
Received 10 September 2023, accepted 23 September 2023, date of publication 29 September 2023,
date of current version 4 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3320562

D-PFA: A Discrete Metaheuristic Method for
Solving Traveling Salesman Problem Using
Pathfinder Algorithm
PORIA PIROZMAND1, ALI ASGHAR RAHMANI HOSSEINABADI2, MAEDEH JABBARI CHARI3,
FAEZEH PAHLAVAN4, SEYEDSAEID MIRKAMALI5, GERHARD-WILHELM WEBER 6,7,
SUMMERA NOSHEEN8, AND AJITH ABRAHAM 9,10, (Senior Member, IEEE)
1Faculty of Higher Education, Holmes Institute, Sydney, NSW 2000, Australia
2Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
3Department of Industrial Engineering, Islamic Azad University of Masjed Soleiman, Masjed Soleyman, Khuzestan 6491796581, Iran
4Department of Computer Engineering, University of Mazandaran, Babolsar, Mazandaran 4741613534, Iran
5Department of Computer Engineering and IT, Payame Noor University, Tehran 19395-4697, Iran
6Faculty of Engineering Management, Poznań University of Technology, 60-965 Poznań, Poland
7IAM (UME), Middle East Technical University (METU), 06800 Ankara, Turkey
8Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2008, Australia
9School of Computer Science Engineering and Technology, Bennett University, Greater Noida, Uttar Pradesh 201310, India
10Innopolis University, Innopolis, 420500 Republic of Tatarstan, Russia

Corresponding author: Ajith Abraham (ajith.abraham@ieee.org)

This work was supported by the Analytical Center for the Government of the Russian Federation, in November 2021, under Grant
70-2021-00143 and Grant IGK 000000D730321P5Q0002.

ABSTRACT The Traveling Salesman Problem (TSP) which is a theoretical computer science and operations
research problem, has several applications even in its purest formulation, such as the manufacture of
microchips, planning, and logistics. There are many methods proposed in the literature to solve TSP with
gains and losses. We propose a discrete metaheuristic method called D-PFA to solve this problem more
efficiently. Initially, the Pathfinder Algorithm (PFA) was presented to handle issues involving continuous
optimization, where it worked effectively. In recent years, there have been various published variants of
PFA, and it has been frequently employed to address engineering challenges. In this study, the original PFA
algorithm is broken into four sub-algorithms and every sub-algorithm is discretized and coupled to form
a new algorithm. The proposed algorithm has a high degree of flexibility, a quick response time, strong
exploration and exploitation. To validate the significant advantages of the proposed D-PFA, 34 different
instances with different sizes are used in simulation results. The proposed method was also compared
with 12 State-of-the-Art algorithms. Results indicate that the suggested approach is more competitive and
resilient in solving TSP than other algorithms in different aspects. A conclusion and an outlook on future
studies and applications are given at the end of the paper.

INDEX TERMS Symmetric TSP, optimization, operational research, discrete pathfinder algorithm,
population-based metaheuristic.

I. INTRODUCTION
In several disciplines, combinatorial optimization issues
emerge, including Artificial Intelligence (AI), optimization,
andmany others [1]. Also, many real-world routine problems,
such as the Graph Coloring Problem (GCP) [2], Job-Shop

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .

Scheduling Problem (JSSP) [3], and Water Pump Switching
Problem (WPSP) [4] can be expressed as issues requiring
combinatorial optimization, the optimal solution of which
can provide us with numerous economic benefits [5], [6].
One of the most common problems that extensively uses dis-
crete hybrid optimization problems is the Traveling Salesman
Problem (TSP) [7], in which a salesperson must visit many
places and determine the shortest route in which each city is

106544

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0849-7771
https://orcid.org/0000-0002-0169-6738
https://orcid.org/0000-0003-4765-8371

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

visited exactly once. This problem is of the NP-hard [8] kind,
and as the number of cities rises, the algorithm′s execution
time grows exponentially, making it very difficult to find
an exact solution. This subject is thus a prominent topic in
Operations Research (OR) studies,Management Science, and
Computer Science research [9], [10].

There are two broad types of TSP solutions [7]: The heuris-
tic algorithms and the exact algorithms. The exact algorithms,
such as Lagrangian dual [11], branch-and-bound [12], [13],
cutting planes [14], and dynamic programming [15], [16],
are ideal for solving small to medium-sized issues and may
attain the theoretical optimum by mathematical derivatives.
However, as the number of cities rises, so does the amount
of time required to solve the problem using conventional
approaches, and as a result, optimum solutions cannot be
obtained [17] therefore, heuristic methods should be used
instead [7].
Heuristic algorithms [18], instead of precise approaches,

may provide optimum or near-optimal solutions within a
fair time and offer the ensuing advantage of straightforward
implementation with higher portability, flexibility, and sta-
bility [19]. There are several conventional heuristic solutions
for TSP, including Genetic Algorithm (GA) [20], [21] Ant
Colony Optimization (ACO) [22], [23], Particle Swarm Opti-
mization (PSO) [24], and Simulated Annealing (SA) [25].
Simultaneously, numerous novel bionic algorithms, such

as the Bat Algorithm (BA) [26], [27] were introduced
to handle optimization problems with great potential for
TSP resolution, the Artificial Bee Colony (ABC) [28],
the Gray Wolf Optimization (GWO) [29], the Symbiotic
Organisms Search (SOS) [30], etc. Although the aforemen-
tioned approaches may increase the quality of solutions
and have a high global search capacity, they are suscepti-
ble to being trapped in local optimums and have a lengthy
convergence time. For this reason, hybrid algorithms have
been proposed to improve the algorithm′s ability to jump
from a local maximum, such as some versions of BA [31],
[32], [33], Simulated Annealing Based Symbiotic Organ-
isms Search (SA-OS) [34], Growing Self-Organizing Array
(GSOA) [35], Selection Schemes [36], Hybrid Discrete
Artificial Bee Colony (HDABC) [37], Hybrid algorithm
based on PSO and GA (PSOGA) [38] and so forth [7].
To simulate issues in the actual world, different versions
of TSP, such as Asymmetric Traveling Salesman Problem
(ATSP), Multiple Traveling Salesman Problem (MTSP), Col-
ored Traveling Salesman Problem (CTSP), etc. have been
designed [39], [40], [41], [42].

This paper uses ametaheuristic algorithm called Pathfinder
Algorithm (PFA) to solve the TSP problem. This algorithm is
inspired by the nature and movement of herds of animals to
find food or prey, which was presented in 2019 by [43]. In this
algorithm, others in the group follow the leader, all moving
randomly. Like other optimization algorithms, PFA was ini-
tially used for continuous optimization problems. It has been
selected as an optimal global solver as it achieves a globally

optimal solution in a shorter time and does not get stuck in the
local optimum. Besides, it is capable of addressing problems
with single and multiple objectives.

This study aims to show off the effectiveness of the PFA
in solving discrete problems. TSP is a complex and NP-hard
problem [8], and using the discrete PFA optimizationmethod,
it is possible to characterize the global optimum to address
challenging discrete optimization issues successfully. This
work introduces a unique discrete PFA method called D-PFA
for solving the complicated Symmetric Traveling Salesman
Problem (STSP). In this study, the original PFA algorithm
is broken into four sub-algorithms, coupled with discretized
sub-algorithms to form a new technique. To validate the
performance of the proposed D-PFA, different experiments
are conducted on 34 TSP benchmark instances, and different
tests are utilized to compare the proposed D-PFA with other
cutting-edge algorithms such as the Improved Bat Algorithm
(IBA) [31], Discrete Imperialist Competitive Algorithm
(DICA) [31], GA [31], Evolutionary Simulation Annealing
(ESA) [31], Discrete Grey Wolf Optimizer (D-GWO) [1],
Island-Based Distributed Genetic Algorithm (IDGA) [31],
Discrete Firefly Algorithm (DFA) [31], Discrete Sparrow
Search Algorithm (DSSA) [7], Discrete Symbiotic Organ-
isms Search (DSOS) [19], Combinatorial Bees Algorithm
with Nearest Neighbor Method (CBA-NNM) [44], Com-
binatorial Artificial Bee Colony (CABC) [45], Differential
Evolution Algorithm (DE) and Partial Swarm Optimization
(PSO), namely (D-DEPSO) [46] and a more Advanced Ver-
sion of ACO [47] called Heterogeneous Adaptive Ant Colony
Optimization (HAACO).

The paper′s organization is as follows. Some work to
address the TSP issue by the researchers is represented in
Section II. The problem statement and a brief description are
given in Section III. PFA algorithm and its differences from
other algorithms are investigated in Section V. The proposed
algorithm and simulation results are provided in Sections IV
and VI, respectively. Finally, Section VII contains a conclu-
sion and an outlook for future studies.

II. LITERATURE REVIEW
As mentioned in the previous section, the TSP engaged in
substantial, in-depth academic and professional study. The
first is due to its inherent practical base, which includes issues
with vehicle routing, circuit board printing, X-ray crystallog-
raphy, etc.; the second is because of its complexity. A solution
to solving NP-hard problems is to make use of metaheuristic
strategies. Here are a few of the manymetaheuristic strategies
for solving the TSP that can be found in the literature:

Zhang et al. [48] solved the m-Steiner Traveling Salesman
Problem with Online Edge Blockages, intending to obtain m
closed networks that would meet every client at least once,
resulting in the lowest possible m salesmen cost, and then
provided an online algorithm to solve the problem.

To solve the TSP problem, in [49] proposed an updated
Cuckoo Search (CS) version using cluster analysis and

VOLUME 11, 2023 106545

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

random walks. To maintain the superior solutions obtained
by the algorithm and the population diversity, the random
preference walk and Levy flights and of the original CS
algorithm were swapped out for them utilizing new tools
like local discrete random walk and adjustment operator. For
large-scale TSP problems, they first divided cities into k
categories using the k-meansmethod and then combined them
using random techniques. They also used the 2-opt operator
as a local optimizer to increase the algorithm′s degree of con-
vergence. Finally, they compared the stability and accuracy
of their algorithm with other well-known ones.

Kanna et al. [50] combined two metaheuristic algorithms
named Deer Hunting Optimization Algorithm (DHOA) and
Earthworm Optimization Algorithm (EWA) with a method
for hybrid optimization called EW-DHOA to optimally solve
the TSP problem to minimize the distance traveled by
the salesman considering all the cities. They were able to
reduce the computational complexity of the TSP problem and
achieve optimal results.

Al-Gaphari et al. [51] used basic operators, dissimilar solu-
tions, and modular arithmetic techniques and provided three
algorithms inspired by the discrete crow to solve Discrete
Traveling Salesman Problems (DTSPs). The three techniques
used ensure switching from continuous to discrete spaces
without loss of information. The evaluation criteria of the
algorithm are the average accuracy of optimal solutions, aver-
age errors, and average computational time.

Bidirectional Graph Neural Network was proposed by [52]
to tackle the arbitrary STSP, in which the network learns
through imitation to construct the next city it will encounter.
The most essential element of proposed method was the
bidirectional message carrying layer. It can encrypt graphs
with edges and partial solutions. Consequently, the proposed
technique may provide near-optimal TSP solutions in any
symmetric network. The authors proposed merging their
algorithm with informed search in future work to enhance its
performance. To improve the performance of their algorithm,
the authors suggested combining it with informed search in
future work.

Huerta et al. [53] suggested a novel metaheuristic strategy
for solving the Euclidean TSP using a collection of five well-
known solvers. The authors devised a unique matrix grid
for node representation in a spatial format to circumvent the
expensive procedure of calculating features. Then, at each
level, they suggested a brand-new compact staggered rep-
resentation for ranking algorithms. The suggested technique
greatly decreased the time necessary to forecast the optimal
solution and achieved a prediction accuracy of 79.8%.

Gunduz and Aslan [54] proposed a discrete version of the
Jaya algorithm called DJAYA to solve discrete optimization
problems. They improved the Jaya algorithm, using random
permutations to generate initial solutions and nearest neigh-
borhoods. The population generation strategy of the original
Jaya algorithm was updated to address discrete optimization
issues. In the discrete version, eight transformation operators

were used based on the characteristics of the discrete opti-
mization issue. Using the suggested approach, they solved
14 instances of the renowned discrete problem, the STSP.
Lastly, to enhance the Best Solution (BS), the 2-opt heuristic
method was applied to the BS generated by DJAYA.

Wang and Han [55] combined Symbiotic Organisms
Search (SOS) with the ACO to create the SOS-ACO method
for solving the TSP. In the proposed technique, after assigning
ACO parameters, the remaining parameters are optimized by
SOS, and then, using these optimum parameters, ACO finds
the best or nearly BS. Consequently, assigning ACO param-
eters becomes simpler. In addition, the SOS-ACO algorithm
employs a basic local optimization method to increase con-
vergence rate and solution quality.

Swarm Intelligence Algorithm (SIA) to solve the TSP
issue using the DSSA and the global perturbation approach
proposed by [7]. In this technique, the population′s ini-
tial solution is produced using roulette-wheel selection, and
an order-based decoding mechanism is created to update
the sparrow′s location. Exploration and exploitation activi-
ties have been balanced using a global perturbation method
with Gaussian mutation and a swap operator. The strate-
gies used have increased solution quality and convergence
rate.

By including symmetry, transformation, shift, and swap
operators into the standard GWO algorithm, [39] developed
the Transformation Operator Based Gray Wolf Optimizer
(TO-GWO) to address the TSP issue. Each wolf in this
algorithm represents a solution to the TSP issue, and the
wolves interact with the leader wolves using the swap, shift,
and symmetry operators to find the BS to the problem.

Using three algorithms, a) Node clustering based approach
in which nodes are categorized in a set of clusters,
b) Dynamically regulated information entropy-based adap-
tive pheromone evaporation, and c) Variety of solutions
based termination algorithm, [56] proposed a unique ACO
algorithm to solve the TSP, which may enhance overall per-
formance, decrease runtime, and address the drawbacks of
ACO-based approaches, such as becoming trapped in local
optimum and the difficulties in managing the parameters for
various samples.

Dong and Cai [57] defined the Colored Balanced Traveling
Salesman Problem (CBTSP), for modeling partial workspace
overlapping optimization problems, such as the planning and
distribution of resources and supplies, and proposed a new
GA, ITO process-based Novel Genetic Algorithm (NGA),
which can also be applied to large-scale CBTSPs.

Silva et al. [58] developed a mathematical formulation
for the new version of the Quota Traveling Salesman Prob-
lem (QTSP), which includes Passengers, Incomplete Ride,
and Collection Time (QTSP-PIC) with constraints including
travel time, vehicle capacity, passenger limitations, and rides
penalties. In this formulation, to cut down on travel expenses,
the salesman uses a flexible ridesharing system. To solve
this problem, the authors proposed naive heuristics and three

106546 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

ant algorithms called Ant System (AS), Ant Colony System
(ACS), and Multi-Strategy Ant Colony System (MS-ACS).

To overcome the disadvantages of the ACO method in
solving the TSP [59], proposed a self-adaptive ACO called
(DEACO) along with ways to enhance the algorithm′s unpre-
dictable convergence time and arbitrary decision-making that
dynamically changes the ACO parameters. This method′s
main idea is choosing the first city (starting point) that leads to
the shortest route, andDEACOfinds the shortest or the cheap-
est route for each cluster. Although this method improved the
quality of solutions in each cycle and uses the self-adaptive
mechanism of the ACO method to select the best ant for
updating pheromone trails, it requires more experimental
basis than theoretical research.

Combining optimization algorithms such as Rider Opti-
mization Algorithm (ROA) and Spotted Hyena Optimizer
Algorithm (SHO) [60], developed Spotted Hyena-based
Rider Optimization (S-ROA) to solve the TSP problem opti-
mally and effectively, whose objective function is defined as
minimizing the distance traveled by the salesman from all
cities.

Deckerová et al. [61] created the GSOA, a non-
supervised learning-based heuristic solution for solving the
non-Euclidean form of the TSP Problem considering neigh-
borhoods on a sphere. This method was able to find an initial
solution as good as the sampling-based method. In addition,
the authors presented a rapid post-processing optimization
technique for enhancing original results.

Pandiri and Singh [62] proposed an ACO with a vari-
able perturbation degree to solve the Generalized Covering
Traveling Salesman Problem (GCTSP), in which the pertur-
bation degree of a solution to generate its neighbor solution
decreases during iterations. The goal of this strategy was to
cover the salesman if they are inside the coverage radius, ri
a facility visited by the salesman and lower him/her overall
travelling distance at the same time.

In [1], a novel discrete version of GWO called D-GWO
is used to solve TSP. To improve the answers obtained
by the GWO algorithm, the authors implemented the 2-opt
algorithm on the received responses. To show the efficiency
of D-GWO algorithm, they tested the proposed algorithm
on 17 TSP instances and compared the results of the proposed
algorithm with other algorithms. In their experiments, they
showed that the D-GWO algorithm reached a better solution
than the compared algorithms in some instances and had
a better performance. But the D-DWO algorithm could not
work well in large-scale instances, and with the increase in
the complexity of the problem, the execution time of the
algorithm also increases.

Zhang and Han [7] solved TSP using a combination of
DSSA with global perturbation. The proposed algorithm ini-
tially uses a roulette-wheel mechanism to generate to improve
the solutions. Next, a sequence-based encoding and decod-
ing strategy are introduced to complete the sparrow position
update. Finally, long and short steps combined with global

perturbation mechanism accelerates the algorithm′s conver-
gence and improves the algorithm′s ability to jump from the
local optimum. To demonstrate the ability of their algorithm
to solve the above problem, the authors implemented the
proposed algorithm on 34 TSP instances. They compared the
results obtained from the proposed algorithm with various
classic, heuristic, and metaheuristic algorithms. They showed
that their proposed algorithm has better convergence and
robustness than Classic algorithms. Compared to heuristic
and metaheuristic algorithms, it has a relative superiority in
solving large-scale instances. However, it could not achieve
the BKS solution in several cases.

Osaba et al. [31] solved symmetric and asymmetric TSP.
Also, they were able to improve the BA. In the Improved
Bat Algorithm, which the authors named (IBA), bats have
a kind of ‘‘intelligence′′ that makes bats follow different
movement patterns depending on where they are in space.
To demonstrate the effectiveness of the IBA algorithm, the
authors compared the proposed algorithm in 37 instances of
TSP with the basic BA algorithm and other algorithms. They
showed that the IBA algorithm can solve the symmetric and
asymmetric TSP problem and can achieve the BKS solution
in most instances.

Sahin [44] also used the combinatorial BA to solve the TSP
issue. To create the initial population, the nearest neighbor
method was used. In the second phase, the Multi-Insert func-
tion was introduced to the local search section instead of the
Swap function. To show the effectiveness of the suggested
method, the author used 24 different TSP instances and com-
pared the results obtained from the proposed algorithm with
three other algorithms. The algorithm presented in solving
large-scale instances has not been able to solve the problem
well. With the increase in the number of cities, the execution
time of the algorithm has also increased.

A combinatorial version of standard ABC (CABC) and
an improved version of CABC algorithm (ICABC) are used
in [45] to solve the TSP. Experimental studies of two ABC
algorithms were performed on 15 instances of TSP and
then compared with eight different types of heuristic and
metaheuristic algorithms. The simulation results of presented
algorithms showed that they could perform well in solving
the problem and that the CABC algorithm′s convergence
performance could be improved by using the ABC idea for
TSP.

Ezugwu and Adewumi [19] provided an almost optimal
solution for TSP using the DSOS algorithm. To present
the answer, the suggested method used three different local
search operators based on mutation to reconstruct the popu-
lation, improve exploration and exploitation capabilities, and
faster convergence speed. To show the effectiveness of the
presented algorithm, the authors implemented the proposed
algorithm on 23 instances of TSP and compared its simulation
results with five different algorithms. The DSOS algorithm
achieved relative superiority over the compared algorithms
and obtained results close to BKS. Still, compared to one

VOLUME 11, 2023 106547

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

of the algorithms named PSO-ACO-3-opt [47], it could not
achieve the shortest distance for TSP.

Tuani et al. [63] described an adaptive technique for a
heterogeneous ant colony population that develops alpha
and beta ACO controller parameters to obtain near-optimal
solutions. In their proposed algorithm, they presented a set
of rules to adapt the parameters to approach the parameter
values to the optimal values, which will improve the search
process and the algorithm′s operation. Also, to improve the
obtained solutions, they used the 3-opt local search method,
which improved the obtained solutions. In order to show
the effectiveness of the proposed algorithm and its ability to
solve the problem, the authors implemented the algorithm
on 10 instances of TSP and compared its results with four
other algorithms. The simulation results of the proposed
algorithm showed that the algorithm achieved superiority
over the compared algorithms in seven instances. In three
instances, it reached the BKS solution.

III. THE TRAVELLING SALESMAN PROBLEM
As stated, the TSP is a combinatorial discrete optimization
problem with significant applicability in many areas. The
goal is to get a Hamilton tour of cities that a salesman should
meet. To model TSP, we can use a complete non-directional
graph, G = (N ,E), where N = {1, 2, 3, . . . , n, represents
the set of cities and E represents the set of edges. Each edge
i, j ∈ E has a non-negative cost dij. In fact, an edge represents
a route between two cities and the distance between the two
cities is represented by the length of each edge. The salesman
starts from one city and meets n cities and finally returns to
the same first city and meets each city exactly once [7].
The Euclidean distance is the standard method for calcu-

lating the cost between two cities. The Euclidean distance d
between cities c1 and c2 is calculated as follows:

d =

√
(c1x − c2x)2 + (c1y − c2y)2. (1)

Here,
(
c1x , c1y

)
and

(
c2x , c2y

)
are the coordinates of the

cities c1 and c2 respectively.
As mentioned earlier, this study focuses on the symmetric

TSP [7] in which travel between two cities from opposite
directions costs the same, i.e., dij = dji distance as presented
in the following Equations (2)-(6):

Minimize :

Z =

n∑
i=1

n∑
j=1

dijxij (2)

Subject to
n∑
j=1

xij = 1, i ∈ {1, 2, 3 . . . n} , (3)

n∑
i=1

xij = 1, j ∈ {1, 2, 3 . . . n} , (4)

∑
i,j∈S

xij≤|S| − 1, 2≤|S|≤n− 2, S ⊂ {1, 2, 3 . . . n} ,

(5)

xij ∈ {0, 1} , ∀i, j ∈ {1, 2, 3 . . . n} andi ̸= j. (6)

Minimizing the salesman′s round-trip journey time is the
objective function defined by Equation (2). If the salesman
has gone directly from city i to city j : x ij = 1 and otherwise
xij = 0. Equations (3) and (4) ensure that each city is
met only once. The constraint given in Equation (5) pre-
vents sub-touring and ensures that the final route has only a
complete closed-loop route, which is a complement to Equa-
tions (3), (4), and (6) that define binary decision variables [7].

IV. THE PATHFINDER ALGORITHM
Metaheuristic methods can be considered in three classes:
based on evolutionary methods, based on physics, and based
on intelligent particles.

The PFA is inspired by search behavior in the hunting or
feeding area led by an individual in animal herds [43]. Unlike
other algorithms, this algorithm has a leader, and the other
participants follow him. But not all particles move regularly;
they all move randomly. This algorithm aims to find the router
for the best area for food and hunting, and we can call hunting
the optimal global. Each time (t) is repeated, the members
consciously move towards the router (the optimal solution
chosen is global).

In the following, we will explain the difference between
the PFA and some examples of other algorithms:

•Difference between PSO and PFA: In PSO, time and
speed are important (in movement), and in PFA, speed is not
important.

•The difference between ACO and PFA: In ACO, there
is no hierarchical structure, and it is a collective movement.
In PFA, the move is towards the leader and interacting with
the neighbors.

•The difference between ABC and PFA: ABC has global
and local optimization, but all members are equal in PFA and
have the same chance.

•Difference between Firefly Algorithm (FA) and PFA: FA
utilizes the luminosity of fireflies. In the distorted motion of
a firefly swarm, every individual moves toward the brightest
light. Additionally, the whole population may be subdi-
vided. But in the PFA, the population is not separated
into subgroups, and members follow the best-fitting indi-
vidual. Consequently, the distance between neighbors may
be decreased in each cycle, bringing each individual closer
together.

We chose the PFA algorithm to solve symmetric TSP
based on the differences between it and the other algorithms
mentioned above because:

1. The algorithm can solve single/multi-objective prob-
lems; the symmetric TSP is a single-objective problem.

2. The algorithm has a high degree of flexibility, and the
problem can be easily modeled with it.

106548 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

3. The response time is faster than other algorithms. This
can be very useful in solving our problem because the sym-
metric TSP space is large and the time to reach the optimal
solution of other algorithms is high.

4. It has stronger exploration and exploitation, and we can
increase its search space.

5. Unlike other algorithms, it is not stuck in the local
optimum.

6. It can provide more accurate solutions and answers.

A. INSPIRATION
All behaviors are performed in a crowd based on a common
action of all people. In addition, one person leads the crowd
(group) and manages many actions.

The group leader leads his team members to the right
conditions. Team members seek help from a leader or mem-
ber who can make decisions. Of course, the leader is not a
permanent leader, and anyone with a higher ability and can
provide more comprehensive information will be selected as
a leader.

A few experienced individuals can guide the whole herd in
the PFA algorithm. In this algorithm, an update is provided in
terms of force alignment and their attraction/repulsion in 2D
space. The interplay between the members of a swarm and
leader is modeled mathematically in the PFA algorithm [43].

B. MATHEMATICAL MODEL OF THE BASIC PFA
In the PFA, every member is assigned a spot in the following
2D, 3D, or d spaces. If a group member is in a promising
area at any other time, they will be elected as the leader.
Besides, it is considered that all potential solutions to a
problem are vectors representing every individual′s position;
therefore, individuals in the herd can move in 2D, 3D, and
d-dimensional space. It should be noted that in the above
algorithm, the group leader is considered a router [43].
The initialization will be done randomly according to the

herd′s position in the herd.
To find the goal and follow the leader, we use the following

Equation (7).
Fitness Function Calculation: A member with the best

position is chosen as the leader.

x (t + 1t) = X0 (t) · n+ fi + fp + ε, (7)

where
t : time period,
x : Position vector,
n : Unit vector without direction,
fi :Two-way interactionwith xi neighbors and xj neighbors,
fp : Calculate the interaction between the leader and the

members,
ε : Vibration vector.

xk+1
i = xki + R1 ·

(
xkj − xki

)
+ R2 ·

(
xkp − xki

)
+ ε, i ≥ 2.

(8)

The position of the router is updated and calculated based
on the following Equation (8):

xp (t+1t) = xp (t) + 1x + A, (9)

where
xp : Router position vector,
1x : Distance traveled by the router to move from one

point to another,
Time traveled by the router to move from one point to

another, 1t :

A : Fluctuation rate vector.
The authors further conclude that the aggregate group

movement model mentioned in Equations (7) and (8) cannot
be used directly to solve optimization problems. Therefore,
theymodified Equations (7) and (8) in Equations (9) and (10):

In Equation (9), k is the value for the most recent itera-
tion, xi is the position vector for the ith member, xj indicates
the position vector of the jth member of the set, and R1 and
R2 are vectors with random variables, where R1 is equiva-
lent to αr1 and R2 equivalent to βr2, where r1 and random
variables are uniformly created in the domain [0, 1], α is the
interaction coefficient that describes the amplitude of each
member′s motion relative to its neighbor, and β determine
the random distance to keep the herd with the leader, and r1
and r2 determine random movements. Two important states
will occur for when α → 0, β → 0, α → ∞ and β → ∞.

In this algorithm, initially, people will move randomly in
the search area without any connection to each other. That is,
people can take the path that the leader is taking and will not
take another path.

In the above algorithm, when α < 1 and β < 1, it is
difficult to change the direction of people and get closer to
the leader. Also, if α > 1 and β > 1, the distance between
people and the group leader will be increased too much, and
this will take away from the optimization.

Therefore, in both cases, the algorithm will not find suit-
able solutions. In this algorithm, α and β are randomly
selected in the range [1, 2]. A good state is a state where α

and β are about one:

xk+1
p = xkp + 2r3 ·

(
xkp − xk−1

p

)
+ A. (10)

Here, r3, a vector with random numbers generated uni-
formly in [0, 1] domain, each cycle generates A using
Equation (12). In Equation (11), ε represents the vibration
in each iteration of the algorithm:

ε =

(
1 −

K
Kmax

)
· u1 · Dij,Dij =

∥∥xi − xj
∥∥ , (11)

A = u2 · e
−2k
kmax . (12)

Here, u1 and u2 are vectors with random numbers ranging
between [−1, 1], Dij is the distance between two members
while Kmax indicates the most iterations possible.
If in Equations (8) and (9) the second condition and also

in Equation (10) only the third condition is equal to zero, the

VOLUME 11, 2023 106549

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

two variables A and ε can create random movements for all
members.

Therefore, A and ε must be within the appropriate range
values to ensure multidirectional and random movement
using equations 11 and 12. There must also be a random
number generator to provide random movement for these
conditions. Besides, they make rapid changes to the initial
iterations and then reduce those changes to subsequent iter-
ations, thus facilitating the search in the exploration and
productivity stages.

The variables in the range [−1, 1] are set by u1 and u2, and
members can move to their previous paths. According to the
above conditions, if it is u1< −1 and u2< −1 or u1> +1 and
u2 > +1, members can change their paths with long steps
and can change their positions. Therefore, members can find
solutions they may explore in new steps [39], [64].

If (α< 1,β< 1), then: The leader does not change and the
members do not change direction

If (α> 1,β> 1) then: Members can change.
The router looks for the optimum hunting/eating spot in the

PFA algorithm. The best hunting/eating area can be consid-
ered optimal overall.

At each stage, the leader is positioned as the best location
in the current stage, and the other members approach it.
We assume the BS ever seen is the global optimal and is used
as a range of food by all members.

The PFA algorithm randomly selects and initializes mem-
bers, and then the initial population is generated. After that,
each member′s fitness is calculated, and the member with
the highest fitness is recognized as the leader, and the rest
of the members will move towards him. In the next steps, the
leader in the problem search space is generated and updated
simultaneously by two Equations (10)-(12) and the vibration
rate vector A, each time the algorithm is repeated.

According to the discussed Equations and calculating
the fluctuation rate and the number of iterations, the
algorithm ends whenever the maximum number of iterations
is reached [43].
As a result, to understand the PFA and how it will solve the

optimization problems, the following can be stated:
1. The vector is directly proportional to the amount of fitness

function and is the best router. In other words, the router is
chosen based on the vector with the highest fitness. Addi-
tionally, the PFA selects the ideal location for the router,
guaranteeing that the fitness gained from each repeat is
always preserved.

2. The entire population′s position is updated according to
close neighbors and routers, and the leader can change.

3. Each person′s position is updated in accordance with
the router and the other members. Therefore, they move
towards the router and get closer to their neighbor.

4. All members moving at random causes local optimization,
but changing the vibration vector ε and approaching the
router can prevent this situation.

5. The convergence of A and ε to zero first aids exploration
and then exploitation.

Based on the above and the description of the PFA
algorithm, it can be concluded that this algorithm can solve
optimization problems well and is also able to avoid getting
stuck in the local optimization. Therefore, it can be concluded
that the PFA algorithm can solve single/multi-objective prob-
lems. Fig. 1 depicts a comprehensive flowchart of the PFA
algorithm and its phases.

V. THE PROPOSED DISCRETE PATH FINDER ALGORITHM
This method uses the PFA to solve the TSP, which is a
metaheuristic method that inspires how a group of animals
moves to find food or prey. The purpose of this algorithm
is to find the shortest route between cities by the traveling
salesman and be able to solve large-scale problems in a short
time.

A. INITIAL POPULATION (MEMBERS) GENERATION
In the proposed D-PFA, each member is a one-dimensional
array with N cells, each cell is randomly filled by one of the
problem cities without repetition, and the first and last cell of
each member always contains a value of one because, in the
TSP problem, there are several cities or several thousand
cities in an environment where the seller has to travel the
distance between all these cities so that he should not pass
each city twice and get the shortest possible distance between
the cities and finally return to the first city.

The following fully explains the process of creating the
initial population and the proposed algorithm.

Based on Equation (9), the main equation for moving a
member in PFA, Fig. 2 shows how we discretize this equation
to solve the TSP problem.

In the following, an example of obtaining the distance
between twomembers is fully described, andwe show how dij
and Dij are calculated. Fig. 4 shows Remark 1 of the distance
matrix for seven cities, where the distance between all seven
cities is displayed.
Remark 1: As shown in Fig. 2, the Equation is divided

into four parts. The first one (a) is not moving, which does
not need to do anything. But the three other parts should be
explained in detail. All the movements b, c, and d are based
on an important notion named distance. Distance is specified
in Equation (11). This Equation is about continuous problems
and has nothing to do with TSP. So, we should first redefine
this crucial concept in our problem.

Since there are too many cities in a TSP problem, we have
defined distance as an array instead of a single member.
It works better sense when we analyze the specifications
of TSP. Dij is a distance array between xi and xj. Before
calculating Dij, dij should be calculated. Figure 3 shows an
example of how we calculate Dij.

In Fig. 3, there are two members named xiand xj, and
their distance is called dij. As shown in this figure, first we
get dij from the distance matrix and then we consider the
maximum distance obtained from dij as max distance. Next,
to get Dij, we divide the distance between both cities from dij

106550 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

FIGURE 1. The flowchart of PFA algorithm.

FIGURE 2. Moving a member in PFA.

by maximum distance and multiply the result by 100. In this
way, we will get Dij separately for both cities.
In Fig. 5, two members xi and xj were randomly generated

for seven cities, the first and last city of which is equal to
one. The seller starts his route from city one and returns to the
city one after navigating all the cities. Then dij was calculated
between two members xi and xj based on the distance matrix,
which ismaxdistance=35.
Now, after computing dij based on the distance matrix,

we need to calculateDij, the way to calculate it is fully shown
in Fig. 6. In this figure, we divide the distance between every
pair of cities (dij) by max distance and then multiply the result
by 100.

FIGURE 3. Shows how we compute Dij . Here, maxdistance equals the
maximum distance between two cities on the map.

This array (Dij) shows the probability of changing a mem-
ber xi to a new member in another member (xj). Based on
Equation (9), the destination member (xj) could be j, leader,
or random.

VOLUME 11, 2023 106551

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

FIGURE 4. Remark of the distance matrix for seven cities.

FIGURE 5. Example of calculating dij .

FIGURE 6. Example of calculating Dij based on new dij .

The coefficients of this Equation for the final percentage
array.

In this Equation:

− j specifies xj which is the closest member to i based on
min(

∑
dij) for all members like xj,

− Leader is the current best member, also known as the
leader.

− Random member (ε) is a member which is selected by
chance from the population. This member is used to cal-
culate ‘‘ε‘‘.

− Here, ‘‘ε‘‘ implements a seamless move from the explo-
ration to exploitation phase for every member.

B. UPDATE MEMBERS
This section shows how each member is updated and moves
towards the leader. Fig. 7 shows a sample of update members
acquired.

The new xi (x
k+1
i) is much closer to xj. Given the fact that

xi is supposed to move toward xj, the result of this update

FIGURE 7. Updating a sample of members.

is sensible. Algorithm 1 shows the pseudocode for updating
members.

Algorithm 1 Update Member
1: R1 = random number in range [1, 0]
2: R2 = random number in range [1, 0]
3: for i=1 to memberSize – 2 do
4: calculate movement with Eq. (9)
5: shift all cells of leader
6: end for

C. LEADER SELECTION
After generating the initial population, the member with the
lowest fitness is selected as the leader. If we consider a group
of animals, the member that is stronger than the others are
selected as the leader, and then all the members go toward
him, so, in this algorithm, members move toward the leader′s
direction. The pseudo-code of Algorithm 2 for the leader
selection follows:

Algorithm 2 Leader Selection
1: Ascending sort initial population by fitness
2: Leader = first member of population
3: lastLeader = Leader

D. UPDATE LEADER
The movement of the leader is based on Equation (10).
After the update, the leader′s fitness is recalculated. If it is
decreased after the update, the leader is appointed as the
previous leader, and the changed member is selected as the
leader. Otherwise, members will move to the last leader that
was selected.

The notation of distance is the same as the previous one.
The only difference is A (fluctuation). The distance value A
adds something like mutation to the first movement of the
leader. At the beginning of the algorithm, it is around one
(A = 100%), but gradually it will reach zero (A = 0).

106552 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

It means that we have plenty of random walks in the first
rounds, but they are limited in the final rounds. In other words,
A facilitates a smooth transition from the exploration to
exploitation phase. The Algorithm 3 depicts the pseudocode
for leader updating.

Algorithm 3 Update Leader
1: for i = 1 to leaderSize - 2 do
2: calculate movement with Eq. (10)
3: shift all cells of leader
4: end for

All the coefficients of the algorithm, like α, β, u1, u2, r1,
r2, r3, . . . , should be specified based on the problem.
In the man PFA, these numbers are set to solve continuous
problems. But we need new numbers which can keep the
percentage array in a valid range ([0, 100]) .

E. TERMINATION CONDITION
The termination condition of the algorithm is that algorithm
is repeated a certain number of times. Each time, we will have
a leader with lower fitness. Finally, the algorithm returns the
best path and time to reach the solution. Algorithm 4 shows
the pseudocode of the proposed method.

Algorithm 4 Pseudocode of Proposed D-PFA
1: Initialize population of members xi(i = 1, 2, . . . , l)
2: Generate distance matrix
3: Calculate fitness for all members
4: Leader = best member
5: LastLeader = Leader
6: Initialize iteration K=0
7: while K < maximum number of iterations do
8: α and β = random number in [1], [2]
9: u1 = random number in [−1, 1]
10: u2 = random number in [−1, 1]
11: calculate ε with Eq. (11)
12: calculate A with Eq. (12)
13: update Leader position using Eq. (10)
14: if UpdatedLeader is better than Leader
15: Leader = UpdatedLeader
16: LastLeader = Leader
17: end if
18: for i = 2 to number of populations
19: update members using Eq. (9)
20: end for
21: calculate fitness for all members
22: find BestMember
23: if BestMember is better than Leader
24: LastLeader = Leader
25: Leader = BestMember
26: end if
27: for i = 2 to number of populations
28: if new fitness of member(i) < fitness of member(i)
29: member(i) = newMember(i)
30: end if
31: end for
32: end while

33: return the best Leader

TABLE 1. Parameter settings of D-PFA for TSP.

VI. SIMULATION RESULTS
The proposed D-PFA algorithm′s simulation results are pre-
sented in this section. Its comparison with other metaheuristic
algorithms is explained in detail. TSPLIB library [65]was
used to simulate TSP. To determine the parameters of the
algorithm, the previous studies in Section II of this paper,
which are explained in detail, have been used as a reference.

In the proposed algorithm, the initial population number
is considered as 50, because it seems that a large number of
populations will generate more processing load. It provides
the cases used by the comparison method in the subsequent
section, as well as the number based on their foundation.
The experimental parameters utilized for D-PFA are listed in
Table 1.
Section A first describes the environment and experimental

configuration for the simulation along with the calculation
of the Best Solution (PDB(%)) percentage deviation of the
Average Solution

(
PDA

(
%

))
.

The simulation results of D-PFA are then given for
34 instances of TSP, and the results of D-PFA are compared
with the DSSA algorithm. In addition, simulation results for
the D-PFA, D-GWO, and DSSA algorithms for 17 instances
of TSP datasets are shown.

Then, in Section B, the simulation results of the D-PFA
algorithm and its comparison with other eight metaheuristic
algorithms are completely discussed.

A. EXPERIMENTAL CONFIGURATION
This section uses 34 instances of TSP benchmarks to test the
proposed algorithm (D-PFA), which has 30 to 1002 cities.
It is important to note that the D-PFA parameters, including
the number of initial populations, distance concept, num-
ber of iterations, etc., are set experimentally by running
the algorithm several times for each dataset. The suggested
approach is implemented using Java programming language
and tested on a desktop machine with an Intel i5-9600k @
3.7 GHz and 16 GB RAM running 64-bit Windows 10. In the
context of this research paper, it is imperative to note that
the project’s underlying source code is readily accessible and
available for further scrutiny through the following GitHub
repository: D_PFA. This open access to the code facilitates
transparency, reproducibility, and collaboration within the
scientific community.

D-PFA algorithm is compared with 12 metaheuristic algo-
rithms named IBA [31], DFA [31], DICA [31], GA [31],
ESA [31], IDGA [31], D-GWO [7], DSSA [7], CBA-NNM
[44], CABC [45], DSOS [19] and HAACO, a more advanced
version of ACO [63]. It is worth noting that all algorithms are
executed 20 times for each instance.

VOLUME 11, 2023 106553

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

In the comparisons performed, besides showing the BS and
Average Solution, the percentage deviation of Best Solution
(PDB(%)) is also obtained to show how close the solu-
tion obtained from algorithms is to the Best-Known Solution
(BKS). Equation (13) is used to obtain PDB(%) [66]:

PDB(%) =
(Best − BKS)

BKS
× 100. (13)

In this Equation, PDB(%) is the BS obtained for each TSP
instance after 20 times of each algorithm. Where Best indi-
cates the BS of each method over 20 times each TSP instance,
and Avg represents the average length of each algorithm over
20 times each TSP instance.

To demonstrate the superiority of the D-PFA method over
other algorithms, the percentage deviation of the Average
Solution is computed using Equation (14):

PDA(%) =
(Avg− BKS)

BKS
× 100. (14)

Here, PDA(%) is the average value length obtained for
each TSP instance after 20 times.

Table 2 shows the simulation results of the proposed
algorithm (D-PFA) along with the execution time of the
algorithm 20 times for every instance. As shown in this Table,
D-PFA was able to find the BS in 31 of 34 instances and was
also able to find a better solution than BKS in seven instances.
In just three instances, kroA200, kroB200, and Pr1002, D-
PFA could not obtain the BKS solution, showing that the
approach was well-converged and the result was stable.

As seen in Table 2, the D-PFA algorithm obtained the
best-known values for instances up to 159 cities. For these
instances, PDB is zero in 20 instances. For instances with
200 to 439 cities, results with PDB were between 0 and
0.054% for the best-known values. In addition to these
instances, Pr1002, which has 1002 cities, was also inves-
tigated. The PDB value for this instance was found to be
0.671%.

From the (Run Time) column, we can see that D-PFA
solved the instances in a respectable period of time, demon-
strating its effectiveness.

Fig. 8 compares the time necessary to finish the D-
PFA algorithm, which is presented based on the findings in
Table 2. Part (a) of this figure displays findings obtained
from the first 15 instances, whereas Part (b) displays runtimes
produced from all instances combined.

Table 3 compares the simulation results of the D-PFA
technique against the DSSA approach for 34 TSP instances.
The D-PFA algorithm has a considerable advantage over
the DSSA algorithm and achieved the optimum solution in
31 instances. In comparison, the DSSA algorithm found the
BS in 26 instances.

Furthermore, the D-PFA obtained a better solution than
BKS in seven instances, while the DSSA got a better solution
than BKS in just one instance, Dantzig42.

Fig. 9 and Fig. 10 compare two D-PFA and DSSA algo-
rithms for 34 instances based on PDB(%) and PDA(%).
As shown, the D-PFA algorithm has less PDB(%) and

PDA (%) than the DSSA algorithm, demonstrating its supe-
riority in identifying the BS and stability in most instances.

Table 4 shows the simulation results of the D-PFA and its
comparison with two algorithms named D-GWO and DSSA
on 17 TSP instances after running 20 times of each algorithm
per instance. As shown in Table 4, the proposed algorithm (D-
PFA) achieved significant superiority over the two compared
algorithms D-GWO and DSSA. Also, the D-PFA algorithm
achieved a better solution than BKS in five instances of
the benchmarks, and only in one instance, Pr1002, could
not achieve the optimal solution. D-GWO algorithm has
been able to reach the optimal solution in six instances out
of 17 instances and in two instances dantgiz42 and pr107
reached a better solution than BKS. The DSSA algorithm
has reached the optimal solution in 12 of the 17 instances and
reached a better solution than BKS in one dantgiz42 instance.
This indicates the algorithm′s optimality and reaching proper
convergence of the proposed algorithm compared with other
methods.

In simulating the D-PFA and comparing it with other
algorithms, the run time of the algorithms is not considered
because the researchers used different computers to run their
algorithms.

B. DISCUSSION OF NUMERICAL RESULTS
In this subsection, the simulation results of the D-PFA are
compared to those of previous metaheuristic algorithms, and
it is shown that the suggested method can reach optimum
outcomes in most cases and effectively solve the problem.

Table 5 shows the simulation results of the D-PFA
algorithm on three instances of TSP compared to other algo-
rithms with similar parameters. As you can see in Table 5,
D-PFA found a better solution than BKS in two instances and
found a solution equal to BKS, for the instance pr144. D-PFA
was also able to reduce its percentage deviation from BKS
below zero. The run time criterion is not used here to compare
the algorithms, as the authors used different computers to run
and simulate the above algorithms.

To show the performance of D-PFA, we compared eight
other metaheuristic algorithms on 10 instances of TSP with
the proposed method. Table 6 shows the simulation results
of the D-PFA and its comparison with the other eight meta-
heuristic algorithms. It should be noted that the simulation
parameters of all algorithms are considered to be as similar
as possible.

As you can see in Table 6, the D-PFA has solved nine of the
10 instances well and achieve the optimal solution, and only
in one of the instances called Pr1002 could not find the opti-
mal solution. Also, this algorithm achieved a better answer
than BKS in two instances. These achievements indicate the
superiority of this algorithm and its good convergence aswell.

The D-GWO has achieved optimal results in four instances
and improved the Pr107 and Pr144 instances. The DSSA
algorithm has reached the optimal solution in six instances
and competed with the D-PFA algorithm. The GA could
achieve the optimal solution only for one instance called

106554 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

TABLE 2. Simulation results of D-PFA algorithm for 34 TSP instances from TSPLIB dataset.

Pr124 out of 10 and has had a low ability to find the optimal
solution. The ESA has been able to achieve optimal results
in two instances called Kroc100 and Pr124, the IDGA could
not achieve optimal results for any of the instances, which is
a sign of the very weak ability of this algorithm. In this Table,
1BA was able to achieve the optimal solution in six instances
and DFA and DICAwere able to achieve the optimal solution
for two instances: Pr107 and Pr124.
Table 7 compared the simulation results of D-PFA with

other algorithms based on Avg Bks in 10 iterations. As you
can see in this Table, the DSSA algorithm is superior to
other algorithms, but it does not have much ability to find
the Best, as seen in Table 6. Also, in this Table, D-PFA
algorithm after DSSA for Avg. It has performed better than
other algorithms and is highly able to find the optimal
solution.

Tables 8 and 9 tabulate the percentage variation of PDB(%)
and PDA(%) from the best known for all methods.

Table 8 compares the D-PFA based on PDB with
other algorithms. As you can see, the D-PFA algorithm
achieved a lower value than the compared algorithms in nine
instances, and only in one instance called Pr144, the D-GWO
algorithm achieved a value lower than D-PFA. After D-PFA,
an algorithm that obtained a lower value for more instances,
was the DSSA algorithm, which obtained lower values in four
instances than other algorithms. D-GWO and IBA algorithms
obtained the lower value in three instances. ESA algorithm
in two instances and GA, DFA and DICA algorithms can
obtain a lower value in one instance. Finally, the algorithm
that performed very poorly in this comparison was the IDGA
algorithm, which could not obtain a lower value than other
algorithms in any instance.

VOLUME 11, 2023 106555

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

FIGURE 8. a) Run time of D-PFA for first 15 instances, and b) Run time of D-PFA for all 34 instances combined.

In Table 9, we compared the proposed algorithm based
on PDA with other algorithms. As you can see, the DSSA
algorithm achieved a lower value than the compared algo-
rithms in six instances. After DSSA, ESA and D-PFA
algorithms obtained lower values in two instances. Other
compared algorithms could not get a lower value in any of
the instances.

Fig. 11 and Fig. 12 illustrate the percentage variation of
PDB(%) and PDA(%) from the best known for all methods.

These figures show that theD-PFA exhibits less variation than
its counterparts.

Table 10, compared the proposed algorithmwith four other
metaheuristic algorithms namely, CBA-NNM [44], CABC
[45], DSOS [19] and HAACO [63] on 16 instances compared
with BKS.

As you can see, the D-PFA algorithm found the BKS
solution in 11 instances and solved the problem well. The
DSOS algorithm was able to obtain the BKS solution in

106556 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

TABLE 3. D-PFA simulation results and comparison with DSSA for 34 TSP instances.

TABLE 4. Simulation results of D-PFA and its comparison with D-GWO and DSSA.

TABLE 5. Simulation results of D-PFA algorithm on three instances of TSP compared to other metaheuristic algorithms.

seven instances. HAACO, CBA-NNM and CABC algorithms
reached the solution of BKS in four, three and two instances,

respectively, and the CBA-NNM algorithm achieved a solu-
tion lower than BKS in two instances KroB100 and KroA200.

VOLUME 11, 2023 106557

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

FIGURE 9. Comparison results of D-PFA and DSSA algorithms based on percentage deviation of best solution (PDB(%)) for 34 instances
of TSP.

FIGURE 10. Comparison results of D-PFA and DSSA algorithms based on percentage deviation of the average solution (PDA(%)) for
34 instances of TSP.

In the following, Table 11 compares the proposed
algorithm for 16 instances with four other metaheuristic algo-
rithms named CBA-NNM [44], CABC [45], DSOS [19] and

HAACO [63] for PDB and PDA values it shows. As you
can see in this Table, the D-PFA algorithm obtained the PDB
value for all 16 instances less than the other four algorithms.

106558 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

TABLE 6. Simulation results of D-PFA and its comparison with other algorithms based on Best.

TABLE 7. Simulation results of D-PFA and its comparison with other algorithms based on Avg.

FIGURE 11. Results of percentage deviation of best solution (PDB(%)) for 10 instances of the TSP.

After the D-PFA algorithm, the algorithm that achieved supe-
riority in more instances is the DSOS algorithm, which
obtained a lower value for PDB in seven instances than

the CBA-NNM and HAACO algorithms. Finally, two algo-
rithms, CBA-NNM and HAACO, obtained the zero value
for PDB equally in three instances. Now, according to the

VOLUME 11, 2023 106559

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

TABLE 8. Simulation results of D-PFA and its comparison with other algorithms based on PDB
(
%

)
.

TABLE 9. Simulation results of D-PFA and its comparison with other algorithms based on PDA (%).

FIGURE 12. Results of Percentage deviation of the average solution (PDA(%)) for 10 instances of TSP.

above Table, it can be seen that the D-PFA and CBA-NNM
algorithms were equally able to obtain a PDA value less
than the other two algorithms for five instances. Then,

CABC and HAACO algorithms obtained a lower value
for PDA than other algorithms in three and one instances,
respectively.

106560 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

FIGURE 13. The best solution is obtained by D-PFA for att48, eil51, eil101, ch130, kroA100 and kroC100.

Fig. 13 shows the optimized routes obtained by D-PFA
for six instances (att48, eil51, eil101, ch130, kroA100

and kroC100). The number of iterations of the algorithm
for each instance was considered equal to 200. As you

VOLUME 11, 2023 106561

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

TABLE 10. Simulation results of D-PFA and its comparison with other algorithms based on Best.

TABLE 11. Comparison D-PFA with CBANNM, HAACO, CABC, and DSOS.

can see, D-PFA obtained the optimal path and reached
convergence.

VII. CONCLUSION AND OUTLOOK
TSP is an established combinatorial optimization problem.
The primary challenge is to find a Hamiltonian route with
the lowest cost on a weighted graph. TSP is a significant
benchmark problem because it models important problems
such as scheduling, computer wiring, routing, threading of
scan cells in a testable Very-Large-Scale-Integrated (VLSI),
people movement, automatic drilling of printed circuit boards
and circuits, and X-ray crystallography [67].

This paper suggests a novel discrete PFA approach
(D-PFA) for solving the symmetric TSP. The PFA is inspired
by search behavior in the hunting or feeding area led by
an individual in animal herds. Unlike other algorithms, this
algorithm has a leader, and the other participants follow
him. But not all particles move regularly; they all move
randomly. The algorithm has a high degree of flexibility,
a quick response time, strong exploration and exploitation.
It can provide more accurate solutions and answers without

getting stuck in a local optimum that inspired us to propose
a discrete version. In the suggested discrete approach, the
original PFA was broken into four sub-algorithms, coupled
with discretized sub-algorithms to form a new technique.

The proposed algorithm is run on a desktop machine with
an Intel i5-9600k @ 3.7 GHz and 16 GB RAM running
64-bit Windows 10. To test the performance of the pro-
posed D-PFA, experiments are conducted on multiple TSP
benchmarks to validate the differences between the proposed
D-PFA and other cutting-edge algorithms such as the IBA,
DFA, DICA, GA, ESA, IDGA, D-GWO, DSSA, CBA-NNM,
CABC,DSOS andHAACO. The analyses provide the follow-
ing notable results:

In our first set of experiments, 34 TSP datasets are used
to test the proposed algorithm (D-PFA), which has 30 to
1002 cities. D-PFA algorithm is compared with 12 meta-
heuristic algorithms named IBA, DFA, DICA, GA, ESA,
IDGA, D-GWO, DSSA, CBA-NNM, CABC, DSOS and
HAACO. As our study shown, D-PFA was able to find the
BS in 31 of 34 instances and was also able to find a better
solution than BKS in seven instances. In just three instances,

106562 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

D-PFA could not obtain the BKS solution, showing that the
approach was well-converged and the result was stable.

(1) From the presented Run Time test, we can understand
that D-PFA solved the instances in a respectable period,
demonstrating its effectiveness in response time com-
pared to other methods.

(2) In another experiment, we compare D-PFA with DSSA
on 34 instances based on PDB(%) and PDA(%).
As shown in the paper, the D-PFA algorithm has less
PDB (%) and PDA(%) than the DSSA algorithm, demon-
strating its superiority in identifying the BS and stability
in most instances.

(3) We also compare the results of the D-PFA with two
algorithms named D-GWO and DSSA on 17 TSP
instances after running 20 times of each algorithm per
instance. As shown in the paper, the proposed algorithm
(D-PFA) achieved significant superiority over the two
compared algorithms D-GWO and DSSA. Also, the
D-PFA algorithm achieved a better solution than BKS
in five instances of the benchmarks, and only in one
instance, it could not achieve the optimal solution. D-
GWO algorithm has reached the optimal solution in six
out of 17 instances and in two instances reached a better
solution than BKS. The DSSA algorithm has reached the
optimal solution in 12 out of the 17 instances and also
reached a better solution than BKS in one instance. This
indicates the algorithm′s optimality and reaching proper
convergence of the proposed algorithm compared with
other methods.

(4) To show the performance of D-PFA, we compared
all 12 metaheuristic algorithms on another 10 and
17 instances of TSP with the proposed method. It should
be noted that the simulation parameters of all algorithms
are considered to be as similar as possible. As shown
in the paper, the D-PFA has solved nine out of the
10 instances well and achieved the optimal solution based
on calculated parameters of PDA, PDB, Best and Avg
for every instance. Also, this algorithm achieved a better
answer than BKS in two instances. These achievements
indicate the superiority of this algorithm and its good
convergence as well.

Based on the primary limitations of this paper, the follow-
ing suggestions for further research are offered. The proposed
resilient optimization strategy may be contrasted with other
uncertainty methods as fuzzy theory [68], [69], grey sys-
tems [70], [71], and stochastic optimum control [72]. Since
D-PFA was developed to solve symmetric TSP, more study
is necessary to establish D-PFA′s in tackling constraints like
greenness [73] and time frames [74] for efficient large-scale
problem solving. Future research can also focus on adapting
the proposed D-PFA to solve different discrete optimization
problems and comparing it to other methodologies that solve
real-world problems, such as the VRP [75], [76], [77] alloca-
tion and scheduling in cloud computing [78], [79], internet of
things [80], open shop [66], [81], and other scheduling and

routing problems, to demonstrate its efficiency and effective-
ness in other engineering problems.

REFERENCES
[1] K. Panwar and K. Deep, ‘‘Discrete grey wolf optimizer for symmetric

travelling salesman problem,’’ Appl. Soft Comput., vol. 105, Jul. 2021,
Art. no. 107298.

[2] T. Mostafaie, F. M. Khiyabani, and N. J. Navimipour, ‘‘A systematic study
on meta-heuristic approaches for solving the graph coloring problem,’’
Comput. Oper. Res., vol. 120, Aug. 2020, Art. no. 104850.

[3] M. A. Şahman, ‘‘A discrete spotted hyena optimizer for solving distributed
job shop scheduling problems,’’ Appl. Soft Comput., vol. 106, Jul. 2021,
Art. no. 107349.

[4] V. K. Patel and B. D. Raja, ‘‘Comparative performance of recent advanced
optimization algorithms for minimum energy requirement solutions in
water pump switching network,’’ Arch. Comput. Methods Eng., vol. 28,
no. 3, pp. 1545–1559, May 2021.

[5] C. Ammari, D. Belatrache, B. Touhami, and S. Makhloufi, ‘‘Sizing, opti-
mization, control and energy management of hybrid renewable energy
system—A review,’’ Energy Built Environ., vol. 3, no. 4, pp. 399–411,
Oct. 2022.

[6] T. Adamo, G. Ghiani, P. Greco, and E. Guerriero, ‘‘Learned upper bounds
for the time-dependent travelling salesman problem,’’ IEEE Access,
vol. 11, pp. 2001–2011, 2023.

[7] Z. Zhang and Y. Han, ‘‘Discrete sparrow search algorithm for symmetric
traveling salesman problem,’’ Appl. Soft Comput., vol. 118, Mar. 2022,
Art. no. 108469.

[8] S. Arora, ‘‘Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,’’ J. ACM (JACM), vol. 45,
no. 5, pp. 753–782, 1998.

[9] Y. Saji and M. Barkatou, ‘‘A discrete bat algorithm based on Lévy flights
for Euclidean traveling salesman problem,’’ Expert Syst. Appl., vol. 172,
Jun. 2021, Art. no. 114639.

[10] P. Pirozmand, ‘‘An improved particle swarm optimization algorithm for
task scheduling in cloud computing,’’ J. Ambient Intell. Humanized Com-
put., vol. 14, no. 4, pp. 4313–4327, 2023.

[11] G. Laporte, ‘‘The traveling salesman problem: An overview of exact and
approximate algorithms,’’ Eur. J. Oper. Res., vol. 59, no. 2, pp. 231–247,
Jun. 1992.

[12] M. Padberg and G. Rinaldi, ‘‘Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut,’’ Operations Res. Lett., vol. 6,
no. 1, pp. 1–7, Mar. 1987.

[13] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP
Applications, vol. 840. Cham, Switzerland: Springer, 2003.

[14] G. Laporte and Y. Nobert, ‘‘A cutting planes algorithm for the m-Salesmen
problem,’’ J. Oper. Res. Soc., vol. 31, no. 11, pp. 1017–1023, Nov. 1980.

[15] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming,
vol. 2050. Princeton, NJ, USA: Princeton Univ. Press, 2015.

[16] Ö. Ergun and J. B. Orlin, ‘‘A dynamic programming methodology in
very large scale neighborhood search applied to the traveling salesman
problem,’’ Discrete Optim., vol. 3, no. 1, pp. 78–85, Mar. 2006.

[17] X. Zhou, D. Y. Gao, C. Yang, and W. Gui, ‘‘Discrete state transition
algorithm for unconstrained integer optimization problems,’’ Neurocom-
puting, vol. 173, pp. 864–874, Jan. 2016.

[18] K. Sörensen, ‘‘Metaheuristics—The metaphor exposed,’’ Int. Trans. Oper.
Res., vol. 22, no. 1, pp. 3–18, Jan. 2015.

[19] A. E.-S. Ezugwu and A. O. Adewumi, ‘‘Discrete symbiotic organisms
search algorithm for travelling salesman problem,’’ Expert Syst. Appl.,
vol. 87, pp. 70–78, Nov. 2017.

[20] Y. Wang, ‘‘The hybrid genetic algorithm with two local optimization
strategies for traveling salesman problem,’’ Comput. Ind. Eng., vol. 70,
pp. 124–133, Apr. 2014.

[21] A. A. R. Hosseinabadi, J. Vahidi, B. Saemi, A. K. Sangaiah, and
M. Elhoseny, ‘‘Extended genetic algorithm for solving open-shop schedul-
ing problem,’’ Soft Comput., vol. 23, no. 13, pp. 5099–5116, Jul. 2019.

[22] E. Hindi and AlSalman, ‘‘Dynamic flying ant colony optimization
(DFACO) for solving the traveling salesman problem,’’ Sensors, vol. 19,
no. 8, p. 1837, Apr. 2019.

[23] H. Eldem and E. Ülker, ‘‘The application of ant colony optimization in the
solution of 3D traveling salesman problem on a sphere,’’Eng. Sci. Technol.,
Int. J., vol. 20, no. 4, pp. 1242–1248, Aug. 2017.

VOLUME 11, 2023 106563

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

[24] K. Tang, Z. Li, L. Luo, and B. Liu, ‘‘Multi-strategy adaptive particle swarm
optimization for numerical optimization,’’ Eng. Appl. Artif. Intell., vol. 37,
pp. 9–19, Jan. 2015.

[25] L. Wang, R. Cai, M. Lin, and Y. Zhong, ‘‘Enhanced list-based simulated
annealing algorithm for large-scale traveling salesman problem,’’ IEEE
Access, vol. 7, pp. 144366–144380, 2019.

[26] X.-S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ in Nature
Inspired Cooperative Strategies for Optimization (NICSO). Cham,
Switzerland: Springer, 2010, pp. 65–74.

[27] A. K. Sangaiah, M. Sadeghilalimi, A. A. R. Hosseinabadi, and W. Zhang,
‘‘Energy consumption in point-coverage wireless sensor networks via bat
algorithm,’’ IEEE Access, vol. 7, pp. 180258–180269, 2019.

[28] D. Karaboga, ‘‘An idea based on honey bee swarm for numerical
optimization,’’ Erciyes Univ., Eng. Fac., Comput., Kayseri, Türkiye,
Tech. Rep. tr06, 2005,

[29] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[30] M.-Y. Cheng and D. Prayogo, ‘‘Symbiotic organisms search: A new meta-
heuristic optimization algorithm,’’ Comput. Struct., vol. 139, pp. 98–112,
Jul. 2014.

[31] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, and R. Carballedo,
‘‘An improved discrete bat algorithm for symmetric and asymmetric trav-
eling salesman problems,’’ Eng. Appl. Artif. Intell., vol. 48, pp. 59–71,
Feb. 2016.

[32] T.-T. Nguyen, ‘‘A hybridized parallel bats algorithm for combinatorial
problem of traveling salesman,’’ J. Intell. Fuzzy Syst., vol. 38, no. 5,
pp. 5811–5820, May 2020.

[33] Y. Saji and M. E. Riffi, ‘‘A novel discrete bat algorithm for solving
the travelling salesman problem,’’ Neural Comput. Appl., vol. 27, no. 7,
pp. 1853–1866, Oct. 2016.

[34] A. E.-S. Ezugwu, A. O. Adewumi, andM. E. Frîncu, ‘‘Simulated annealing
based symbiotic organisms search optimization algorithm for traveling
salesman problem,’’ Expert Syst. Appl., vol. 77, pp. 189–210, Jul. 2017.

[35] J. Faigl, ‘‘GSOA:Growing self-organizing array–unsupervised learning for
the close-enough traveling salesman problem and other routing problems,’’
Neurocomputing, vol. 312, pp. 120–134, Oct. 2018.

[36] B. H. Abed-Alguni and F. Alkhateeb, ‘‘Novel selection schemes for cuckoo
search,’’ Arabian J. Sci. Eng., vol. 42, no. 8, pp. 3635–3654, Aug. 2017.

[37] Y. Zhong, ‘‘Hybrid discrete artificial bee colony algorithm with threshold
acceptance criterion for traveling salesman problem,’’ Inf. Sci., vol. 421,
pp. 70–84, Dec. 2017.

[38] Z. Yang, ‘‘A double-loop hybrid algorithm for the traveling salesman
problemwith arbitrary neighbourhoods,’’Eur. J. Oper. Res., vol. 265, no. 1,
pp. 65–80, Feb. 2018.

[39] K. Panwar and K. Deep, ‘‘Transformation operators based grey wolf opti-
mizer for travelling salesman problem,’’ J. Comput. Sci., vol. 55, Oct. 2021,
Art. no. 101454.

[40] A. A. R. Hosseinabadi, M. Kardgar, M. Shojafar, S. Shamshirband, and
A. Abraham, ‘‘GELS-GA: Hybrid metaheuristic algorithm for solving
multiple travelling salesman problem,’’ in Proc. 14th Int. Conf. Intell. Syst.
Design Appl., Nov. 2014, pp. 76–81.

[41] A. S. Rostami, ‘‘Solving multiple traveling salesman problem using the
gravitational emulation local search algorithm,’’ Appl. Math. Inf. Sci.,
vol. 9, no. 2, pp. 1–11, 2015.

[42] X. Chen, P. Zhang, G. Du, and F. Li, ‘‘Ant colony optimization based
memetic algorithm to solve bi-objective multiple traveling salesmen prob-
lem for multi-robot systems,’’ IEEE Access, vol. 6, pp. 21745–21757,
2018.

[43] H. Yapici and N. Cetinkaya, ‘‘A new meta-heuristic optimizer: Pathfinder
algorithm,’’ Appl. Soft Comput., vol. 78, pp. 545–568, May 2019.

[44] M. Sahin, ‘‘Solving TSP by using combinatorial bees algorithm with
nearest neighbor method,’’ Neural Comput. Appl., vol. 35, no. 2,
pp. 1863–1879, Jan. 2023.

[45] D. Karaboga and B. Gorkemli, ‘‘Solving traveling salesman problem by
using combinatorial artificial bee colony algorithms,’’ Int. J. Artif. Intell.
Tools, vol. 28, no. 1, 2019, Art. no. 1950004.

[46] X. Ma, C. Zhang, F. Yao, and Z. Li, ‘‘Multi-agent task allocation
based on discrete DEPSO in epidemic scenarios,’’ IEEE Access, vol. 10,
pp. 131181–131191, 2022.

[47] M. Mahi, Ö. K. Baykan, and H. Kodaz, ‘‘A new hybrid method based on
particle swarm optimization, ant colony optimization and 3-Opt algorithms
for traveling salesman problem,’’Appl. Soft Comput., vol. 30, pp. 484–490,
May 2015.

[48] Y. Zhang, Z. Zhang, Z. Liu, and Q. Chen, ‘‘An asymptotically tight online
algorithm for m-Steiner traveling salesman problem,’’ Inf. Process. Lett.,
vol. 174, Mar. 2022, Art. no. 106177.

[49] Z. Zhang and J. Yang, ‘‘A discrete cuckoo search algorithm for traveling
salesman problem and its application in cutting path optimization,’’ Com-
put. Ind. Eng., vol. 169, Jul. 2022, Art. no. 108157.

[50] S. R. Kanna, K. Sivakumar, and N. Lingaraj, ‘‘Development of deer
hunting linked earthworm optimization algorithm for solving large scale
traveling salesman problem,’’ Knowl.-Based Syst., vol. 227, Sep. 2021,
Art. no. 107199.

[51] G. H. Al-Gaphari, R. Al-Amry, and A. S. Al-Nuzaili, ‘‘Discrete crow-
inspired algorithms for traveling salesman problem,’’ Eng. Appl. Artif.
Intell., vol. 97, Jan. 2021, Art. no. 104006.

[52] Y. Hu, Z. Zhang, Y. Yao, X. Huyan, X. Zhou, and W. S. Lee, ‘‘A bidi-
rectional graph neural network for traveling salesman problems on
arbitrary symmetric graphs,’’ Eng. Appl. Artif. Intell., vol. 97, Jan. 2021,
Art. no. 104061.

[53] I. I. Huerta, D. A. Neira, D. A. Ortega, V. Varas, J. Godoy, and
R. Asín-Achá, ‘‘Improving the state-of-the-art in the traveling salesman
problem: An anytime automatic algorithm selection,’’ Expert Syst. Appl.,
vol. 187, Jan. 2022, Art. no. 115948.

[54] M. Gunduz and M. Aslan, ‘‘DJAYA: A discrete Jaya algorithm for solving
traveling salesman problem,’’ Appl. Soft Comput., vol. 105, Jul. 2021,
Art. no. 107275.

[55] Y. Wang and Z. Han, ‘‘Ant colony optimization for traveling salesman
problem based on parameters optimization,’’ Appl. Soft Comput., vol. 107,
Aug. 2021, Art. no. 107439.

[56] P. Stodola, P. Otrísal, and K. Hasilová, ‘‘Adaptive ant colony optimization
with node clustering applied to the travelling salesman problem,’’ Swarm
Evol. Comput., vol. 70, Apr. 2022, Art. no. 101056.

[57] X. Dong and Y. Cai, ‘‘A novel genetic algorithm for large scale colored bal-
anced traveling salesman problem,’’ Future Gener. Comput. Syst., vol. 95,
pp. 727–742, Jun. 2019.

[58] B. C. H. Silva, I. F. C. Fernandes, M. C. Goldbarg, and E. F. G. Goldbarg,
‘‘Quota travelling salesman problem with passengers, incomplete ride and
collection time optimization by ant-based algorithms,’’ Comput. Oper.
Res., vol. 120, Aug. 2020, Art. no. 104950.

[59] S. Ebadinezhad, ‘‘DEACO: Adopting dynamic evaporation strategy to
enhance ACO algorithm for the traveling salesman problem,’’ Eng. Appl.
Artif. Intell., vol. 92, Jun. 2020, Art. no. 103649.

[60] M. M. Krishna, N. Panda, and S. K. Majhi, ‘‘Solving traveling sales-
man problem using hybridization of rider optimization and spotted
hyena optimization algorithm,’’ Expert Syst. Appl., vol. 183, Nov. 2021,
Art. no. 115353.

[61] J. Deckerová, J. Faigl, and V. Krátký, ‘‘Traveling salesman problem with
neighborhoods on a sphere in reflectance transformation imaging scenar-
ios,’’ Expert Syst. Appl., vol. 198, Jul. 2022, Art. no. 116814.

[62] V. Pandiri and A. Singh, ‘‘An artificial bee colony algorithm with variable
degree of perturbation for the generalized covering traveling salesman
problem,’’ Appl. Soft Comput., vol. 78, pp. 481–495, May 2019.

[63] A. F. Tuani, E. Keedwell, and M. Collett, ‘‘Heterogenous adaptive ant
colony optimization with 3-opt local search for the travelling salesman
problem,’’ Appl. Soft Comput., vol. 97, Dec. 2020, Art. no. 106720.

[64] C. Tang, ‘‘An enhanced pathfinder algorithm for engineering optimization
problems,’’ Eng. With Comput., vol. 38, pp. 1481–1503, Jan. 2021.

[65] X. Chen. (Mar. 5, 2021). The TSPLIB Symmetric Traveling Sales-
man Problem Instances. [Online]. Available: http://elib.zib.de/pub/mp-test
data/tsp/tsplib/tsp/index.html

[66] A. H. Ismail, ‘‘Using the bees algorithm to solve combinatorial optimi-
sation problems for TSPLIB,’’ Proc. IOP Conf. Ser., Mater. Sci. Eng.,
vol. 847, no. 1, 2020, Art. no. 012027.

[67] C. Ravikumar, ‘‘Parallel techniques for solving large scale travelling
salesperson problems,’’ Microprocessors Microsyst., vol. 16, no. 3,
pp. 149–158, Jan. 1992.

[68] E. Babaee Tirkolaee, P. Abbasian, M. Soltani, and S. A. Ghaffarian,
‘‘Developing an applied algorithm for multi-trip vehicle routing problem
with time windows in urban waste collection: A case study,’’ Waste Man-
age. Res., J. Sustain. Circular Economy, vol. 37, no. 1, pp. 4–13, Jan. 2019.

[69] A. Calik, ‘‘A novel interactive fuzzy programming approach for optimiza-
tion of allied closed-loop supply chains,’’ Tech. Rep., 2018.

[70] S. K. Roy, G. Maity, and G.-W. Weber, ‘‘Multi-objective two-stage grey
transportation problem using utility function with goals,’’ Central Eur. J.
Oper. Res., vol. 25, no. 2, pp. 417–439, Jun. 2017.

106564 VOLUME 11, 2023

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

[71] O. Palanci, ‘‘Cooperative grey games: Grey solutions and an optimization
algorithm,’’ Int. J. Supply Oper. Manag., vol. 4, no. 3, pp. 202–215, 2017.

[72] E. Savku andG.-W.Weber, ‘‘A stochastic maximum principle for aMarkov
regime-switching jump-diffusion model with delay and an application to
finance,’’ J. Optim. Theory Appl., vol. 179, no. 2, pp. 696–721, Nov. 2018.

[73] E. Tirkolaee, A. Hosseinabadi, M. Soltani, A. Sangaiah, and J. Wang,
‘‘A hybrid genetic algorithm for multi-trip green capacitated arc routing
problem in the scope of urban services,’’ Sustainability, vol. 10, no. 5,
p. 1366, Apr. 2018.

[74] H. Fan, Y. Zhang, P. Tian, Y. Lv, and H. Fan, ‘‘Time-dependent multi-
depot green vehicle routing problem with time windows considering
temporal-spatial distance,’’ Comput. Oper. Res., vol. 129, May 2021,
Art. no. 105211.

[75] A. A. R. Hosseinabadi, J. Vahidi, V. E. Balas, and S. S. Mirkamali,
‘‘OVRP_GELS: Solving open vehicle routing problem using the gravita-
tional emulation local search algorithm,’’ Neural Comput. Appl., vol. 29,
no. 10, pp. 955–968, May 2018.

[76] A. A. R. Hosseinabadi, N. S. H. Rostami, M. Kardgar, S. Mirkamali, and
A. Abraham, ‘‘A new efficient approach for solving the capacitated vehicle
routing problem using the gravitational emulation local search algorithm,’’
Appl. Math. Model., vol. 49, pp. 663–679, Sep. 2017.

[77] A. A. R. Hosseinabadi, A. Slowik, M. Sadeghilalimi, M. Farokhzad,
M. B. Shareh, and A. K. Sangaiah, ‘‘An ameliorative hybrid algorithm for
solving the capacitated vehicle routing problem,’’ IEEE Access, vol. 7,
pp. 175454–175465, 2019.

[78] P. Pirozmand, A. A. R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi,
S. Mirkamali, and A. Slowik, ‘‘Multi-objective hybrid genetic algorithm
for task scheduling problem in cloud computing,’’ Neural Comput. Appl.,
vol. 33, no. 19, pp. 13075–13088, Oct. 2021.

[79] P. Pirozmand, A. Javadpour, H. Nazarian, P. Pinto, S. Mirkamali, and
F. Ja’fari, ‘‘GSAGA: A hybrid algorithm for task scheduling in cloud
infrastructure,’’ J. Supercomput., vol. 78, no. 15, pp. 17423–17449,
Oct. 2022.

[80] B. Rana, Y. Singh, and H. Singh, ‘‘Metaheuristic routing: A taxonomy and
energy-efficient framework for Internet of Things,’’ IEEE Access, vol. 9,
pp. 155673–155698, 2021.

[81] S. H. Shams Lahroudi, F. Mahalleh, and S. Mirkamali, ‘‘Multiobjective
parallel algorithms for solving biobjective open shop scheduling problem,’’
Complexity, vol. 2022, pp. 1–16, Aug. 2022.

PORIA PIROZMAND received the Ph.D. degree
from the School of Computer Science, Dalian Uni-
versity of Technology, China, in 2017, and the
master’s degree in computer science from the Uni-
versity of Mysore, India. He is currently a Faculty
Memberwith the ITDepartment, Holmes Institute,
Sydney, NSW, Australia. His research interests
include humanmobility in opportunistic networks,
social networks, cloud computing, image process-
ing, and real-time systems in body area sensor

networks and wireless sensor networks, among other areas of research.

ALI ASGHAR RAHMANI HOSSEINABADI
received the M.Sc. degree in software engineering
from the Islamic Azad University of Ayatollah
Amoli, Iran, in 2016. He is currently pursuing the
Ph.D. degree in computer science with the Uni-
versity of Regina, Canada, in 2020. He has been
a Research Assistant with the Faculty of Engi-
neering, Tamishan University, since 2013, and a
Faculty Member, since 2018. He is the author of
more than 200 research papers in several journals

and international conferences. His research interests include optimization,
computational intelligence, metaheuristic algorithms, vehicle routing prob-
lems, wireless networks, cloud computing, and the Internet of Things. He has
registered six Iranian patents in the area of computational intelligence and
nanotechnology. Besides, he is a member of several editorial boards and a
member of several national and international journals and conferences.

MAEDEH JABBARI CHARI received the M.Sc.
degree in software engineering from the Islamic
Azad University of Masjed Soleiman, Khuzestan,
Iran, in 2016. Her research interests include opti-
mization, metaheuristic algorithms, WSN, and
cloud computing.

FAEZEH PAHLAVAN received the M.Sc. degree
in software engineering from the University of
Mazandaran, Iran, in 2023. Her research inter-
ests include optimization, computational intelli-
gence, metaheuristic algorithms, wireless sensor
networks, cloud and fog computing, and the Inter-
net of Things.

SEYEDSAEID MIRKAMALI received the B.E.
degree in software engineering from the Sad-
jad University of Technology, and the M.Tech.
degree in computer cognition and technology
and the Ph.D. degree in computer science from
the University of Mysore, in 2008 and 2014,
respectively. He is currently an Assistant Pro-
fessor with the Department of Computer Engi-
neering and IT, Payame Noor University. He has
authored/coauthored multiple research papers and

books in different computer science domains, such as sensor networks,
cloud computing, optimization algorithms, image processing, and machine
learning. Besides, he served as a member of several editorial boards and a
member of several national and international journals and conferences.

GERHARD-WILHELM WEBER received the
Diploma degree in mathematics and the Ph.D.
degree in economics/business administration from
RWTH Aachen University, and the Habilitation
degree from TU Darmstadt, Germany. He was a
Professor with IAM, Middle East Technical Uni-
versity (METU), Ankara, Turkey, for 15 years.
He replaced the Professorships with the Univer-
sity of Cologne, Germany, and TU Chemnitz,
Germany. He is currently a Professor with the Fac-

ulty of EngineeringManagement, Poznań University of Technology, Poznań,
Poland. His research interests include mathematics, statistics, operational
research, data science, machine learning, artificial intelligence, inverse prob-
lems, remote sensing, finance, economics, optimization, optimal control,
management science, neuroscience, biology, medicine, psychology, devel-
opment, physics, chemistry, literature and arts, cosmology and spirituality,
Christianity, generalized space-time design, research, shift, and travel. He is
an IFORS Fellow. He serves in IFORS, specifically EURO where he is an
Advisor to EURO Conferences, and as a Section Editor for IFORS Newslet-
ter. He is internationally involved in the organization of scientific activities.

VOLUME 11, 2023 106565

P. Pirozmand et al.: D-PFA: A Discrete Metaheuristic Method for Solving TSP Using PFA

SUMMERA NOSHEEN received the Ph.D.
degree from the School of Electrical Engineering
and Computing, The University of Newcastle,
Australia, in 2021. She is currently with the Fac-
ulty of Engineering, The University of Sydney,
Australia. She received the Commonwealth
Department of Education, Science and Train-
ing and The University of Newcastle Research
Training Program (RTP) tuition fee and stipend
scholarships. Her research interests include wire-

less networks, quality of service, quality of experience, and MAC layer
resource allocation.

AJITH ABRAHAM (Senior Member, IEEE)
received the B.Tech. degree in electrical and elec-
tronic engineering from the University of Calicut
in 1990, the M.S. degree from Nanyang Tech-
nological University, Singapore, in 1998, and the
Ph.D. degree in computer science from Monash
University, Melbourne, Australia, in 2001. He is
currently the Pro-Vice Chancellor of Bennett Uni-
versity, India. Prior to this, he was the Dean of
the Faculty of Computing and Mathematical Sci-

ences, FLAME University, Pune, and the Founding Director of the Machine

Intelligence Research Laboratories (MIR Labs), USA, a Not-for-Profit Sci-
entificNetwork for Innovation andResearch Excellence, connecting industry
and academia. During the last three years, he also held two University
Professorial appointments, including a Professor of Artificial Intelligence
with Innopolis University, Russia, and the Yayasan Tun Ismail Mohamed
Ali Professorial Chair of Artificial Intelligence, UCSI, Malaysia. He works
in a multi-disciplinary environment and has authored/coauthored more than
1,400+ research publications. He has more than 54,000 academic citations
(H-index is more than 110 as per Google Scholar). He has given more than
200 plenary lectures and conference tutorials (in more than 20 countries). He
was the Chair of the IEEE Systems, Man and Cybernetics Society Technical
Committee on Soft Computing (which has over more than 200 members),
from 2008 to 2021. He was the Editor-in-Chief of Engineering Applications
of Artificial Intelligence (EAAI), from 2016 to 2021. He serves/served on
the editorial board for over 15 international journals indexed by Thomson
ISI. He served as a Distinguished Lecturer for the IEEE Computer Society
Representing Europe, from 2011 to 2013.

106566 VOLUME 11, 2023

