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ABSTRACT Toward the quadcopter unmanned aerial vehicle (UAV) attitude measurement problem,
to improve the accuracy of acquisition of vehicle attitude parameters, and ensure accuracy of subsequent
attitude control, the Quaternion-based Unscented Kalman filter (QUKF) data fusion method is presented.
This attitude measurement system uses STM32F103 as the central controller, MPU6050 with integrated
accelerometer and gyroscope, and magnetometer HMC5883l as the measurement sensor. Coordinate
Rotation Relationships for the Attitude Heading Reference System (AHRS) in Quaternions, combining
Unscented Kalman Filter (UKF) to Fuse Low-Cost Attitude Measurement Systems, tracking estimation of
the genuine attitude of the vehicle. High-precision sensor measurements as real values, by comparing with
Extended Kalman Filter (EKF), Complementary Filter (CF), and genuine values to validate and analyze
the effectiveness of the algorithm applied to the low-cost attitude measurement system. Experimental results
show that the low-cost attitude measurement system using quaternions as state variables combined with UKF
can accurately estimate attitude information, providing precise attitude information for subsequent attitude
control of UAVs.

INDEX TERMS Unscented Kalman filter, quaternion, quadrotor UAV, attitude estimation, data fusion.

I. INTRODUCTION
For the past few years, UAVs have a bright future ahead of
them, widely used in both military and civilian applications.
Quadcopter UAVs are simple and inexpensive, and they can
replace human labor for particular tasks, so a large num-
ber of researchers and companies have conducted extensive
research in related areas. In quadrotor attitude control, it is
crucial to obtain highly accurate and stable attitude infor-
mation [1], it determines the accuracy of the subsequent
attitude control. High-precision attitude sensors can acquire
vehicle attitude information. However, high-precision atti-
tude sensors are generally characterized by high cost, bulky
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and heavy. Currently, quadcopter drones on the market gen-
erally consider the cost, load capacity, and other reasons,
choosing low-cost, low-precision sensors. And this kind of
sensor is susceptible to geomagnetic fields, noise, vibra-
tion, and other environmental disturbances; in this case, the
accuracy of attitude information acquired by low-precision
sensors decreases; it affects the vehicle’s stability. Therefore,
it is essential to have a stable and highly accurate attitude
estimation for the attitude measurement system.

The low-cost MEMS inertial sensors currently available
on the market generally include gyroscopes, accelerometers,
magnetometers. Gyroscopes in inertial sensors are used for
three-axis directional angular velocity measurements, with
better dynamic correspondence and accuracy. Still, it exists
integral error, long time cumulative error will be enlarged,
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the stability is relatively poor, and the angle information
integrated by the gyroscope is relative to the relative position
of the starting point, so it does not provide absolute angle [2].
Accelerometers formeasuring acceleration in three axes, with
good static performance, but is susceptible to motion accel-
eration and has lower dynamic accuracy [3]. Magnetometers
are used to measure the strength of the magnetic field in the
triaxial direction, and external magnetic interference is more
sensitive to the magnetic field, easily affected by magnetic
fields [4]. Single inertial sensors all have their drawbacks,
so they can’t be totally trusted, need a fusion algorithm to
fuse data from different sensors and estimate valid attitude
information.

Noise encountered in UAV attitude measurements is
generally filtered using a filteringmethod to remove the inter-
ference caused by the noise [5]. Traditional filtering methods
can only be realized when the valid signal and the noise have
different frequency bands. In the early 1960s, Kalman [6] and
Buse proposed a new linear filtering and prediction theory.
This method can process the input and observed signals from
noise in a linear state space representation of the equations to
find the state of the system or the proper signal, and it was first
applied to the design of NASA’s Apollomanned lunar landing
spacecraft and its navigation system [7]. The typical attitude
estimation algorithms are CF [8], Gradient-Descent (GD)
method [9], and Kalman filter (KF) [10]. Reference [11] has
compared these algorithms, CF and GD are relatively sim-
ple and suitable for handling aircraft with limited hardware
performance; in the case of hardware satisfaction, KF is the
best choice. The KF fusion effect is better than the above two
and widely used, but KF can only be applied to some linear
systems. For nonlinear systems like UAVs, KF has some
limitations [12], but extended some algorithms based on KF
have also been derived for nonlinear systems, for example,
EKF [13], Particle Filter (PF) [14], and UKF [15]. These
filtering methods have higher estimation accuracy compared
to CF and GD. PF relies heavily on the estimation of the
initial state and has the particle degeneracy problem; UKF is
more accurate than EKF and avoids the complex operations
of Jacobi matrices for complex nonlinear functions in EKF.
Reference [16] has proposed aCF for estimatingUAVattitude

with small computational effort, however, CF requires high
sensor accuracy, and the filtering performance decreases with
increasing gyroscope drift error. Reference [17] has proposed
KF fusion of gyroscope and accelerometer data to calculate
the optimal estimate to correct the output error recursively,
but this method does not provide an accurate estimation of
the yaw angle and does not apply to nonlinear systems such as
UAVs. Reference [18] has applied EKF to multi-axis vehicle
attitude estimation, EKF is an expansion of the nonlinear
equations into a first-order approximation using Taylor’s
formula, however, when the linearization assumption does
not hold, it leads to a degradation of the filter performance.
Reference [19] has utilized an EKF based on the direction
cosine matrix for UAV attitude estimation, but nine values
in the direction cosine matrix need to be computed, and the
amount of computation is more significant compared to the
Euler angles and quaternions, which will increase the proces-
sor computational load and cannot be tracked in real-time.
Reference [20] has proposed an Euler angle-based attitude
estimation for UKF multi-rotor UAVs, which improves the
accuracy but suffers from gimbal deadlocking.

In this paper, we propose a quaternion-based UKF data
fusion method for estimating the flight attitude of a quadro-
tor under nonlinear state modeling. We use STM32F103
as the core microcontroller, 3-axis gyroscope and 3-axis
accelerometer, and 3-axis magnetometer to form a low-
cost 9-axis attitude measurement system. Sensor MPU6050
acquires gyroscope/accelerometer raw data information, and
sensor HMC5883l obtains magnetometer raw data informa-
tion. The first step is to calibrate the raw error of each
sensor, which is the fixed error of the sensor itself, to improve
the accuracy of the input information of the UKF. Updat-
ing the state variables of the model using angular velocity
information and correction of observations using accelerom-
eter information and magnetometer information. Figure 1
illustrates the attitude measurement system, ω denotes that
the gyroscope correction outputs three-axis angular velocity
information, a indicates that the accelerometer calibration
outputs triaxial acceleration information, m indicates that
the magnetometer calibration outputs triaxial magnetic field
strength information.

FIGURE 1. The QUKF-based attitude measurement system.

111134 VOLUME 11, 2023



T. Liang et al.: Attitude Estimation of Quadrotor UAV Based on QUKF

II. MATHEMATICAL MODEL
A. VISION SENSOR
Vehicles generally provide attitude information with a head-
ing attitude reference system (AHRS), this attitude informa-
tion includes roll angle, pitch angle, and yaw angle. AHRS
provides both a navigational coordinate system and an air-
frame coordinate system, the navigation coordinate system
is the reference coordinate system used to solve the attitude
information of the aircraft, and in this article, we have chosen
the northeastern part of the earth as the navigational coor-
dinate system. The airframe coordinate system is fixed to
the vehicle and changes with the movement of the airframe;
the x-axis is aligned with the head direction, the y-axis is
in the same plane as the body, and in the same direction as
the right chord of the body, the z-axis is kept perpendicular
to the x-axis and y-axis respectively and pointing down the
airframe. As shown in Figure 2.

FIGURE 2. Navigation coordinate system and airframe coordinate system.

Expression of the navigation coordinate system in terms of
the direction cosine matrix to the airframe coordinate system
and the relational formula is built with attitude information,
as in: As in (1), shown at the bottom of the page, n represents
the navigation coordinate system, b represents the airframe
coordinate system, Rbn represents a rotation from the navi-
gation coordinate system to the airframe coordinate system,
φ represents rotation of the vehicle around x-axis, the angle
of rotation is the roll angle, θ represents the rotation of the
vehicle around the y-axis, the angle of rotation is the pitch
angle. ψ represents the rotation of the vehicle around the z-
axis, and the angle of rotation is the yaw angle. (1) is the
rotation matrix expressed in terms of Euler angles, which
satisfies Rnb = (Rbn)

T .
The rotation matrix expressed in terms of Euler angles is

straightforward, so the attitude information can be described

by the angle of rotation around the three directions. However,
it is easy to encounter gimbal lock, so it is easy to produce
singular values.

This can be avoided by describing the attitude information
in terms of quaternions (Q = [q0 q1 q2 q3]T ), so in this paper,
we use quaternions to represent the rotation relation, and the
quaternion satisfies the following relation:

q20 + q21 + q22 + q23 = 1 (2)

Rnb

=

q20+q21−q22−q23 2(q1q2+q0q3) 2(q1q3−q0q2)
2(q1q2−q0q3) q20−q

2
1+q

2
2−q

2
3 2(q2q3+q0q1)

2(q1q3+q0q2) 2(q2q3−q0q1) q20+q
2
3−q

2
1−q

2
2


(3)

As in (3), Rnb denotes the relational equation for the rotation
of the airframe coordinate system to the navigation coordi-
nate system and describes the airframe attitude information
in quaternions, again there is the relation Rbn = (Rnb)

T .

B. CALIBRATION OF SENSOR RAW ERROR
Manufacturers in the production of MPU6050 and
HMC5883l such devices, due to process, technology, and
other reasons, result in certain defects in the sensor, so in the
actual application of the sensor output signal there are spe-
cific errors. Therefore, the raw data output from gyroscopes,
accelerometers, and magnetometers all have errors, and such
errors are deterministic errors, modeling the error calibration:

ω = Rω(
ω′

c
− ωe)

a = Ra(
a′

b
− ae)

m = Rm(m′
− me)

(4)

As in (4), ω, a, m are the data after calibration of gyro-
scope, accelerometer and magnetometer respectively; ω′, a′,
m′ are gyroscope, accelerometer and magnetometer raw data
respectively; ωe, ae, me are the zero bias error of each sensor;
ω′

c − ωe, a′

b − ae, m′
− me compensate for the zero bias

error of each sensor, respectively; Rω, Ra, Rm are the ratios
of the maximum and minimum output differences of the sen-
sor in each axial direction, respectively, used to compensate
for scale factor errors and axle misalignment of individual
sensors; c = 16.4 is the ratio of the output range of the
MPU6050 data register to the output range of the gyroscope,
b = 1638.35 is the ratio of the output range of the MPU6050
data register to the output range of the accelerometer.

The gyroscope is placed on a horizontal plane at rest, and
by collectingmultiple sets of data in each axis, the zero bias in
each axis is equal to the average value of the data in that axis;

Rbn =

 cos θ cosψ cos θ sinφ sinψ − sinψ cosφ cos θ sinφ cosψ + sin θ sinψ
sinψ cos θ sin θ sinφ sinψ + cosφ cosψ sin θ sinψ cosφ − sinφ sinψ

− sin θ cos θ sinφ cosφ cos θ

 (1)
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the accelerometer is calibrated using the six-plane calibration
method, in which the accelerometer’s ±X , ±Y , and ±Z axes
are pointed toward the ground, and the same data are collected
in both directions for each axis, and the average value of the
data for each axis is calculated; the magnetometer adopts the
three-axis rotary table method, in which the magnetometer
is fixed on a high-precision three-axis rotary table, and the
rotary table is rotated around theX , Y , and Z axes respectively
by uniform rotation, and the zero deviation of each axis
is equal to the average value of the data in that axis. The
calibration parameters for each sensor measured in this paper
are as follows:

ωe = [1.567 − 0.498 − 0.787]T

ae = [0.975 − 1.427 − 1.977]T

me = [0.035 0.065 0.075]T

Rω = diag(1.005, 0.999, 1.013)

Ra =

 1.020 −0.005 0.010
0.067 0.966 −0.016
0.008 −0.014 1.080


Rm = diag(1.005 0.989 1.012)

(5)

C. GYROSCOPE-BASED STATE UPDATE
The relationship between quaternions and the angle speed,
as in:

Q̇ =
dQ
dt

=
1
2
�(ω)Q (6)

�(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (7)

As in (7), ω = [ωx ωy ωz] is the raw data of the gyroscope
measurement output after calibration, ωx , ωy, ωz are the
angular velocities of rotation about theX , Y , and Z coordinate
axes, respectively; �(ω) denotes the 4 ∗ 4 opposite matrix.
In the discrete equation, the state update belongs to the next
moment to the previous moment state value. In each clock
cycle T , it is known that the quaternion qt−1 and the angular
velocity ωt−1 at time t − 1, predictive estimation of the
quaternion qt at time t using q̇t−1, as in:

qt = qt−1 + T q̇t−1 (8)

Obtain the state update equation with respect to the quater-
nion, as in:

qt = qt−1 +
T
2
�(ωt−1)qt−1 (9)

D. ACCELEROMETER ATTITUDE SOLVING
Accelerometer as an inertial sensor to measure acceler-
ation, the measured output value is the acceleration of
three axes in the airframe coordinate system, denoted by
ab = [abx a

b
y a

b
z ]
T . According to the measurement principle,

when the accelerometer is at rest, it is only subjected to the
acceleration of gravity, denoted by a = [0 0 g] = g[0 0 1],

g (g = 9.8m/s2) denotes the acceleration of gravity. When
the vehicle is in motion, the gravity acceleration information
is assigned to three axes according to the attitude angle of the
airframe, referring to the (3) we can get: abx

aby
abz

 = Rnb

 0
0
g

 = g

 2(q1q3 − q0q2)
2(q2q3 + q0q1)
q20 + q23 − q21 − q22

 (10)

From the three-axis components of the accelerometer out-
put, we can calculate roll angle and pitch angle, as in:

φ = − arcsin(
ax
g
)

θ = arctan(
ay
az
)

(11)

E. MAGNETOMETER ATTITUDE SOLVING
The magnetometer is used as an inertial sensor to measure the
magnetic field strength, and the measured output is the mag-
netic induction in the three axes of the airframe coordinate
system. The magnetometer measurements in the airframe
coordinate system are expressed asmb = [mbx m

b
y m

b
z ]
T . In the

navigational coordinate system, the geomagnetic field always
points north along the direction of magnetic induction, has
northward and perpendicular components, and no eastward
component, so the magnetic field strength is expressed as
mn = [mnx m

n
y m

n
z ]
T (mny = 0). When the airframe coordinate

system coincides with the geomagnetic field in the navigation
coordinate system, Mb

= [mnx 0 mnz ]
T is the output of the

magnetometer. Since Mb
= mn, it satisfies mb = RbnM

n, and
by rotating it, we realize the conversion between the airframe
coordinate system and the navigation coordinate system, and
the relationship between the magnetic field strengths of the
two coordinate systems is expressed as:mbx
mby
mbz


=

mnx cos θ cosψ − mnz sin θ
mnz sinφ cos θ + mnx(sinφ cos θ cosψ − cosφ sinψ)
mnz cosφ cos θ + mnx(cosφ cos θ cosψ − sinφ sinψ)


(12)

Therefore, the component of the magnetic field strength in
the horizontal direction is:{
mnx sinψ = mbz sinφ − mby cosφ
mnx cosψ = mbx cos θ + mby sinφ sin θ + mbz sin θ cosφ

(13)

Define the positive yaw angle when the head of the air-
frame is turned clockwise, the yaw angle can be obtained
from (13), as in:

ψ = arctan
mby cosφ − mbz sinφ

mbx cos θ + mby sinφ sin θ + mbz sin θ cosφ

(14)
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F. QUATERNIONS AND EULER ANGLE CONVERSIONS
A quaternion matrix can be constructed by rotating an axis
and the angle of rotation around that axis, as in:

q̃0 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2

q̃1 = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2

q̃2 = sin
ψ

2
cos

θ

2
sin

φ

2
+ cos

ψ

2
sin

θ

2
cos

φ

2

q̃3 = sin
ψ

2
cos

θ

2
cos

φ

2
− cos

ψ

2
sin

θ

2
sin

φ

2

(15)

As in (15), can be launched Q = [q̃0 q̃1 q̃2 q̃3]T .

G. SYSTEM EQUATION OF STATE DESIGN
Equation of state and measurement equations for quadrotors:{

xt = f (x, t) + wt
z = h(x, t) + vt

(16)

Due to the nonlinear characteristics of the aircraft system,
it can be assumed as a discrete nonlinear system with Gaus-
sian noise, as in: {

Xt+1 = F(X , t) +Wt

Zt+1 = HX (t) + Vt
(17)

As in (16) and (17), X represents the state vector of the
system, Z is denoted as the measured output value of the
sensor at time t , The nonlinear functions F and H denote
the state transfer matrix, the sensor measurement matrix,
respectively; Wt denotes the system noise of the equation
of state, Vt denotes the system noise of the measurement
equation, and all obey the Gaussian distribution of the noise,
Wt ∼ N (0, S), Vt ∼ N (0,R), S and R denote the covariance
matrix ofWt and Vt respectively.

In this paper, we use quaternions as system state variables,
that is X = [q0 q1 q2 q3]T . Acceleration and magnetometer
solved attitude information as observations in the measure-
ment equation, that is Z = [q̃0 q̃1 q̃2 q̃3]T . Included among
these:

F =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 +
T
2
�(ω)

X (t) (18)

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (19)

III. ATTITUDE INFORMATION FUSION
ALGORITHM DESIGN
Due to the nonlinear characteristics of the discretized equa-
tions of state and measurement equations of quadrotors. This
paper processes nonlinear equations using UKF, enabling
status updates for precise attitude information. The following
equations can express the algorithm, as in:

Determine 2n+ 1Sigma points at time t − 1, the sampling
points:
χ it−1 = X̂t−1, i = 0
χ it−1 = X̂t−1 +

√
(n+ λ)Pt−1, i = 1 ∼ n

χ it−1 = X̂t−1 −
√
(n+ λ)Pt−1, i = n+ 1 ∼ 2n

(20)

Calculate the weights corresponding to the sampling
points: 

ξ0m =
λ

n+ λ

ξ0c =
λ

n+ λ
+ (1 − α2 + β)

ξ im = ξ ic =
λ

2(n+ λ)
, i = 1 ∼ 2n

(21)

As in (20) and (21), χ it−1 is the sampling points in the original
state distribution selected by rule such that the mean and
covariance of these sampling points are equal to the standard
and covariance of the initial state distribution, n is the number
of state variables, X̂t−1 is the state variable at moment t − 1,
λ is a scaling parameter used to reduce prediction error.
Pt−1 is the error covariance matrix at time t − 1, α is a
parameter controlling the state of the distribution of sampling
points.

Substituting the points Sigma calculated in (20) into the
nonlinear equation of state (17):

χ it|t−1 = F(χ it−1), i = 0 ∼ 2n (22)

Calculating one-step prediction and covariance matrices
for system state quantities:

X̂t|t−1 =

2n∑
i=0

ξ iχ it|t−1 (23)

Pt|t−1 =

2n∑
i=0

ξ i(χ it|t−1 − X̂t|t−1)(χ it|t−1 − X̂t|t−1)T + Q

(24)

Based on the one-step prediction values, the UT trans-
formation is used again to produce new set of Sigma
points:

X̃ it|t−1 = X̂t|t−1, i = 0

X̃ it−1 = X̂t|t−1 +
√
(n+ λ)Pt|t−1, i = 1 ∼ n

X̃ it−1 = X̂t|t−1 −
√
(n+ λ)Pt|t−1, i = n+ 1 ∼ 2n

(25)

The predicted Sigma points set are brought into the mea-
surement equation to obtain the predicted observations:

Z it = HX̃ it|t−1, i = 0 ∼ 2n (26)

The mean of the system prediction and its covariance are
obtained by weighted summation:

Ẑ it =

2n∑
i=0

ξ iZ it , i = 0 ∼ 2n (27)
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Pztzt =

2n∑
i=0

ξ i(Z it − Ẑ ti )(Z
i
t − Ẑ ti )

T
+ R (28)

Pxtzt =

2n∑
i=0

ξ i(X̃ it|t−1 − Ẑ ti )(Z
i
t − Ẑ ti )

T (29)

Obtain the kalman gain matrix:

Kt =
Pxtzt
Pztzt

(30)

Finally update the state and covariance matrix:

X̂t = X̂t|t−1 + Kt (Z it − Ẑ it ) (31)

Pt = Pt|t−1 − KtPzkzk (Kt )T (32)

IV. EXPERIMENTAL VERIFICATION
In order to verify the effectiveness of the algorithm,
we choose a low-cost flight controller for our experiments,
STM32F103 as a microcontroller, inertial sensor MPU6050
as a 3-axis gyroscope and 3-axis accelerometer, HMC5883l
as a 3-axis magnetometer. We built a Pixhawk-based flight
experiment platform and conducted UAV dynamic flight
experiments outdoors, as shown in Figure 3. The data col-
lected by the High Precision Sensor MTI-300 is used as
the real data, and the data measured by the low-cost sensor
is used as the data required for attitude fusion, storing the
synchronized collected flight data on the SD card of the flight
control board, and set the sampling frequency to 20 HZ, and
we select continuous 30s attitude measurement data, finally,
data fusion of nine-axis data using Matlab. Comparison and
analysis of the data measured by the QUKF proposed in
this paper with EKF, CF, and high-precision attitude sensors.
In the experiment, according to the stability and accuracy
of the algorithm as the dominant conditions, after simula-
tion and debugging to selection the parameters λ = −1,
α = 1, β = 2, S = diag(0.001, 0.001, 0.001, 0.001),R =

diag(0.05, 0.05, 0.05, 0.05), in order to ensure the feasibility
of the algorithms, different algorithms all use the same noise
covariance matrix S and R, and the initial values of the state
variables are all set to X = [1000]T .

FIGURE 3. Quadrotor.

Figure 4 represents the calibrated data of the gyroscope,
accelerometer, and magnetometer in the hovering condition.
Figures 5-7 indicate that the roll angle, pitch angle, and
yaw angle estimates of the low-accuracy sensors are com-
pared with the true values by applying different algorithms
in the hovering condition. As can be seen from Figure 5, the
rollangles estimated by QUKF, EKF, and CF are basically
kept around −0.7◦ and almost straight, and by zooming in,
it can be observed that the roll angles fused by the QUKF
algorithm are closer to the real values, so the stability of
QUKF is more excellent. As can be seen from Figure 6,
the pitch angles estimated by the three algorithms are basi-
cally kept around −0.2◦, and by zooming in, it can be
observed that both QUKF and EKF are closer to the real
value. As can be seen from Figure 7, the yaw angles esti-
mated by the three algorithms are basically kept at 66.7◦,
by zooming in, it is observed that the QUKF estimates are
closer to the real values and have excellent stability. Over-
all, the estimated attitude angles of the three algorithms
are basically consistent with the real values in the hovering
condition, and the estimated attitude angles of QUKF are
closer to the real values than those of EKF and CF, toler-
ance is basically within 0.2◦,and the stability is also more
excellent.

FIGURE 4. Gyroscope, accelerometer, and magnetometer calibrated in
hovering state.

Figure 8 represents the data of the gyroscope, accelerome-
ter, andmagnetometer after calibration in an outdoor dynamic
flight environment. Figures 9-11 represent the comparison
of roll angle, pitch angle, yaw angle estimation of the low
accuracy sensor with the real values using different algo-
rithms in a motion environment. Based on the comparison,
it can be observed that all the three algorithms perform
well in attitude estimation and basically track the real atti-
tude angle. By observing 10s and 29s in Figure 9, it can
be observed that the QUKF estimates are much closer to
the true values, and the stability of both QUKF and EKF
is excellent, while the CF shows a large amount of jitter.
By observing 6s and 27s in Figure 10, It can be observed that
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FIGURE 5. Comparison of roll angle in hovering state.

FIGURE 6. Comparison of pitch angle in hovering state.

FIGURE 7. Comparison of yaw angle in hovering state.

the QUKF estimates are closer to the true values compared
to EKF and CF, and the QUKF and EKF curves are smoother
and have better stability compared to CF. By observing 11s

and 28s in Figure 11, it can be observed that the QUKF
estimates are closer to the true values, and both QUKF
and EKF curves are smoother, while CF is more volatile
and less stable. Overall, all three algorithms can basically
track the real attitude angle in the motion state, and the
estimated attitude angle of QUKF is more accurate com-
pared to EKF and CF, and the curves of QUKF and EKF
are smoother, and the stability is more excellent compared
to CF.

FIGURE 8. Gyroscopes, accelerometers, magnetometers calibrated in
motion.

FIGURE 9. Comparison of roll angle under motion.

Comparison of the accuracy of attitude angle estimation
using two error analysis metrics, Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), respectively.
As shown in table 1:
From the data in the table, the attitude angle errors esti-

mated based on the QUKF are smaller than the latter two,
and based on the RMSE, it can be seen that the QUKF has
an average decrease of 0.2◦ compared to the EKF estimation
error, and an average decrease of 0.5◦ compared to the CF
estimation error. Overall, the attitude estimation accuracy
of QUKF for quadrotor UAVs is higher than that of EKF,
CF algorithm.
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FIGURE 10. Comparison of pitch angle under motion.

FIGURE 11. Comparison of yaw angle under motion.

TABLE 1. Comparison of RMSE and MAE.

V. CONCLUDE
In this paper, STM32F103 is used as the controller in hard-
ware,MPU6050 andHMC5883l are used as low-cost sensors.
Aiming at the nonlinear characteristics of the flight envi-
ronment of the aircraft, the QUKF algorithm with higher
estimation accuracy is proposed, filtering out Gaussian noise
encountered by sensors during vehicle flight by fusing the
corrected data from gyroscopes, accelerometers, and mag-
netometers, determining the attitude angle of the vehicle by

attitude solving. Finally, by analyzing and comparing with
EKF and CF algorithms, it is concluded that the accuracy of
QUKF estimation is higher than that of EKF and CF algo-
rithms, and the robustness is also better, which can effectively
improve the accuracy of attitude measurement. Therefore, the
attitude angle estimated by the low-precision sensor designed
in this paper through the fusion algorithm can be similar to
that of the high-precision sensor, which meets the practical
requirements of UAV attitude solving.
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