEGY FOR MARINE NET
CAGES

1) THREE-DIMENSIONAL MARINE MAPPING

The modeling method for marine environments directly
determines the difficulty of path planning problem solving.
Therefore, the proper selection of environmental model-
ing methods directly affects the difficulty and efficiency of
problem-solving. Path planning for AUVs requires particular
consideration of the influence of obstacles.

In the 3D coordinate system O — XYZ, let S = (sy, sy, 5)
represents the starting point of path planning for the AUV,
G = (g, & &) denotes the target point, and P; =
(Px» Py, p7) represents intermediate nodes along the path.

As shown in Fig. 12, path planning was conducted from
A(S) to G(P), with lengths of |[AD| in the OX direction,
|AB| in the OY direction, and |AE| in the OZ direction,
constructing a cubic region ABCD — EFGH as the path
planning space. The obstacles O; were represented using
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FIGURE 8. DE-PSO algorithm test results with different crossover
probabilities.

their corresponding minimum bounding spheres, described
as {(o;, r)|li = 1,2,...,k}, where o; represents the center
of the circumscribed sphere of obstacle O;, and r; represents
the radius of the sphere [35].

As shown in Fig. 13, planes were constructed by passing
through the center o; of each obstacle O; perpendicular to the
x-axis. Additionally, parallel planes were generated at a fixed
step size A in both the positive and negative directions along
the x-axis. This process divided the path-planning space into
evenly spaced partitions. The selection of waypoints A was
determined based on the size of the circumscribed sphere
radius r; for each obstacle. This division of the path-planning
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space resulted in a two-dimensional plane comprising non-
feasible, feasible, and obstacle regions.

With this discretization, abstraction and modeling of the
3D marine map were completed. The goal of path planning
is to select feasible points P; and P;41 from the non-obstacle
regions within the feasible area while ensuring that no inter-
sections occur between the lines connecting P; and Piy
and the circumscribed sphere of any obstacle to achieve the
shortest possible planned path.

2) THREE-DIMENSIONAL OBSTACLE AVOIDANCE
ALGORITHM PRINCIPLE

Let P; represent the current position and P;y| represent the
position at the next time step. In the PSO algorithm, position
Piy1 at the next time step is determined by the weighted
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FIGURE 10. Convergence speed comparison of DE-PSO algorithm with
different crossover probabilities.

sum of the individual optimal position P; and the global
optimal position Pjp. Therefore, the PSO algorithm can be
applied to an abstracted marine map model to determine the
shortest-path solution.

In the context of the path-planning problem, the objective
was to select the shortest obstacle-free path as the optimal
path. Therefore, to solve this problem, the performance indi-
cator of the distance metric was used to represent the fitness
function value.
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Let each particle represent a feasible path L;, and divide
the path planning space into m blocks, resulting in a total of
m+1nodes. The fitness function for the path length is defined

as follows:
D = ZDP[PHI >

where Dy, , is the Euclidean distance between points P; and
Piy1 in 3D space:

27

DPiPi+1 = \/(Px _Px+l)2 + (Py _Py+l)2 + (p; _Pz+l)2-
(28)
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A smaller value of fitness function D indicates a better
path. The optimal path is determined through continuous
iterations.

The minimum circumscribed sphere of an obstacle can be

represented by the equation
x =0+ —0p) +G@—o0) =rf. (29

As shown in Fig. 13, the selection of P; should be selected
in the non-obstacle region of the feasible area. For points
inside the obstacle region and outside the feasible area, the
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TABLE 3. Parameter settings for the modified PSO algorithm
incorporating swap operators.

Parameter Numerical setting
Population size (M) 100

Iteration count (iter) 2000

Initial inertia weight (w) 0.9

Swap operator learning factor ¢; 0.7
Swap operator learning factor ¢, 0.7

TABLE 4. Positions and sizes of spherical net cages.

Spherical cage code  Center coordinates Radius
Ay [300, 400, 460] 50
4, [100, 150, 150] 45
A [600, 522, 510] 50
Ay [350, 200, 440] 80
As [150, 250, 300] 70
B, [300, 400, 460] 75
B, [100, 150, 150] 50
B; [600, 522, 510] 51
B, [350, 200, 440] 80
Bs [150, 250, 300] 61

following boundary absorption process was applied:
, | Pit+ri—d(Pi,0), P;withthe obstacle area

i P, —65(Pi,x,y,2), P;within feasible area,

(30)

where d (P;, 0;) represents the distance from point P; to the
center of sphere o; and § (P;, x, y, z) represents the distance
from point P; to the boundary of the feasible area. This
requirement ensured that point P; inside the obstacle region
was moved to the boundary of the obstacle region and point
P; outside the feasible area was moved to the boundary of the
feasible area. However, the selected path points P; and Pj4
along their connecting lines may intersect or be tangential
to the circumscribed spheres of the obstacles. In real-world
scenarios, the planned path of the AUV should not include
points of contact with obstacles. Therefore, further analysis
of the safety of the planned path is required.

The spatial straight-line equation P; for the line connecting
P;+1 and L is defined as follows:

X = Xi+1 + kit
Ly y=yip1 +kyt

3L

where [x,'+1y,~+1z,'+1]T represents the position of the next
search point and [kekyk, 1T = [xip1 — Xiyit1 — yizie1 — zil"
represents the direction vector. By combining the equations
for the minimum circumscribed sphere of an obstacle,

109758

600

400
0 600 500

(a) Simulation results of group A
600

500

300

200

100 -l
0

(b) Simulation results of group B

FIGURE 15. Shortest path planning for concealed cage inspection points
with obstacles.

we obtain the following equation:

M=k 4k 4k
A2 = 2xiky — 2ky0ix + 2yiky — 2kyo0iy + 2zik; — 2k;0;;
A3 = (i — o) + (yi — oiy)z + (vi — 0iy)-
(32)

The above equations transform the problem of determining
the feasibility of path P;P;y; to check whether A = )% —
4x113 [35]:

A <0, P;P;iy isfeasible (33
A >0, P;P;; isinfeasible. )

If point P;P; is infeasible, it must be reselected until there
is no intersection or tangency with the circumscribed sphere
of the obstacles in the P;; direction.

The PSO algorithm eventually generates an optimal
collision-free path from point S to G based on the principle of
selecting intermediate points along the path and ensuring path
safety. The process of implementing the optimal 3D obstacle
avoidance algorithm in 3D space using the PSO algorithm is
illustrated in Fig. 14.
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FIGURE 16. Shortest path planning for visible cage inspection points with
obstacles.

V. SIMULATION EXPERIMENT

This section demonstrates the effectiveness of the DE-PSO
algorithm by presenting simulation experiments conducted
for marine offshore net cage inspections. All simulation
experiments were performed on a laptop computer running
a x64 processor and equipped with a Windows 11 operating
system within the MATLAB R2023a environment.

A. NUMERICAL SIMULATION AND SIMULATION OF
SHORTEST PATH PLANNING FOR 3D MARINE NET CAGE
INSPECTION POINTS

To accomplish multi-point inspection of marine offshore net
cages, the first step is to find the shortest paths that traverse all
predetermined inspection points. In this study, we employed a
modified PSO algorithm that incorporates swap operators to
conduct simulation experiments to solve this problem. Based
on this formula, the algorithm required the parameter settings
listed in Table 3.

In the simulation experiments, we constructed five spher-
ical marine offshore net cages in 3D space with varying
radii. The coordinates of the sphere centers and radius
sizes were divided into two experimental groups, labeled
Groups A and B, to verify the adaptability and feasibility
of the algorithm for different environmental models. The
specific parameters and location settings are presented in
Table 4. In the abstract environmental model space, we set
two predetermined inspection points for each net cage center
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TABLE 5. Parameter settings for the DE-PSO algorithm.

Parameter Numerical setting
Population size (M) 60

Iteration count (iter) 400

PSO learning factor c¢; 2.0

PSO learning factor ¢, 1.5

Initial Inertia Weight (W;y;¢) 0.9

Final inertia weight (Wepq) 0.4

Number of path segments 30

(path_num)

DE scaling factor (F) 0.8

DE crossover probability (CR) 0.6

along the diameter direction on the plane. Thus, the entire
inspection path included 10 inspection points. Each inspec-
tion point was represented by A,,, or By, where A and B
denote the experimental groups; m = 1, - - - , 10 represent the
cage codes; and n = 1 and 2 represent the inspection point
numbers.

Figs. 15 and 16 show the results of applying the
modified PSO algorithm incorporating swap operators to
solve the shortest inspection path planning problem for
Groups A and B, respectively, without considering AUV
obstacle avoidance. The simulation results indicate that this
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FIGURE 18. Autonomous obstacle avoidance for Group A in the shortest
path planning.

algorithm could adaptively plan the shortest inspection paths.
However, during the inspection route planning process, some
inspection routes may pass through the marine offshore net
cage to achieve the shortest path, which compromises the
safety of the AUVs and hinders their ability to complete
their inspection tasks autonomously. Fig. 17 illustrates the
convergence status of the algorithm for Groups A and B
after 20 repetitions. The results demonstrate that the mod-
ified PSO algorithm incorporating swap operators exhibits
rapid convergence and is less prone to becoming trapped in
local optima, thus satisfying the specific requirements of the
application scenario.

B. SIMULATION OF AUTONOMOUS OBSTACLE
AVOIDANCE SHORTEST PATH PLANNING FOR MARINE
CAGE INSPECTION POINTS USING DE-PSO ALGORITHM
Real-time obstacle avoidance must be considered in
autonomous AUV inspection tasks. As shown by the
simulation experiment discussed in Section V-A, certain
predetermined routes pass through a marine offshore net cage
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FIGURE 19. Autonomous obstacle avoidance for Group B in the shortest
path planning.

when only the shortest inspection path is considered, resulting
in a lack of autonomous obstacle avoidance capability. There-
fore, in addition to shortest path planning, we employed the
DE-PSO algorithm, which is a modified PSO algorithm that
integrates DE algorithms, to implement autonomous obstacle
avoidance in AUVs. Moreover, a performance comparison
was performed with conventional LDIW-PSO and LCPSO
algorithms to demonstrate the superiority of the proposed
algorithm in terms of premature convergence and other
aspects. The parameter settings for the algorithm are listed
in Table 5. The position and size data of the spherical cages
for Groups A and B, used in the simulation experiments
described in Section V-A, were retained. The parameter
settings are listed in Table 4.

Figs. 18 and 19 present the experimental results
of Groups A and B, respectively, where the conventional
LDIW-PSO, LCPSO, and modified DE-PSO algorithms were
employed to achieve autonomous obstacle avoidance and
shortest path planning for AUVs. Point G represents the
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TABLE 6. Simulation result data records.

Algorithm . .
Group . Simulation data
selection
Mean path growth  Path growth
length length variance
500.654 3259.42
A LDIW-PSO Standard deviation
Mean path growth
of path growth
rate
length
57.0913 23.72%
Unable to find a successful inspection
A LCPSO
route
Mean path growth  Path growth
length length variance
488.928 1364.39
A DE-PSO Standard deviation
Mean path growth
of path growth
rate
length
36.9377 22.75%
Mean path growth  Path growth
length length variance
456.093 7519.38
B LDIW-PSO Standard deviation
Mean path growth
of path growth
rate
length
86.7143 17.81%
Unable to find a successful inspection
B LCPSO
route
Mean path growth  Path growth
length length variance
461.729 3911.56
B DE-PSO Standard deviation
Mean path growth
of path growth
rate
length
62.5425 17.59%

departure and return points of the AUV. To avoid experimen-
tal randomness and validate the performance of the improved
algorithm, Table 6 presents the mean path growth length, path
growth length variance, standard deviation of path growth
length, and mean path growth rate for Groups A and B, with
each group independently replicated 10 times using three
different algorithms considering obstacle avoidance. The
optimal values of each test result are shown in bold.

A comparison of Figs. 18 and 19 reveals that, when
dealing with autonomous obstacle avoidance at the same
location, the DE-PSO algorithm outperformed the con-
ventional LDIW-PSO and LCPSO algorithms. The former
achieves effective obstacle avoidance while exhibiting higher
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convergence accuracy, smoother paths, and better planning
results. Analysis of the simulation data in Table 6 reveals
that the convergence stability of the DE-PSO algorithm is
superior to that of the conventional LDIW-PSO algorithm.
Both experimental groups showed reductions of more than
27% in the standard deviation, effectively avoiding issues
such as the excessive length of autonomously planned obsta-
cle avoidance routes owing to local optima and premature
convergence, which could result in increased energy con-
sumption for AUVs. Furthermore, the LCPSO algorithm
failed to find a complete inspection route. The primary limi-
tation of this algorithm is its inability to identify a local path
when confronted with the task of discovering a route that
requires reaching the opposite side of a spherical offshore
net cage. When addressing intricate path-planning problems
involving multiple inspection points, the paths generated
by this algorithm possess noticeably heightened roughness.
Consequently, it is unsuitable for marine offshore net cage
inspection.

VI. CONCLUSION

This article proposes a novel PSO algorithm that integrates
the DE approach to address autonomous path planning for
AUVs in marine offshore net cage inspections. For the multi-
point shortest-path search problem, the algorithm optimizes
and modifies the velocity and position update formulas by
introducing the concepts of swap operators and sequences
into the PSO algorithm. Additionally, through mutation,
crossover, and selection operations, the modified algorithm
maintains a high swarm diversity when facing multi-obstacle
avoidance problems, enabling it to avoid local optima and
premature convergence when solving multimodal problems.

Numerical comparisons of the modified DE-PSO
algorithm were performed by conducting various simula-
tion experiments involving different 3D marine offshore net
cage modeling scenarios. In addition, quantitative testing
analysis of the convergence and convergence accuracy of
the algorithm was conducted using six representative bench-
mark test functions. The results demonstrate that the PSO
algorithm that integrates the DE approach exhibits superior
solution accuracy in handling single-peak and multimodal
problems. Furthermore, a comparative analysis of the simu-
lation experiment results revealed that the DE-PSO algorithm
demonstrates outstanding performance in addressing the
path planning problem for 3D marine offshore net cage
inspection.

Future work will focus on investigating the effects of com-
plex natural marine environments on path planning for AUVs,
as well as the influences of factors such as ocean current
variations and marine organism movements on the safety and
economic efficiency of the planned paths.
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