
Received 11 August 2023, accepted 26 September 2023, date of publication 2 October 2023, date of current version 6 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3321196

Application of Improved Q-Learning Algorithm in
Dynamic Path Planning for Aircraft at Airports
ZHENG XIANG , (Member, IEEE), HEYANG SUN , (Member, IEEE), AND JIAHAO ZHANG
School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618300, China

Corresponding author: Heyang Sun (sunheyang99@outlook.com)

This work was supported in part by the National Nature Science Foundation of China under Grant 62203451.

ABSTRACT Guiding and controlling aircraft within an airport is a decision-making process based on
safety and efficiency in a highly dynamic and stochastic environment. Currently, many airports rely on
manual monitoring and command to provide appropriate taxiing paths for aircraft. With the increasing
complexity of airport structures and flight volumes, there is a need for an algorithm that can autonomously
search for the shortest taxiing paths while satisfying the specific taxiing regulations and maintaining safe
separations between aircraft in a dynamic scenario. We propose an improved approach based on the
Q-Learning algorithm, a reinforcement learning method, to provide taxiing path guidance for aircraft.
The Q-Learning algorithm exhibits adaptability in dynamic and stochastic environments. However, the
traditional Q-Learning algorithm lacks the iteration stability and computational efficiency required in high-
dynamic scenarios, and the shortest paths found often fail to meet the requirements due to the specific
regulations of airport control.We first make three improvements to the Q-Learning algorithm to address these
challenges. These improvements include optimizing Q-table exploration, resetting initial Q-table values, and
introducing a dynamic exploration factor to enhance the algorithm’s computational efficiency and accuracy.
We also incorporate conflict avoidance strategies related to civil aviation regulations to ensure that the
final path adheres to airport control regulations. Finally, we validate the fused and improved algorithm in
a gridded airport environment model. Compared to traditional methods, the results demonstrate that the
improved algorithm provides more efficient taxiing guidance for aircraft while ensuring operational safety.
Furthermore, the algorithm strategically avoids conflicts with other moving aircraft, thereby increasing the
utilization of airport taxiing resources.

INDEX TERMS Aircraft navigation, artificial intelligence, reinforcement learning, dynamic path planning,
processing time and steps, conflict avoidance.

I. INTRODUCTION
A. MOTIVATION
In recent years, due to the rapid development of civil-
ian aviation, airplanes have become the preferred mode of
long-distance travel for people, resulting in a significant
increase in air traffic volume. As a result, airports have
become larger and more structurally complex. Ensuring safe
and efficient taxiing guidance for aircraft has become a vital
issue in measuring airport operational efficiency [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

Clare and Richards [3] proposed a mixed-integer linear
programming optimization method to address the coupling
problem between aircraft taxiing paths and runway schedul-
ing. Evertse and Visser [4] used mixed-integer linear pro-
gramming (MILP) to plan taxiing routes for all aircraft on
the airport surface, aiming to minimize the taxiing time of
aircraft on the ground. Brownlee et al. [5] combined genetic
algorithms with the rolling window approach to solving the
allocation of taxiing routes for aircraft at the airport. In 2022,
Deng et al. [6] proposed a multi-strategy particle swarm
and ant colony optimization algorithm, MPSACO, to solve
the airport runway planning problem and to avoid conflicts
between taxiways and the propagation of conflicts.

107892

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2688-1590
https://orcid.org/0009-0008-9938-4409
https://orcid.org/0009-0000-6676-8520
https://orcid.org/0000-0003-2558-552X

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

With the increasing complexity of civil airport structures,
traffic density, and specific operational regulations within
airports, traditional path-planning algorithms struggle tomeet
the requirements. Therefore, there is a need for a dynamic
path planning method that incorporates airport traffic rules,
is accurate, efficient, and capable of handling the heavywork-
load of airport control [7]. In this paper, we consider the usage
rules of taxiways in real-world airports and introduce conflict
avoidance strategies for multi-aircraft scenarios. By employ-
ing reinforcement learning, we aim to search for the shortest
taxiing paths for agents operating in dynamic environments,
thereby assisting airport control.

B. RELATED WORK
To enable an agent to perform the specified path planning task
in a highly dynamic environment, it is necessary to consider
the planning method and the prediction and avoidance of
dynamic obstacles during the training process. There have
been several notable studies on path planning and conflict
prevention. Landry et al. [9] effectively detected and resolved
conflicts on airport taxiways by utilizing the attributes of a
complex conflict network, and they validated the feasibility of
their method through case studies. A distributed multi-agent
collision avoidance algorithm based on deep reinforcement
learning was proposed by Yu et al. [10], which can cal-
culate and accurately predict the positions and velocities
of the surrounding agents with uncertainties. Everett et al.
[11] developed a new algorithm based on deep reinforce-
ment learning that allows dynamic agents of various types
to learn collision avoidance without assuming any specific
behavioral rules. The results showed that the algorithm main-
tained high performance even with an increasing number of
agents. Bailey et al. [12] further subdivided the 2D discretized
environment and studied various vertex connectivities to
reduce the length of the planned path further. Kiani et al.
[13] proposed two heuristic algorithms, Incremental Grey
Wolf Optimization (I-GWO) and Extended Grey Wolf Opti-
mization (Ex-GWO), which can rapidly search for optimal
collision-free paths between any two points in space.

Many traditional path-planning algorithms, suffer from
poor environmental interaction and low generalizability.
In contrast, reinforcement learning methods can address
these issues by gaining experience through ongoing interac-
tion with the external environment to guide path-planning
strategies. As a result, reinforcement learning can accu-
rately accomplish path-planning tasks in complex dynamic
environments.

Reinforcement learning is a unique class of machine learn-
ing algorithms that have gained significant research focus in
artificial intelligence in recent years. This algorithm, devel-
oped from fields such as biologically inspired control, psy-
chology, and optimal control, has penetrated various aspects
of daily life. In addition to chess and nonlinear control,
it has found application in computer vision, natural lan-
guage processing, autonomous driving, game development,

and other areas [14], [15], [16]. Lillicrap et al. [17] introduced
the Deep Deterministic Policy Gradient (DDPG) algorithm
to address reinforcement learning problems in continuous
action spaces, achieving high performance in multiple con-
tinuous control tasks. Brittain and Wei [18], [19] formulated
the sequencing and separation of air traffic control as a
reinforcement learning model and employed a hierarchical
deep reinforcement learning algorithm to solve it. They aimed
to identify and resolve conflicts among aircraft in complex
airspace and evaluated them in the case of the NASA Sector
33 model and BlueSky environments.

Integrating models and planning into reinforcement learn-
ing systems allows for a close connection between reinforce-
ment learning and dynamic programming methods, making it
an auspicious research direction.

C. PURPOSE AND SIGNIFICANCE
In our research, we have made various improvements to the
Q-Learning algorithm in reinforcement learning. After veri-
fying the accuracy and efficiency of the improved algorithm,
we considered the real-world aircraft taxiing rules at air-
ports and introduced aircraft conflict avoidance strategies.
We combined the improved algorithm to optimize the path
planning for departing and arriving aircraft. This fills the
research gap where commonly used path search algorithms
deviate from civil aviation regulations in determining the
shortest taxiing path. The proposed approach assists air traffic
controllers in guiding and controlling aircraft movements on
the airport surface, reduces their workload, and improves
airport operational efficiency, all while ensuring safety.

II. BACKGROUND
A. REINFORCEMENT LEARNING
Like supervised learning and unsupervised learning in
machine learning, reinforcement learning (RL) does not refer
to a specific model or algorithm but refers to a training
method. It is commonly used to solve sequential problems by
finding the optimal policy to maximize rewards [20], [21].
The decision-making entity in the reinforcement learning
training process is called the Agent, which exists within
an environment. Whenever the Agent acts, the environment
provides feedback based on that action, and the Agent eval-
uates the feedback in order to decide on the next action. For
reinforcement learning, the foundation of all actions is the
reward, and its goal is to maximize long-term, future rewards.
Since each agent’s action can change the environment, rein-
forcement learning cannot be trained using a dataset but
instead relies on learning from data generated by the natural
environment or simulators.

The training process of reinforcement learning can be
understood as follows: The Agent interacts with the Envi-
ronment, receives a State from the environment, and uses a
Policy to determine an Action. The Action is then applied to
the Environment, and the Environment supplies the following
State and Reward obtained as a result of this decision. In a

VOLUME 11, 2023 107893

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

complex and uncertain Environment, the Agent’s goal is to
get as much reward from the Environment as possible. The
process of Agent-Environment interaction in reinforcement
learning is illustrated in the diagram below [22].

1) BASIC ELEMENT
• State: The state of the environment at time t is denoted
as St.

• Action: The action taken by the Agent at time t is
denoted as At.

• Reward: After the Agent acts, the environment provides
immediate feedback to the Agent in the form of rewards,
including immediate rewards for the current step and
delayed rewards for the long term.

Rt = Rt+1 + Rt+2 + Rt+3 + . . . (1)

• The discount factor γ is a factor that balances the weight
of immediate rewards and delayed rewards. In other
words, the update equation for the state value function
Vπ is the immediate reward plus the value function of
the following state multiplied by the reward discount
factor. By introducing the discount factor γ , the accu-
mulated return obtained by the Agent is referred to as
the discounted return Gt.

Vπ (s) = Rs + γ ·V π (s) (2)

Gt = Rt+1 + γ ·Rt+2 + γ 2
·Rt+3 + . . .

=

∞∑
k=0

γ k
· Rt+k+1 (3)

• Policy: The mapping from a state to an action is the
probability that the Agent will perform a certain action
in a particular state of the environment. The state-value
function Vπ refers to the expected probability of rewards
that the Agent obtains when making decisions starting
from the current state s according to a given policy π .
The action-value function Qπ measures the expected
value of the rewards that can be obtained by taking a
particular action in the current state of the system.

Vπ (s) = Eπ [Gt | St = s]

= Eπ

[∑∞

k=0
γ k
· Rt+k+1 | St = s

]
(4)

Qπ (s, a) = Eπ [Gt | St = s,At = a]

= Eπ

[∑∞

k=0
γ k
· Rt+k+1 | St = s,At = a

]
(5)

2) MARKOV DECISION PROCESS
The Markov Decision Process (MDP) is a classical mathe-
matical description of sequential decision-making problems
[23], [24]. In reinforcement learning, the MDP describes a
fully observable environment. The MDP can be represented
by a five-tuple < S,A,P,R, γ >:
• s ∈ S: A set that represents all possible actions in the
environment.

FIGURE 1. Reinforcement learning interaction diagram.

FIGURE 2. Markov decision process.

• a ∈A: A set representing the actions the Agent can
choose from in the environment.

• P : State transition probability, which represents the
probability of transitioning from a particular state si to
state si+1 when taking action ai.

• R : Represents the immediate reward R(s) in that state.
• γ : The discount factor is a value between 0 and 1 that
balances the value of short-term and long-term rewards.
A higher discount factor indicates that the agent pays
more attention to future rewards, while a lower discount
factor prioritizes immediate rewards.

Based on the abovementioned components, MDP provides
a formal method for describing sequential decision problems
and achieving goals by solving for an optimal policy. An opti-
mal policy refers to selecting the best action at each state to
maximize cumulative rewards or minimize cumulative costs.
Standard methods for solving MDP problems include value
iteration, policy iteration, and reinforcement learning algo-
rithms such as Q-Learning and Deep Q-Network [25], [26].
Through the framework of MDP, reinforcement learning can
make decisions in partially observable environments by lever-
aging the interaction between states, actions, and rewards
to learn the optimal policy and obtain maximum long-term
returns. This makes reinforcement learning applicable in var-
ious domains, such as autonomous driving, robot control,
game intelligence.

B. Q-LEARNING
The Q-Learning algorithm [27], [28] is an essential
value-based learning algorithm in reinforcement learning.
In this algorithm, Q is the expected return when action a is
taken at time t, and the environment provides corresponding
rewards based on the agent’s actions. The main idea of the
algorithm is to construct a two-dimensional Q-Table that
stores the Q-values for each state (s ∈ S) and each action (a
∈A) based on the underlying state-action pairs. The algorithm
learns to make better decisions by continuously interacting
with the environment, observing the rewards, and updating

107894 VOLUME 11, 2023

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

FIGURE 3. Q-Learning algorithm iteration flowchart.

the Q-values in the Q-Table as a function of the action value
function.

The Q-Learning algorithm primarily updates the Q-values
based on the following formula [29]:

Q(s, a) ← Q(s, a)

+ α·[R(s, a)+γ ·maxaQ(s, a)− Q(s, a)] (6)

where Q(s, a) represents the estimated value of the cur-
rent action-state pair, Q(s′, a) is the estimated value of the
next state-action pair. R(s, a) denotes the immediate reward
obtained when taking action a in the current state s. max
Q(s′, a) selects the action from the next state-action set A
that maximizes the Q-value. The learning rate α controls
the weight of updates to the Q-values, while the discount
factor γ determines the size of future rewards. The ε-greedy
strategy balances exploration and exploitation, allowing for
exploring new actions while leveraging existing experience.
By iteratively updating the Q-table, the algorithm eventually
converges to the optimal Q-value function, allowing the opti-
mal policy to be learned.

C. BELLMAN EQUATION
The Bellman equation is a fundamental equation for value
functions in reinforcement learning, which describes the rela-
tion between a state’s value function and the value functions
of its neighboring states [30]. With an iterative value function
update, the algorithm can gradually converge to the optimal
value function, thus learning the optimal decision policy.
Specifically, for a state s and an action a, the Bellman equation
defines the relationship between the state value function V(s)
or the action value function Q(s, a) and the value function of
its next state.

Bellman’s equation for the state-value function is formu-
lated as follows:

V(s) = E[R(s, a)+ γ · V(s′)|s, a] (7)

In the context of the equation, V(s)represents the value
function of state s, R(s, a) represents the immediate reward
obtained by taking action a in state s, γ is the discount factor,
V(s′) represents the value function of the following state s′,
and E denotes the expectation.

Bellman’s equation for the action-value function can be
expressed as:

Q(s, a)← E[R(s, a)

+γ ·max[Q(s′, a′)]|s, a] (8)

In the given equation, Q(s, a) represents the value function
for taking action a in state s, R(s, a) denotes the value function
for taking action a in state s, R(s, a) representing the immedi-
ate reward gained when taking action a in state s.

One of the critical ideas of the Bellman equation is to relate
the value of the value function of the state or the action value
function to the value of the successor states. The optimal
value function can be progressively approached by iteratively
updating the values. In reinforcement learning algorithms, the
Bellman equation is a core principle used in value iteration,
policy iteration, and other algorithms to help the agent learn
the optimal policy.

III. PROBLEM FORMULATION
A. PROBLEM STATEMENT
During the surface operations process at airports, all aircraft
operate under the command of air traffic controllers to ensure
operations’ safety and effectiveness. Our proposed reinforce-
ment learning-based path-finding algorithm aims to find an
optimal taxiing path for aircraft on the airport surface given
safety by avoiding other aircraft or vehicles in operation.
In this work, we selected Shanghai Hongqiao Airport in
China as the simulation target. We built an experimental
environment, including two closely spaced parallel runways,
multiple taxiways and apron areas currently used at Shanghai
Hongqiao Airport. We designed five sets of surface opera-
tion experiments based on the latest operational regulations,
including three experiments involving taxiway conflicts for
inbound and outbound aircraft. The simulation experiments
aim to predict and avoid conflicts with other aircraft or vehi-
cles in operation and to plan the optimal taxiing path for
arriving and departing aircraft. Ensuring safety, the algorithm
assists air traffic controllers in commanding aircraft, improv-
ing airport operational efficiency.

Traditional path search algorithms such as Dijkstra, A star,
and RRT [31], [32], [33] can only find the theoretically
shortest route through traversal exploration and formula cal-
culations, and they are difficult to adapt to continuously
changing environments. Due to the complex nature of airport
surface operations and the existence of special taxi regula-
tions, traditional path search algorithms are not well-suited
for aircraft path searches at the airport. In contrast, reinforce-
ment learning methods can incorporate particular search and
conflict resolution strategies. The Q-Learning algorithm in
reinforcement learning receives real-time feedback from the

VOLUME 11, 2023 107895

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

FIGURE 4. Algorithm testing environment model.

environment in each iteration, making it more adaptable to
dynamic environments. This paper introduces conflict reso-
lution strategies that integrate airport control regulations into
the Agent’s movement process, making the simulation results
more realistic and closer to actual airport operations. We have
also made a series of enhancements to the Q-Learning
algorithm to improve the efficiency of the algorithm’s search
process and the stability of the search after convergence.

B. GRID ENVIRONMENT
The grid-based method is a commonly used path-planning
approach for computing paths in a discretized environment.
The grid-based method involves partitioning the environment
into multiple grid cells, each representing a discrete state
space.

For this purpose, we constructed four sets of 10·10 grid
maps with obstacle ratios of 20%, 30%, 40%, and 50% to
test the performance improvement of the enhanced algorithm.
As shown in figure 4, the white area represents the search
space available for the agent, and the black area represents the
region occupied by obstacles. The four environment models
have the same initial position (1, 1) and target position (10,
10) settings.

C. SIMULATION MODEL SETTINGS
1) VARIABLE DEFINITIONS AND OBJECTIVE FUNCTION
For the simulation experiments in this paper, the position state
of the agent is determined using Cartesian coordinates. The
horizontal axis of the grid is shown as the X-coordinate in
the grid map, where values increase from left to right, and the
vertical axis of the grid is represented by the y-coordinate,
with values increasing from the bottom to the top. The agent
searches for a path between the green initial position at (1,1)
and the yellow target position at (10,10) on the grid while
avoiding black obstacles, and the agent’s position state must
not exceed the grid boundaries. The goal of path planning
is to minimize the search time and the length of the path.

FIGURE 5. Agent search strategy.

We define the convergence state as when the consecutive
difference in algorithm steps is notmore significant 20. Let Tc
denote the time at which the algorithm first converges, and Sc
denotes the average step count of the agent’s path search after
convergence. Therefore, for the agent’s path search problem,
the objective function can be expressed as:

Min {Tc&Sc} (9)

2) CONSTRAINTS OF THE PATH PLANNING SIMULATION
MODEL
During the operation, we set the search directions of the
Agent to four: up, down, left, and right. The search scope cov-
ers the maximum values of the grid’s horizontal and vertical
axes.

The constraint conditions for the search positions of the
Agent can be expressed as:

Pa = (x± 1, y± 1) ∈ (X ,Y) (10)

For each state of the Agent, the optimal action can be
generated using the formula:

a∗(st) = maxaQ(st+1, a) (11)

The Q-values in the algorithm are updated using the Bell-
man equation, and the maximum value in the Q-Table is
chosen for the following computation per iteration.

Q = Qmax(s, a)

= E[R(s, a)+ γ ·max[Q(s′, a′)]|s, a] (12)

3) PARAMETERS SETTINGS
For the simulation experiment, the baseline parameter set-
tings are as follows: the initial values in the Q-Table are all set
to 0, the maximum episode count is set to 150, the exploration
rate ε is 0.1, the learning rate α is 0.1, the discount factor γ

is 0.9, and the maximum step length is set to 200. The action
reward values are set as follows:

Reward =

100 Target position
−10 Obstacle position
−1 Other position

(13)

The algorithm in this paper was tested and simulated on
the Windows 11 operating system with 8GB of RAM and an
Intel Core i5-10500CPU running at 3.10GHz. The simulation
software used was MATLAB R2021A.

107896 VOLUME 11, 2023

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

TABLE 1. Algorithm improvement experimental data: Q-Table exploration
guidance.

IV. SOLUTION APPROACH
A. SIMULATION MODEL SETTINGS
Due to the exploration rate in traditional Q-Learning algo-
rithms, the iteration data becomes unstable after convergence.
Therefore, we improved the Q-Learning algorithm in the fol-
lowing three aspects and validated the enhanced algorithm’s
performance in different complexity environments usingmul-
tiple environment models.

1) OPTIMIZING Q-TABLE EXPLORATION GUIDANCE
Due to the existence of the exploration rate α, the algorithm
always has a certain probability of random exploration,
which may cause the agent to choose incorrect actions mul-
tiple times, thus affecting the computational efficiency and
accuracy. We introduced an exploration-guided strategy for
the Q-Table in the algorithm to avoid this situation. The
specific method is as follows: when the agent encounters
obstacles multiple times at the same position or when the
search fails, the corresponding Q-value in the Q-Table for
that position should be much smaller than the Q-values for
other positions. Before taking a random action, we add a
condition check [34] to subtract an enormous value from
the Q-Table if an obstacle is encountered during the current
search. This helps to eliminate actions prone to encountering
obstacles, thus accelerating the convergence speed of the
algorithm.

Table 1 shows the performance of the original Q-Learning
algorithm (QL) and the algorithm with optimized explo-
ration guidance (QL-EG) in Grid-1 andGrid-2. The improved
algorithm demonstrates improvements in terms of time and
convergence speed compared to the original Q-Learning
algorithm.

2) RESETTING INITIAL VALUES OF Q-TABLE
The traditional Q-Learning algorithm typically initializes
all Q-table values to 0. To encourage the agent to
select the shortest path, however, we can initialize the
Q-values as the reciprocal distance between the current
and goal positions. The closer the agent is to the tar-
get, the higher the Q-value. This initialization helps the
agent to move towards the target location during training
initially.

Assuming the coordinates of two points in the coordinate
system are (x1, y1) and (x2, y2), the Euclidean distance do
and Manhattan distance dm between the two points can be

FIGURE 6. Algorithm improvement iteration steps graph:
Q-Table exploration guidance.

TABLE 2. Algorithm improvement experimental data: resetting initial
values of Q-Table.

expressed using formulas:

do = [(x1 − x2)2 + (y1 − y2)2]1/2 (14)

dm = |x1 − x2| + |y1 − y2| (15)

To validate the efficacy of the enhancements, we performed
two sets of experiments in Grid-1 and Grid-2. For each set,
we initialized the Q-values in the Q-table using the reciprocal
of the Manhattan distance and the reciprocal of the Euclidean
distance between the start point and the endpoint.

Table 2 demonstrates the performance of the Q-Table ini-
tialization using values of 0, 1/do, and 1/dm in two different
environments. While achieving the same path, the improved
algorithm outperforms the original algorithm in terms of time
and shows improved iteration stability.

3) DYNAMIC EXPLORATION FACTOR
The introduction of the exploration rate ε increases the
model’s exploration of the environment, improving the like-
lihood of obtaining the optimal solution. When the algorithm
is performing computations per iteration, it will continue
to choose the action with the largest value per iteration
with probability ε, and randomly choose an action with

VOLUME 11, 2023 107897

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

FIGURE 7. Algorithm improvement iteration steps graph: resetting initial
values of Q-Table.

FIGURE 8. Visualization of dynamic exploration factor correlation.

probability 1-ε. The mathematical expression is as follows:

A =

{
value maxaQ(a) P = ε

random action P = 1− ε
(16)

In reinforcement learning, the model continuously selects
actions with the highest value to execute and update the
values. However, some good actions that have yet to be
executed in the later stages of exploration may be missed
due to random exploration probability. Therefore, regard-
ing the exploration-exploitation trade-off in the Q-Learning
algorithm, we propose introducing a dynamic search factor
that can be adjusted based on the environment’s feedback. If a
search succeeds, the search rate decreases by some value to
increase the probability of choosing the optimal action in the
next exploration by the agent. Conversely, when a search fails,
the search rate increases by a specific value to increase the
probability of random exploration in the next iteration. In our
experiments, we set themaximum episode to 150, exploration
rate (ε) to 0.1, and dynamic search factor (dynamic-ε) to 0-
0.01. We tested the algorithm’s performance with different
parameters in the Grid-1 environment and selected the param-
eters with the best results to apply to the airport simulation
environment.

FIGURE 9. Paths searched by improved algorithm in different testing
environments.

FIGURE 10. Iteration steps graph for algorithm improvement: dynamic
search factor.

The impact of different values of dynamic-ε on the
algorithm’s performance is shown in Figure 9. In the upper
graph, darker colors indicate shorter computation time, while
in the lower graph, lighter colors indicate faster convergence.
It can be observed that when dynamic-ε is set to 0.004, the
algorithm performs better in terms of computation time and
convergence speed.

B. ALGORITHM COMPARATIVE ANALYSIS
1) COMPARED WITH Q-LEARNING ALGORITHMS
We applied the improved Q-Learning algorithm (QL-DYN)
before and after introducing the dynamic search factor in
Grid-2, Grid-3, and Grid-4 to validate its applicability further.

From Figure 10, it can be observed that the Agent with the
introduction of dynamic-ε achieves faster search speed while
maintaining the search path’s accuracy and exhibits improved
stability after convergence.

2) COMPARED WITH OTHER TRADITIONAL PATH
PLANNING ALGORITHMS
After comparing with the Q-Learning algorithm, we com-
pared our enhanced reinforcement learning algorithm
(QL-DYN) and traditional path planning algorithms. The

107898 VOLUME 11, 2023

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

TABLE 3. Experimental data for algorithm improvement: dynamic search
factor.

traditional algorithms used for comparison include Artificial
Potential Fields (APF), Ant Colony Optimization (ACO), A∗

algorithm, and Dijkstra’s algorithm.
Ant Colony Optimization (ACO) was proposed by Dorigo

in 1996 [35]. It is a stochastic search algorithm that simulates
the foraging process of real ants in the natural world. The
solving process can be roughly divided into state transitions
(path construction) and pheromone updates. The following
formula can represent the probability of state transition.

pk(i, j) =

[τ (i, j)]α·[η(i, j)]β∑

µ∈Jk(i)
[τ (i, u)]α · [η(i, u)]β

j ∈Jk(i)

0 otherwise
(17)

After each iteration, the pheromone is updated.

τ (i, j) = (1− ρ) · τ (i, j)+
m∑

k=1

1τk(i, j) (18)

1τk(i, j) =

{
(Ck)−1 (i, j) ∈Rk

0 otherwise
(19)

η(i, j) =
1
dij

(20)

In the above formulas, τ represents pheromone, η stands
for heuristic information value, α is the weight of pheromone,
β is the weight of heuristic information value, ρ is the
pheromone evaporation rate, τ (i, j) denotes the amount of
pheromone on the path, with values in the range of [0, 1],
m is the number of ants, dij is the distance between node i
and node j, and CK represents the path length searched by
ant k in this iteration.

Computer scientist Edsger W. Dijkstra proposed the Dijk-
stra algorithm in 1959 [36], and it has been widely used in
computer science and engineering. Its core principle is to
start from a specified node (the source node) and find the
shortest paths between it and all other nodes in the graph.
During the algorithm’s execution, the node with the most
minor cost is selected from the priority queue as the next one
to be traversed. This process continues until the destination is
reached. The essence of the algorithm is breadth-first search,
which is a divergent search method, resulting in relatively
high space and time complexity.

The A∗ algorithm combines the Dijkstra algorithm
(breadth-first) and the greedy algorithm (depth-first) [37].
While traversing nodes, it records the cost to reach each node
from the source and calculates the estimated cost from the
current node to the goal node, resulting in better performance
and accuracy. Due to the guidance provided by the heuristic
function, the A∗ algorithm often exhibits superior perfor-
mance. The essential heuristic function for the A∗ algorithm
is shown below:

f(n) = g(n)+ h(n) (21)

In the formula, f(n) represents the overall priority of node
n, where g(n) is the cost from the starting point to node n, and
h(n) is the estimated cost from node n to the destination.

The Artificial Potential Field (APF) is a virtual force
method proposed by Khatib in 1985 [38]. Its fundamental
concept is to design the movement of an agent in its sur-
rounding environment as a motion within an abstract artificial
gravitational field. The goal point generates ‘‘attraction’’ in
the agent, while obstacles generate ‘‘repulsion.’’ Ultimately,
the agent’s movement is controlled by calculating the resul-
tant force. The expressions for traditional gravitational and
repulsive fields are as follows:

Uatt(q) =
1
2
kp2G(q) (22)

Urep(q) =

1
2
η(

1
p(q)
−

1
p0

)
2

p(q) ≤p0

0 p(q) >p0

(23)

Among them,, UATT(Q) represents the value of the attrac-
tive field, PG(Q) represents the distance to the target position,
and k represents the attraction gain constant. UREP(Q) rep-
resents the value of the repulsive field, P(Q) represents the
distance to obstacles, η represents the repulsion gain constant,
and P0 represents the influence range of obstacles.

The direction of motion is generated by taking the negative
gradient of the force field function, as shown below:

Fatt(q) = −kpG(q) (24)

Frep(q) =

 η

(
1

p(q)
−

1
p0

)
·
∇p(q)
p2(q)

p(q) ≤p0

0 p(q) >p0
(25)

FATT(Q) represents attraction in the above formula, and
FREP(Q)represents repulsion.

The overall field combines an attraction field and a repul-
sion field. Taking the gradient of the resultant field provides
the direction in which an object should move, as shown
below:

U(q) = Uatt(q)+Urep(q) (26)

F(q) = −∇U(q) (27)

The paths generated by the artificial potential field method
are generally smooth and safe, but this approach suffers from
the local optima problem.

VOLUME 11, 2023 107899

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

FIGURE 11. ACO, Dijkstra, A star, APF Algorithm in Grid-2 Search Path.

TABLE 4. Compare the experimental data of the algorithm.

For comparative algorithm experiments, the Grid-2 map
with moderate obstacle complexity from Test Case III-B was
chosen as the map model. A typical starting point (1, 1)
and ending point (10, 10) were used. The diagram below
depicts the paths searched by the four comparative algo-
rithms in Grid-2. In ACO, Dijkstra, and A∗ algorithms, the
search directions were uniformly set to eight directions. The
smoothed paths of theArtificial Potential Field (APF)method
were plotted as line segments based on their directional
characteristics to compare the search trajectories of different
algorithms visually.

From the above data, it can be observed that among the
five comparative algorithms, Dijkstra and A∗ demonstrate
superior efficiency. A∗ combines Dijkstra’s principles and
selects nodes most likely to lead to the shortest path based on
a heuristic function estimating the distance to the goal node
and the actual path taken. This approach efficiently searches
the space and is usually faster than Dijkstra. Compared to the
above twomethods, Q-learning can learn in complex dynamic
environments, adapt to changing weights and environmen-
tal conditions, and gradually optimize strategies through
interaction with the environment. Traditional Dijkstra and
A∗ algorithms, on the other hand, are typically suited for
static environments. Ant Colony Optimization (ACO) often
requires ants to share pheromone information and coordinate
actions, which may necessitate global information.

In contrast, the Q-learning algorithm can learn and make
decisions based on local states. The artificial potential field
method is prone to local minima, especially when there
are intricate obstacles. Q-learning, employing explorationex-
ploitation strategies, is better equipped to avoid such issues.

It is important to note that despite havingmany advantages,
Q-learning also has some limitations, such as requiring a
significant amount of iterative training and time, and depen-
dence on the initial state space. Choosing the appropriate
algorithm depends on the characteristics and requirements of
the problem. In practical applications, it is necessary to select

different algorithms or combine them based on the specific
features of the problem.

C. AIRPORT TAXIWAY COLLISION AVOIDANCE STRATEGY
1) OPERATIONAL RULES
Due to the specificity of aircraft operations, aircraft pilots
are required to strictly adhere to the following safety taxiing
regulations when taxiing or towing on the ground:

• If two aircraft approach each other head-on, they must
each move to the right and maintain a safe separation
from each other.

• When two aircraft cross each other, the pilot of the
aircraft who sees the other aircraft on his left side from
the cockpit must stop taxiing and yield.

• When two aircraft are taxiing in a follow-the-leader
manner, the trailing aircraft must not overtake the lead-
ing aircraft and shouldmaintain a safe distance of no less
than 50 meters.

• Aircraft are not allowed to cross a runway during taxiing
without permission from the airport control.

2) COLLISION AVOIDANCE STRATEGY
Based on the listed airport taxi control regulations above,
we introduced corresponding avoidance strategies and
constraints in the dynamic programming experiments
in Chapter 5.

• Strategy 1: Airport taxiways typically follow a one-way,
forward principle to ensure the safety and efficiency
of aircraft operations. Therefore, controllers usually do
not allow two aircraft to taxi toward each other. In our
algorithm, we incorporate a decision to terminate the
iteration search when the Agent and a dynamic obsta-
cle move in opposite directions and meet at the exact
location in the two-dimensional space.

• Strategy 2: We introduce a check in the experiment
to address the priority issue when two aircraft meet at
an intersection. Before each movement, the Agent will
check if there is a dynamic obstacle in the left front of the
intended direction of movement. If a dynamic obstacle is
detected, the Agent will pause the search for three steps,
allowing the prioritized Agent or dynamic obstacle to
pass and maintain a safe distance before continuing the
search.

• Strategy 3: In the simulated airport grid environment,
the Agent and dynamic obstacles are set to have the
same speed, and the width of the taxiway occupies one
grid unit. Therefore, the Agent and dynamic obstacles
may follow each other during their movement. In the
experiment, we set up three equally-sized and indepen-
dent dynamic obstacles. By defining the taxiing routes
of the three dynamic obstacles, we create a safe margin
of 50m ×50m grid units between the two aircraft for
follow-up taxiing and safe intersection encounters.

• Strategy 4: To prevent the Agent from crossing the run-
way during the experiment, we turn off the grid areas

107900 VOLUME 11, 2023

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

FIGURE 12. Shanghai Hongqiao Airport (ZSSS) structural diagram (The blue area is the apron area, the green area is the
terminal area, and the orange area is the runway.)

FIGURE 13. Airport environment grid representation diagram.

corresponding to the runways, except for the taxiways
necessary for aircraft to depart from the runway.

In conclusion, under the premise of the Agent’s path search
objective function in Chapter 3, the position constraints after
introducing dynamic obstacles can be represented as follows:

Pa = (xi ± 1, yi ± 1) ∈ (X,Y) (28)

Pob = (xj ± 1, yj ± 1) ∈ (X,Y) (29)

(xi ± 1, yi ± 1) ̸= (xj ± 1, yj ± 1) (30)∣∣xi − xj∣∣+ ∣∣yi − yj∣∣ ≥ 1 (31)

In the above formula, Pa represents the position state of the
Agent, and Pob represents the position state of the dynamic
obstacle.

V. SIMULATION AND RESULTS
A. SIMULATION ENVIRONMENT
In this section, the improved algorithm approach from the
previous chapter is applied to the Shanghai Hongqiao Airport
simulation environment to evaluate the established dynamic
conflict avoidance model. With its narrow parallel runways,
Shanghai Hongqiao International Airport serves as a typical
international airport and possesses a certain degree of univer-
sality. In most cases, it can represent operational scenarios

FIGURE 14. Simulation taxiway route diagram: departure using runway
36R.

in airports worldwide. Within the established grid model,
obstacles are categorized into two types: static obstacles and
dynamic obstacles. Static obstacles represent areas where
aircraft movement is prohibited, while dynamic obstacles are
used to simulate other aircraft or vehicles currently operating
on the airport apron. The movement of dynamic obstacles
can be customized by defining individual step-wise motion
nodes.

As shown in Figure 12, Shanghai Hongqiao Airport has
two parallel narrow runways in the north-south direction:
Runway 36 and Runway 18, both available for aircraft takeoff
and landing. Six rapid exit taxiways are connected to the
runways: C1, C2, C3, C4, B7, and B8. On the west side
of these taxiways are connected to the second, fourth, and
sixth aprons. Runway 36R - 18L has a total of ten rapid exit
taxiways: A1, A2, A3, A4, B1, B2, B3, B4, B5, and B6.
On the east side of these taxiways are connected to the first
apron and the business apron.

As shown in Figure 13, we modeled the runway, taxiway,
and apron areas of Shanghai Hongqiao Airport for con-
ducting dynamic aircraft operation simulation experiments.
To simplify the simulation environment model structure,
we gratified it and established a grid map of 50·80, where

VOLUME 11, 2023 107901

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

FIGURE 15. Agent and dynamic obstacle state during operation(36R-D).

TABLE 5. Taxiing routes of intelligent agents and dynamic obstacles:
departure using runway 36R.

each grid represents an actual area of 50m·50m. The relative
positions for fast exiting from and connecting parallel taxi-
ways A1, A2, A3, A4, B1, B2, B3, B4, B5, B6, B7, B8, C1,
C2 were used as the reference.

We conducted four sets of simulation experiments, each
reflecting the situations of two active runways at Shanghai
Hongqiao Airport, involving different directions for arrivals
and departures. Among these, scenario 36R-A was divided
into three groups based on whether aircraft can cross another
runway during taxiing, following airport operational regula-
tions. These considerations encompass all typical operational
states of the airport and hold a certain level of generality
among international airports worldwide.

Themovement routes of dynamic obstacles were calibrated
based on airport taxiing regulations, and they started search-
ing and moving at the same time as the Agent, with the same
movement speed. As for the parameters, we set the Max
episode to 100, ε = 0.1, Dynamic-ε = 0.004, α = 0.1, γ =
0.9, and Initial Q = 1/dm.

B. SIMULATION EXPERIMENT
1) RWY-36R-DEPARTURE
In this set of simulation experiments, we use 36R as the
active runway. We set dynamic obstacles to taxi from runway
36R, depart from taxiway A2, and taxi to parking stand
506, located in the apron area of gate 1. At the same time,
we ask the Agent to search for the optimal taxiing route from
parking stand 109 to the holding point outside runway 36R.
The critical point is that the Agent cannot traverse the track
during the search process, so we have closed the entrances of
taxiways A2, H4, A3, and A4. The results and the state of the
Agent are shown in Figure 14.

As shown in Figure 15, during the operation, we observed a
crossing conflict between the Agent and the dynamic obstacle
near taxiways K5 and K6 between steps 35 and 40. At this
time, the Agent was positioned to the left and in front of the
dynamic obstacle, giving it a priority of passage.

FIGURE 16. Simulation taxiway route diagram: arrival using runway 36R.

2) RWY-36R-ARRIVAL
We use runways 36R and 36L as the operating runways.
Dynamic obstacles are set to taxi from parking stand 406,
located in apron 4, via taxiways C and H6 to the holding
point outside runway 36L. At the same time, the Agent is
tasked with searching for the optimal taxi route from the
departure point on runway 36R to parking stand 26, located
in Apron 2. It is important to note that there is no rapid
exit taxiway on the west side of runway 36R at Shanghai
Hongqiao Airport. Only three perpendicular taxiways, B1,
B2, and B3, are available for aircraft to exit southwards.
Among them, B3 crosses the northern area of runway 36L.
Aircraft can only exit westwards from B3 when permitted by
the tower control. Therefore, we conducted three of simula-
tion experiments: B3-H3 available, B3-H3 unavailable, and
B3-H3-H2 unavailable. The results of the experiments are
shown in the following figure.

Figures 16 and 17 show that when the aircraft departs from
B1 and B2, there is no spatial conflict with the dynamic obsta-
cles. However, when the aircraft departs from B3, a crossing
conflict occurs at the intersection of H3 and D taxiways.
In this case, the Agent is positioned to the left of the dynamic
obstacle and has the right of way. Therefore, the Agent pro-
ceeds from H3 to D while the dynamic obstacle moves south.
The Agent proceeds southward and reaches parking position
264.

3) RWY-18R-DEPARTURE
We use runway 18R for operation. Dynamic obstacles are set
to taxi from C3 through H5 to parking stand 229, located at

107902 VOLUME 11, 2023

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

FIGURE 17. Agent and dynamic obstacle state during operation(36R-A).

FIGURE 18. Simulation taxiway route diagram: departure using runway
18R.

TABLE 6. Taxiing routes of intelligent agents and dynamic obstacles
arrival using runway 36R.

TABLE 7. Taxiing routes of intelligent agents and dynamic obstacles:
departure using runway 36R.

apron 2. At the same time, we instruct the Agent to search for
the optimal taxi route from parking stand 602 at Apron 6 to
the holding point outside runway 18R. Similarly, the Agent
is not allowed to cross the runway during the search process,
so we close the entrances of taxiways C1, C2, H4, C3 (H5),
and C4. The operational results are shown in the following
figure:

We observe that when the Agent and dynamic obstacle
approach H5, they enter a scenario of following each other’s
taxi path. At this point, the dynamic obstacle appears in front
of the Agent, approximately three grid cells away (around
150 meters) from its current position. As the dynamic obsta-
cle reaches D6 and turns towards M2, the Agent continues
moving northward.

4) RWY-18R-ARRIVAL
In this set of simulation experiments, we use runway 18R for
operations. Dynamic obstacles are set to taxi from parking
stand 602, located at apron 6, through taxiways D and H2,

TABLE 8. Taxiing routes of intelligent agents and dynamic obstacles:
arrival using runway 18R.

TABLE 9. Time performance improvement data.

TABLE 10. Convergence performance improvement data.

to the holding point outside runway 18R. Meanwhile, the
Agent is tasked with searching for the optimal taxi route from
taxiway C3 to parking stand 414, located at apron 4. The
operational results are shown in the following figure:

As shown in Figures 19 and 20, during the opera-
tion, we observed a crossing conflict when the Agent and
the dynamic obstacle approached the vicinity of H3. The
dynamic obstacle was placed to the front left of the Agent
at this time and had the right-of-way. Therefore, the Agent
paused its search for three steps and waited for the dynamic
obstacle to pass before continuing its westward search.

C. RESULTS
In the same simulation environment, we search for the opti-
mal taxi routes for multiple departing and arriving aircraft
groups. To demonstrate the improvement of the proposed
algorithm, we also perform path searches using the original
Q-Learning algorithm under the same parameter condi-
tions in each group experiment. The table below shows the
search time and convergence iteration count for the original
algorithm (QL) and the improved algorithm (QL∗).
The improved algorithm shows significant improvements

in search time and convergence speed. For example, in the
case of RWY-36R-A, compared to the traditional Q-Learning
algorithm, the improved algorithm reduces the search time by

VOLUME 11, 2023 107903

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path Planning

FIGURE 19. Simulation taxiway route diagram: arrival using runway 18R.

FIGURE 20. Agent and dynamic obstacle state during operation(18R-A).

24.2%, decreases the convergence search count from 94 to 66,
and achieves a 29.8% improvement in convergence perfor-
mance. This can be attributed to the exploration guidance and
the initial values in the Q-Table. Introducing of the dynamic
exploration factor eliminates the instability caused by the
exploration rate in the later stages of the algorithm, leading
to a substantial increase in search speed.

VI. CONCLUSION
Providing taxi route guidance for aircraft on the apron is
the most fundamental means of airport control. We pro-
pose improving the Q-Learning algorithm in reinforcement
learning to provide taxi route guidance for aircraft. First,
we establish a grid-based airport environment model for
Shanghai Hongqiao Airport in China. Then, we make var-
ious improvements to the traditional Q-Learning algorithm
in reinforcement learning, including optimizing the explo-
ration strategy and resetting Q-values to enhance algorithm
efficiency. We also introduce a dynamic exploration factor
to improve the algorithm’s stability during later convergence.
Based on civil airports’ basic apron control rules, we incor-
porate corresponding conflict avoidance strategies for aircraft
in the algorithm. This method can be well integrated into
the path planning algorithm and, compared to the original
Q-Learning algorithm, can accurately and quickly find the
shortest taxi route for arriving and departing aircraft in com-
pliance with the apron operational regulations. Finally, the
proposed approach is validated at Shanghai Hongqiao Air-
port.

REFERENCES
[1] A. E. I. Brownlee, M. Weiszer, J. Chen, S. Ravizza, J. R. Woodward,

and E. K. Burke, ‘‘A fuzzy approach to addressing uncertainty in airport
ground movement optimisation,’’ Transp. Res. C, Emerg. Technol., vol. 92,
pp. 150–175, Jul. 2018, doi: 10.1016/j.trc.2018.04.020.

[2] L. Hao, M. S. Ryerson, L. Kang, and M. Hansen, ‘‘Estimating fuel
burn impacts of taxi-out delay with implications for gate-hold benefits,’’
Transp. Res. C, Emerg. Technol., vol. 80, pp. 454–466, Jul. 2017, doi:
10.1016/j.trc.2016.05.015.

[3] G. Clare and A. G. Richards, ‘‘Optimization of taxiway routing and
runway scheduling,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4,
pp. 1000–1013, Dec. 2011, doi: 10.1109/TITS.2011.2131650.

[4] C. Evertse and H. G. Visser, ‘‘Real-time airport surface movement plan-
ning: Minimizing aircraft emissions,’’ Transp. Res. C, Emerg. Technol.,
vol. 79, pp. 224–241, Jun. 2017, doi: 10.1016/j.trc.2017.03.018.

[5] E. I. Brownlee, J. R. Woodward, M. Weiszer, and J. Chen, ‘‘A rolling win-
dow with genetic algorithm approach to sorting aircraft for automated taxi
routing,’’ in Proc. Genetic Evol. Comput. Conf., Kyoto, Japan, Jul. 2018,
pp. 1207–1213, doi: 10.1145/3205455.3205558.

[6] W. Deng, L. Zhang, X. Zhou, Y. Zhou, Y. Sun, W. Zhu, H. Chen, W. Deng,
H. Chen, and H. Zhao, ‘‘Multi-strategy particle swarm and ant colony
hybrid optimization for airport taxiway planning problem,’’ Inf. Sci.,
vol. 612, pp. 576–593, Oct. 2022, doi: 10.1016/j.ins.2022.08.115.

[7] J. Atkin, E. K. Burke, and S. Ravizza, ‘‘The airport ground movement
problem: Past and current research and future directions,’’ in Proc. 4th Int.
Conf. Res. Air Transp., Budapest, Hungary, 2010, pp. 131–138.

[8] T. Zhang, M. Ding, B. Wang, and Q. Chen, ‘‘Conflict-free time-based
trajectory planning for aircraft taxi automation with refined taxiway mod-
eling,’’ J. Adv. Transp., vol. 50, no. 3, pp. 326–347, Apr. 2016, doi:
10.1002/atr.1324.

[9] S. J. Landry, X. W. Chen, and S. Y. Nof, ‘‘A decision support
methodology for dynamic taxiway and runway conflict prevention,’’
Decis. Support Syst., vol. 55, no. 1, pp. 165–174, Apr. 2013, doi:
10.1016/j.dss.2013.01.016.

[10] Y. F. Chen, M. Liu, M. Everett, and J. P. How, ‘‘Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Singapore,
May 2017, pp. 285–292, doi: 10.1109/ICRA.2017.7989037.

[11] M. Everett, Y. F. Chen, and J. P. How, ‘‘Motion planning among dynamic,
decision-making agents with deep reinforcement learning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid, Spain, Oct. 2018,
pp. 3052–3059, doi: 10.1109/IROS.2018.8593871.

[12] J. P. Bailey, A. Nash, C. A. Tovey, and S. Koenig, ‘‘Path-length anal-
ysis for grid-based path planning,’’ Artif. Intell., vol. 301, Dec. 2021,
Art. no. 103560, doi: 10.1016/j.artint.2021.103560.

[13] F. Kiani, A. Seyyedabbasi, S. Nematzadeh, F. Candan, T. Çevik,
F. A. Anka, G. Randazzo, S. Lanza, and A. Muzirafut, ‘‘Adaptive
metaheuristic-based methods for autonomous robot path planning: Sus-
tainable agricultural applications,’’ Appl. Sci., vol. 12, p. 943, Jan. 2022,
doi: 10.3390/app12030943.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015, doi: 10.1038/nature14236.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016, doi:
10.1038/nature16961.

[16] C. Amato and G. Shani, ‘‘High-level reinforcement learning in strategy
games,’’ in Proc. 9th Int. Conf. Autonomous Agents Multiagent Syst.,
Toronto, ON, Canada, 2010.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. 4th Int. Conf. Learn. Represent., San Juan, Puerto Rico, 2016.

[18] M. Brittain and P. Wei, ‘‘Autonomous aircraft sequencing and separation
with hierarchical deep reinforcement learning,’’ in Proc. Int. Conf. Res. Air
Transp., Castelldefels, Spain, Jun. 2018.

[19] M. Brittain and P. Wei, ‘‘Autonomous air traffic controller: A deep multi-
agent reinforcement learning approach,’’ in Proc. 36th Int. Conf. Mach.
Learn., California, CA, USA, 2019.

[20] C. J. C. H.Watkins, ‘‘Learning from delayed rewards,’’Robot. Auton. Syst.,
vol. 15, no. 4, pp. 233–235, 1989, doi: 10.1016/0921-8890(95)00026-C.

107904 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.trc.2018.04.020
http://dx.doi.org/10.1016/j.trc.2016.05.015
http://dx.doi.org/10.1109/TITS.2011.2131650
http://dx.doi.org/10.1016/j.trc.2017.03.018
http://dx.doi.org/10.1145/3205455.3205558
http://dx.doi.org/10.1016/j.ins.2022.08.115
http://dx.doi.org/10.1002/atr.1324
http://dx.doi.org/10.1016/j.dss.2013.01.016
http://dx.doi.org/10.1109/ICRA.2017.7989037
http://dx.doi.org/10.1109/IROS.2018.8593871
http://dx.doi.org/10.1016/j.artint.2021.103560
http://dx.doi.org/10.3390/app12030943
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/0921-8890(95)00026-C

Z. Xiang et al.: Application of Improved Q-Learning Algorithm in Dynamic Path

[21] F. Moreno-Vera, ‘‘Performing deep recurrent double Q-learning for Atari
games,’’ in Proc. IEEE Latin Amer. Conf. Comput. Intell. (LA-CCI),
Nov. 2019, pp. 1–4, doi: 10.1109/LA-CCI47412.2019.9036763.

[22] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduc-
tion,’’ IEEE Trans. Neural Netw., vol. 9, no. 5, p. 1054, Sep. 1998, doi:
10.1109/TNN.1998.712192.

[23] L. Martin, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, vol. 37. Hoboken, NJ, USA: Wiley, Apr. 1994, doi:
10.1002/9780470316887.

[24] J. Filar and K. Vrieze, Competitive Markov Decision Processes. Berlin,
Germany: Springer-Verlag, Dec. 1996, p. 393.

[25] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, ‘‘Trust region
policy optimization,’’ in Proc. 32nd Int. Conf. Int. Conf. Mach. Learn.,
vol. 37, Jul. 2015, pp. 1889–1897.

[26] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie,
‘‘Multi-objective workflow scheduling with deep-Q-network-based multi-
agent reinforcement learning,’’ IEEE Access, vol. 7, pp. 39974–39982,
2019, doi: 10.1109/ACCESS.2019.2902846.

[27] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, May 1992, doi: 10.1007/BF00992698.

[28] B. Luo, D. Liu, T. Huang, and D. Wang, ‘‘Model-free optimal
tracking control via critic-only Q-learning,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 10, pp. 2134–2144, Oct. 2016, doi:
10.1109/TNNLS.2016.2585520.

[29] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of on-
line learning and an application to boosting,’’ in Proc. Eur. Conf. Comput.
Learn. Theory. Berlin, Germany: Springer, 1997, pp. 119–139.

[30] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, ‘‘Discrete-time nonlinear
HJB solution using approximate dynamic programming: Convergence
proof,’’ IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 38, no. 4,
pp. 943–949, Aug. 2008, doi: 10.1109/TSMCB.2008.926614.

[31] A. Ammar, H. Bennaceur, I. Châari, A. Koubâa, and M. Alajlan, ‘‘Relaxed
Dijkstra and A with linear complexity for robot path planning prob-
lems in large-scale grid environments,’’ Soft Comput., vol. 20, no. 10,
pp. 4149–4171, Oct. 2016, doi: 10.1007/s00500-015-1750-1.

[32] R. Cui, Y. Li, and W. Yan, ‘‘Mutual information-based multi-AUV path
planning for scalar field sampling using multidimensional RRT,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 46, no. 7, pp. 993–1004, Jul. 2016,
doi: 10.1109/TSMC.2015.2500027.

[33] S. M. Lavalle, ‘‘Rapidly-exploring random trees: A new tool for path
planning,’’ IEEE Trans. Robot. Autom., vol. 15, no. 5, pp. 990–1007,
Jan. 1998.

[34] Z. Shi, J. Tu, Q. Zhang, X. Zhang, and J. Wei, ‘‘The improved Q-learning
algorithm based on pheromone mechanism for swarm robot system,’’ in
Proc. 32nd Chin. Control Conf., Xi’an, China, Jul. 2013, pp. 6033–6038.

[35] M. Dorigo, V. Maniezzo, and A. Colorni, ‘‘Ant system: Optimization by
a colony of cooperating agents,’’ IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996, doi: 10.1109/3477.484436.

[36] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959, doi:
10.1007/bf01386390.

[37] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 28–29, Jul. 1968, doi: 10.1145/1056777.1056779.

[38] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile
robots,’’ Int. J. Robot. Res., vol. 5, no. 1, pp. 500–505, Feb. 1985, doi:
10.1109/robot.1985.1087247.

ZHENG XIANG (Member, IEEE) received the
B.S. degree in engineering and the Ph.D. degree
in communication and information systems from
Southwest Jiaotong University, in 2005 and 2011,
respectively. He is currently a Teacher with the
Air Traffic Control Department, Air Traffic Con-
trol College, Civil Aviation Flight University of
China, and is a Master’s Student Supervisor.
From 2014 to 2015, he was with the Airspace
Management Center, Civil Aviation Administra-

tion of China (CAAC). In 2016, he went to Sweden to attend a three-month
refresher training for air traffic control teachers at the Nordic Institute of Air
Traffic Control. His main research interests are in air traffic management
automation. He has published over 20 articles, one textbook, three patents,
and software copyrights and has hosted and participated in more than ten
teaching and research projects.

HEYANG SUN (Member, IEEE) received the B.S.
degree in engineering from the School of Trans-
portation Engineering, Zhejiang College, Tongji
University, in 2021. He is currently pursuing the
master’s degree with the Civil Aviation Flight Uni-
versity of China, College of Air Traffic Manage-
ment. His main research interests include machine
learning and air traffic management automation.

JIAHAO ZHANG received the B.S. degree in
engineering from the Jincheng College, Nan-
jing University of Aeronautics and Astronautics,
in 2022. He is currently pursuing the master’s
degree in transportation with the College of Air
TrafficManagement, Civil Aviation Flight Univer-
sity of China.

VOLUME 11, 2023 107905

http://dx.doi.org/10.1109/LA-CCI47412.2019.9036763
http://dx.doi.org/10.1109/TNN.1998.712192
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1109/ACCESS.2019.2902846
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/TNNLS.2016.2585520
http://dx.doi.org/10.1109/TSMCB.2008.926614
http://dx.doi.org/10.1007/s00500-015-1750-1
http://dx.doi.org/10.1109/TSMC.2015.2500027
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1145/1056777.1056779
http://dx.doi.org/10.1109/robot.1985.1087247

