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ABSTRACT Over the past few decades, Industrial Control Systems (ICS) have been targeted by cyberattacks
and are becoming increasingly vulnerable as more ICSs are connected to the internet. Using Machine
Learning (ML) for Intrusion Detection Systems (IDS) is a promising approach for ICS cyber protection, but
the lack of suitable datasets for evaluating ML algorithms is a challenge. Although a few commonly used
datasets may not reflect realistic ICS network data, lack necessary features for effective anomaly detection,
or be outdated. This paper introduces the ‘ICS-Flow’ dataset, which offers network data and process state
variables logs for supervised and unsupervisedML-based IDS assessment. The network data includes normal
and anomalous network packets and flows captured from simulated ICS components and emulated networks,
where the anomalies were applied to the system through various cyberattacks. We also proposed an open-
source tool, ‘‘ICSFlowGenerator,’’ for generating network flow parameters from Raw network packets. The
final dataset comprises over 25,000,000 raw network packets, network flow records, and process variable
logs. The paper describes the methodology used to collect and label the dataset and provides a detailed data
analysis. Finally, we implement several ML models, including the decision tree, random forest, and artificial
neural network to detect anomalies and attacks, demonstrating that our dataset can be used effectively for
training intrusion detection ML models.

INDEX TERMS Anomaly detection dataset, industrial control system, intrusion detection, cyberattack,
network flow, artificial intelligence.

I. INTRODUCTION
Industrial Control Systems (ICS) are used to control various
industrial processes, such as power plants, power grids,
railways, and factories [1]. However, many protocols lack
encryption or authentication mechanisms, making them
vulnerable to cyberattacks [2]. Recent years have seen an
increase in cyber threats to industrial systems [3], with
notable examples including the Stuxnet malware attack
on Iranian Uranium enrichment facilities [4], hacking
Ukrainian power grid [5], the Irongate malware attack on
Siemence’s ICS [6], and the Triton malware attack on
the Saudi Arabian petrochemical plant [7]. Furthermore,
Kaspersky ICS-CERT report [8] shows that 34.3% of ICS
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computers were compromised in the second half of 2022,
indicating that cybersecurity is a major concern for modern
ICSs. Consequently, the issue of ICS security has gained
substantial attention in recent years [9], [10].

To protect ICSs against the increasing risk of cyberattacks,
Intrusion Detection Systems (IDS) are introduced [11]. These
systems monitor networks or hosts to detect cyberattacks or
malicious activities [12], notifying security administrators
or event management systems of any detected threats.
An effective IDS should detect attacks accurately in a
minimum time with the least number of false-positive alerts.
To achieve these goals, using Machine Learning (ML) [13]
and Deep Learning (DL) [14] in IDSs seems promising.
However, due to security concerns and the risk of interrupting
industrial processes, testing IDSs on operational ICSs is not
feasible. Alternately, a dataset containing a range of common
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cyberattacks in ICSs can help investigate optimal ML
approaches for effective intrusion detection. Additionally,
this dataset can serve as a benchmark to facilitate comparing
and evaluating diverse intrusion detection algorithms [15]
prior to their deployment in real-world scenarios. Creating
a comprehensive and representative dataset of intrusions in
ICSs would provide an invaluable resource for developing
and testing new detectionmethods and training and validating
ML algorithms. However, despite its potential benefits, using
such datasets can be challenging due to various obstacles.
Here, we outline some of these challenges:

• Currently, only a limited number of datasets are
available to evaluate ML-based anomaly detection in
ICSs [16]. However, some of these datasets are based
on unrealistic implementations.

• An important consideration for anomaly detection is the
nature of the anomaly. For intrusion detection tasks, only
a small subset of available anomaly detection datasets
are relevant because they inject anomalies through
cyberattacks.

• Some ICS testbeds lack crucial details or have imple-
mented them incorrectly, which can impact the accuracy
and effectiveness of anomaly detection methods.

• Some datasets are highly anonymized and cannot be
shared due to confidentiality concerns, while others do
not reflect current market trends [11].

• A significant challenge in training ML models for
anomaly detection is the lack of labeled data. Some ICS
anomaly datasets are unlabeled, making it challenging
to train effective models.

• Anomalous network trace generating in available
datasets is typically based on the automatic generation
of synthetic network packets, which eliminate necessary
details for accurately distinguishing between legitimate
and malicious activity.

• Available datasets for anomaly detection tasks vary in
the type of data logged, with some only recording
process state variables, some only recording controlling
commands, and others capturing entire network packets.
This study focuses specifically on the latter type of data,
which can limit the availability of suitable datasets.

• Due to the highly specialized nature of ICSs, transferring
datasets between them is difficult, and customized
datasets for each domain are preferred [16].

Moreover, in network-based intrusion detection for the
ICS domain, the existing datasets are often unsuitable for
training intrusion detection models since they are designed
for labeling individual network traces, and most are based
on the automatic generation of synthetic network traces [17].
Anomaly detection in ICSs differs from anomalous network
packet detection because anomalies may exist across entire
traffic, not just in a specific network packet. Therefore, there
is a need to redefine the intrusion detection task to include
anomaly detection in the network traffic pattern rather than
just a specific network packet. Therefore, we aim to provide

our dataset in both forms of raw packet files and network flow
records, which is suitable for studying network flow patterns.

This article provides an intrusion detection dataset, aiming
to address the mentioned issues by providing a realistic
benchmark to compare ML-based IDSs in the ICS domain.
In particular:

1) We implement four types of cyberattacks: ‘Reconnais-
sance’, ‘Distributed Denial of Service’ (DDoS), ‘false
data injection’ using the Man-in-the-Middle (MitM)
technique, and ‘Replay’ attacks on an ICS testbed.

2) We develop ICSFlowGenerator, a reusable open-source
tool to extract network flow features from raw network
packets.

3) We propose the publicly available ‘ICS-Flow’ dataset1

as a public resource. This dataset is unique in several
ways:
a) To further enhance the dataset’s practicality,

we have implemented multiple labeling strate-
gies.

b) It contains a diverse set of network flow features
that capture different aspects of ICS network
behavior.

c) The anomalies in the dataset are due to the real-
istic implementation of network attack scenarios.
This differs from other datasets that employ the
creation of synthetic network anomalies, making
our dataset more representative of real-world
conditions.

d) We offer a complete dataset without any
anonymization to provide comprehensive support
for anomaly detection, including a network flow
dataset, process state snapshots, attack logs, and
ICS components logs.

e) To demonstrate the practicality of our proposed
dataset, we evaluate various ML-based intrusion
detection models on the ‘ICS-Flow’ dataset and
compare their performance.

The remainder of this paper is organized as follows.
Section II presents the current state of the art for avail-
able testbeds. Section III proposes the ICS-Flow intrusion
detection dataset by implementing a scenario using our
proposed testbed in another paper and injecting different
types of attacks. Section IV provides a detailed analysis of
the generated dataset. Section V shows the implementation
of anomaly detection techniques on the proposed dataset.
Section VI compares and discusses the results of the anomaly
detection methods. Section VII identifies the primary threats
to the study’s validity and applied mitigation techniques.
Finally, Section VIII concludes the paper and provides future
research directions.

II. RELATED WORK
This section briefly surveys related work on network
intrusion detection datasets to highlight the prerequisites for

1https://www.kaggle.com/datasets/alirezadehlaghi/icssim
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future datasets. A comprehensive survey of available datasets
and their strengths and weaknesses for anomaly detection is
beyond the scope of this paper. However, there are several
surveys in this area, such as [18], [19], and [20], to mention
a few.

A. DARPA AND KDD CUP ’99 DATASETS
Many datasets are available for anomaly detection in
computer networks, but the KDD Cup ’992 dataset is the
most well-known and widely used. In 1998, a DARPA dataset
[21] was collected using TCPdump of US air force LAN
simulation. A subset of the DARPA dataset used to extract
features by the Massachusetts Institute of Technology (MIT)
Lincoln Laboratory results in the KDD Cup ’99 dataset [22].
This dataset contains 41 features per connection, categorized
into three groups: basic features, traffic features, and content
features. These features are computed for normal and attack
records, belonging to four types of attacks: User to Root
(U2R), Remote to Local attack (R2L), Probing, and Denial
of Service (DoS) attack. However, there is some criticism
against this dataset. Firstly, underlying network traffic backs
to a few decades ago. Secondly, the dataset records are not
refined well since there are many redundant records, and
record classes are not balanced across the dataset [23].

B. NSL-KDD DATASET
In 2009, Tavallaee et al. [24] conducted a statistical analysis
on the KDDCUP’99, finding that some issues with the dataset
adversely affected the anomaly detection experiences. They
enhanced the KDD Cup dataset by resolving major criticisms
such as duplicate or irrelevant records and data asymmetry,
which led to a new dataset titled NSL-KDD.3 This dataset
collected approximately 150,000 data points and divided
them into training and test subsets with the same attributes as
KDD-CUP 99. Thismeans that this data set does not represent
modern network attack scenarios.

C. GAS PIPELINE DATASET
Morris et al. [25] introduced comprehensive datasets,
including network traffic, process control, and process
measurement features gathered from two laboratory-scale
ICSs - a gas pipeline and a water storage tank - utilizing the
Modbus over serial lines protocol. Their research involved
executing various attacks on their experimental setups, such
as reconnaissance, response injection, command injection,
and DoS attacks. Nonetheless, it is essential to note that
their network traffic dataset solely comprises the features of
Modbus commands utilized within the ICSs.

D. UNSW-NB15 DATASET
To generate a dataset that reflects modern network traffic
scenarios and contains varieties of low-footprint attacks, the
Australian Centre for cybersecurity researchers generated the

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3http://www.unb.ca/cic/datasets/nsl.html

UNSW-NB 154 dataset [26]. This dataset contains 41 fea-
tures, categorized into six groups: flow, basic, content, time,
additional general, and connection features. The first four
feature categories were derived directly from dumped traffic,
and the auxiliary C# program was developed to compute
the other two additional groups of features. They used IXIA
PefectStorm Tool5 to generate normal and abnormal traffic;
therefore, despite the simulation of 9 different attack types,
their attack implementation restricts to predefined synthetic
attack types in the IXIA tool.

E. SWaT DATASET
Mathur and Tippenhauer created a small-scale but fully
operational water treatment system (SWaT) testbed for
cybersecurity research [27]. Since SWaT is large and
geographically dispersed, Programmable Logic Controllers
(PLC) use Wireless and wired Fieldbus communications to
control the sensors and actuators. Several attack scenarios are
defined for this testbed, which targets single or multi-points
on single or multi-stages. They released the final dataset
containing process state variables, selected packet features,
and logs of performed attacks [28].6

F. CICIDS2017 DATASET
Canadian Institute for Cybersecurity proposed the
CICIDS20177 dataset based on profiling the human users’
abstract behavior [11]. To generate realistic background
traffic, they profiled the behavior of 25 human users,
considering eight famous attacks, namely brute force, DoS,
botnet, and Heartbleed. Finally, they extracted more than
80 network parameters and then, using a Random Forest
Regressor, selected the best features for each attack. Although
the CICIDS2017 dataset has been used in many intrusion
detection experiments, it is unsuitable for ICS since it does
not reflect the ICS network traffic patterns.

G. ELECTRA DATASET
Gómez et al. presented Electra,8 an anomaly detection dataset
[16] for heterogeneous ICS scenarios. They selected the
railway industry, and the Electra dataset was conducted using
network traffic generated from normal and attack situations
at a traction substation. Although this work has some
highlighted features, such as using realistic devices (PLCs
and SCADA), network protocols (Modbus), and scenarios,
their extracted features are limited toModbus-related features
such as function code and errors. Therefore, this dataset lacks
general network features to detect intrusion based on general
network features.

4https://research.unsw.edu.au/projects/unsw-nb15-dataset
5http://www.ixiacom.com/products/perfectstorm
6https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
7https://www.unb.ca/cic/datasets/ids-2017.html
8http://perception.inf.um.es/ICS-datasets/
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TABLE 1. Summary of intrusion detection datasets related to our proposed dataset.

H. WUSTL-IIoT-2021
Zolanvari et al. [30]9 developed an Industrial Internet
of Things (IIoT) system for monitoring the water level
and turbidity in a water storage tank. They aimed to
evaluate the system’s cyber-attack vulnerability and design

9https://www.cse.wustl.edu/ jain/iiot2/index.html

an IDS accordingly. They conducted various attacks, includ-
ing backdoor, command injection, and Structured Query
Language (SQL) injection attacks on the system. They
published aWUSTL-IIoT dataset containing 41 network flow
features of the traffic for further analysis and experimen-
tation. They demonstrated the effectiveness of a machine
learning-based anomaly detection system in detecting these
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attacks. However, it should be noted that the dataset used in
their study did not include some common cyber-attacks found
in ICS, such as MitM or Replay attacks.

I. TON_IoT DATASET
TON_IoT dataset, presented by Alsaedi et al. [31],10

comprises Telemetry data of IoT/IIoT devices collected in a
controlled environment during both normal operations and
in the presence of different cyber-attacks. In addition, the
dataset also includes operating systems logs (such as disk or
memory usage and process information) and network traffic
of an IoT network, acquired from a realistic representation
of a medium-scale network at the Cyber Range and IoT
Labs at the UNSW Canberra (Australia). This dataset can
be employed to create and assess data-driven intrusion
detection systems for IoT and IIoT environments. While
this dataset includes various attack types, it falls short in
terms of comprehensive network features. It solely consists
of fundamental network features like the network addresses,
the amount of transferred traffic, and a few protocol-specific
features such asHTTP,DNS, and SSH. In order to gain amore
holistic understanding of network behavior during attacks,
additional enriched network features should be incorporated
into the dataset. Moreover, although the TON_IoT Dataset
provides telemetry data for IoT/IIoT devices, it differs
considerably from the controlling system’s domain targeted
by our article, where PLCs issue controlling commands in a
loop.

J. WDT DATASET
AWater Distribution Testbed (WDT) proposed by Faramondi
et al. [32] was used to generate an intrusion detection
dataset for ICSs. They emulated water flowing between
8 tanks as Hardware in a Loop (HIL) and used miniCPS
[34] as a simulation tool to simulate the control system and
networking infrastructure. This testbed had real hardwired
subsystems, virtually connected to a simulated one. Multi-
controller implementation is a key component of this study
since it enables attacks that target communication between
controllers. The proposed dataset includes both system state
variables and network data to reveal attack consequences
on physical processes and network traffic. This dataset has
some issues, including the fact that the network dataset only
contains packet-based features, which means network flow
parameters are not included.

K. EDGE-IIoTSet DATASET
Ferrag et al. [33]11 introduced the Edge-IIoTSet, a proposed
dataset for Cyber Security in Internet of Things (IoT) and
IIoT devices. The dataset encompasses a wide range of IoT
devices and incorporates an extensive list of features derived
from diverse sources such as alerts, system resources, logs,

10https://research.unsw.edu.au/projects/toniot-datasets
11https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-

cyber-security-dataset-of-iot-iiot

and network traffic. The authors identified the top 61 features
from this rich pool of extracted information through their
analysis. While the Edge-IIoTSet dataset exhibits a com-
prehensive collection of features and encompasses various
protocols and devices commonly found in IoT, it is important
to note that the dataset primarily focuses on the general IoT
domain. Consequently, it was not specifically designed to
cater to the requirements of the ICS domain.

L. SUMMARY
Table 1 summarizes intrusion detection datasets related to our
proposed dataset and details their variations in logged data,
implemented attacks, and industry domain. Furthermore, the
dataset’s quality can be significantly affected by the specific
implementation of the testbed and attacks. Consequently,
the next section offers more information on developing the
ICS-Flow dataset to illustrate its potential value as a resource
for evaluating industrial IDSs.

III. ICS-FLOW DATASET
This section introduces the ICS-Flow dataset, designed
as an evaluation dataset for ML-based IDSs intended for
industrial systems. Initially, we provide an overview of our
industrial testbed environment. Subsequently, we discuss the
selected attack types and elaborate on the implementation
of these attacks. Moving forward, we provide detailed
insights into creating the intrusion detection dataset, outlining
the derivation of network features and the network packet
processing techniques employed to generate network flow
features. Lastly, we introduce the labeling process and discuss
our various strategies for labeling the dataset.

A. TESTBED ENVIRONMENT
We used the bottle-filling factory simulation provided by
ICSSIM [35] as a virtual testbed to investigate cyber threats
and attacks. The simulation, illustrated in Figure 1, includes
an ICS that controls the equipment within the factory - such as
pipes, valves, a conveyor belt, and a water tank - to fill empty
bottles with water from the tank. The input valve regulates
the water level in the tank to ensure that it remains within the
permissible range, while the output valve controls the water
flow for filling bottles. The conveyor belt engine ensures
empty bottles are positioned correctly beneath the filler. PLC-
1 reads the tank water level and pipe water flow sensors and
sends control commands to turn input and output valves ‘On’
and ‘Off’. PLC-2 monitors the water level in filling bottles
and the distance between the filler and the next bottle using
sensors. It also issues control commands for the conveyor belt
based on sensor readings and communications with PLC-1.

We enhanced the virtual testbed from [35] by introducing
new types of Human Machine Interfaces (HMI), control
logic, and attacks. The final architecture of the testbed,
depicted in Figure 2, consists of two PLCs that manage
a bottle-filling factory and three HMIs that supervise the
system and send manual operational commands. All the
components of the ICS are connected through a network,
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FIGURE 1. The sample bottle filling factory presented in ICSSIM
framework [35].

TABLE 2. ICS nodes network configurations in our testbed.

and Table 2 provides detailed network configurations of the
ICS nodes. In this testbed, all ICS components operate on
Docker containers12 in automatic mode since the simulation
is conducted using ICSSIM. However, the use of automated
HMIs in this testbed may create uniform network traffic
during regular operation, which could decrease the difficulty
of anomaly detection in the dataset. To address this concern,
we added random parameters to the HMIs’ behavior.
• HMI1: constantly reads all controlling signals.
• HMI2: sends write commands based on a predefined
scenario to simulate HMIs’ user commands.

• HMI3: function autonomously as an automatic HMI and
transmit appropriate write commands with uniformly
randomized values.

In order to simulate network communication realistically,
the Modbus protocol has been employed for all communica-
tions. Modbus is a communication protocol widely used in
operational ICSs [36], initially designed for PLCs and later
adopted as the de facto standard for connecting industrial
electronic devices [37]. We use Modbus TCP to ensure
compatibility with a variety of industrial devices. PLCs
function as Modbus-TCP servers, while ICS components
establish communication by creating Modbus-TCP client
instances that communicate with Modbus-Servers.

To launch cyberattacks against the testbed, we connect
an attacker node to the ICS network. It is assumed that
the attacker has access to internal network traffic because
many ICS systems now offer remote monitoring for industrial
equipment, allowing attackers to access the ICS internal
network through infected remote HMIs. However, the
attacker does not have prior knowledge of the control system
or controlling variables. Therefore, the attacker must sniff the
network and gather information for complex attacks. After

12https://www.docker.com/

FIGURE 2. The testbed architecture.

setting up the testbeds, we captured network data to create the
ICS-Flow dataset. We captured network packets by running
TCPdump on the switch, and this data can be employed to
train IDSs on the switch or as a standalone component within
the control network.

B. ATTACKS
Protocols used in ICSs are vulnerable due to their lack
of authentication, communication encryption, and integrity
checks [16]. These weaknesses allow attackers to eavesdrop
on or alter network transmissions, potentially disrupting
ICS operations. We considered four attack types to exploit
these vulnerabilities to discover the network, sniff or modify
packets, and disrupt ICS operation. We selected the attacks
regarded as common attack types in previous studies [16],
[25], [32]. Moreover, the ’MITRE ATT&CK’,13 which is a
globally-accessible knowledge base of adversary techniques
based on real-world observations, and European Union
Agency for Cybersecurity (ENISA) reports14 [38] consider
these attacks to be common cyberattacks on ICSs.

A Python script has been developed to automate the
execution of attacks on the control system. Using this script,
the attacker node can promptly launch attacks based on
a predefined scenario. The script is designed to provide
the control system enough time to recover from any
destabilization caused by the attacks. The following section
provides detailed information about the implemented attacks.

1) RECONNAISSANCE ATTACK
Intruders often begin with a reconnaissance attack, which
involves gathering valuable system information as a

13https://attack.mitre.org/techniques/ics/
14https://www.enisa.europa.eu/publications/good-practices-for-security-

of-iot
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preliminary step towards launching further attacks [39].
A reconnaissance attack is passive since the attacker merely
captures information rather than disrupting the victim’s
functionalities. This attack does not impact industrial
operations, although its trace on the network traffic can
still reveal it. In our implementation, the intruder discovers
the network by collecting information such as IP addresses,
Media Access Control (MAC) addresses, or open ports.

In this testbed, the Reconnaissance attack is implemented
with two different scenarios: IP-Scanning and Port-Scanning.
In the first scenario, we utilize Ettercap,15 a free and
open-source network security tool, and a Python script
using the Scapy,16 a packet manipulation tool for networks,
to broadcast Address ResolutionMessages (ARP) to discover
the alive network nodes. In the second scenario, we use
NMap,17 a free and open-source utility for network discovery,
to gather information about the hosts and ports on them in
the network. NMap uses a port scanning technique to find
vulnerabilities on victim hosts. Each scenario could reveal
information about the target network with different traces on
the dataset.

2) REPLAY ATTACK
A commonly used attack in control systems is the replay
attack, which involves exploiting valid network packets
captured during normal system operation by maliciously
retransmitting them [16]. In this type of attack, the attacker
sniffs the network passively to collect valid packets and then
actively sends the recorded packets frequently to other nodes,
disrupting the system’s normal behavior. Since replaying
valid packets at inappropriate times can lead to unexpected
results, this attack does not require in-depth knowledge
of network traffic packets. It is essential to note that this
type of attack can be highly damaging, even with minimal
information about the system.

We have implemented the replay attack using Scapy by
developing a Python script that executes the attack in two
phases. In the first phase, the attacker usesARP poisoning and
the MitM technique to sniff network packets for 15 seconds.
The attacker later replays these packets three times (45
Seconds) to disrupt the control system’s regular operation.
However, replaying the same messages is not possible
since every TCP connection depends on two 32-bit random
sequence numbers generated by the client/server, and packets
with duplicate sequence numbers will be rejected. As a
solution, a replay attack on a TCP connection reuses only
TCP payloads. Therefore, the attacker uses intercepted IP
addresses, ports, Modbus commands, and arguments to create
a new TCP connection to perform a replay attack.

3) DISTRIBUTED DENIAL OF SERVICE (DDoS) ATTACK
In order to disrupt the industrial operation, attackers can flood
the network or service with a large number of packets or

15https://www.ettercap-project.org/
16https://scapy.net/
17https://nmap.org/

service requests, resulting in a denial of service on the victim
component [40]. Meanwhile, using multiple attackers makes
the attack more effective. The DDoS target can be limited
bandwidth, storage, or computing power.

We leverage the network addresses collected during the
reconnaissance attack and the Modbus addresses gathered
by sniffing the network to conduct a DDoS attack. In this
attack, we use the ‘DDoSAgent’ class from ICSSIM to
generate a massive flood of reading requests to the PLCs. Our
implementation involves a script that spawns 800 instances
of the ‘DDoSAgent’ class, which relentlessly bombards the
PLCs with read requests for 60 seconds. This results in
significant delays in the ICS network communication during
the attack.

4) MitM ATTACK
In this scenario, the MitM attack strategy injects false
data into the controlling system. The false data injection
attack, highlighted as one of the most critical malicious
cyberattacks [41], involves injecting incorrect data into the
controlling system, compromising communication within
ICS components. Using the MitM technique, an attacker
intercepts or manipulates communications between two ICS
components while they believe they interact directly with
each other [42].
To execute this attack, the attacker first performs ARP

poisoning on the ICS component, redirecting network packets
to their node. Next, the attacker intercepts the packets and
modifies the Modbus write requests and read responses
by multiplying their values with a specific factor. The
attacker then sends the manipulated packets to the intended
destination. Finally, ARP messages are sent to the ICS
component to clear routing tables and erase any evidence of
the attack. A custom Python script based on the Scapy library
was used to carry out the attack. The attack was repeated
several times for a duration of 30 seconds each time, resulting
in a 10% error in the Modbus read response data.

C. FEATURE EXTRACTION
Existing literature in the network security domain captures
the network either in packet-based or flow-based format [20].
Although packet-based datasets provide detailed information
regarding network anomalies, AI analysis of these volu-
minous datasets is time-consuming, making it challenging
to develop an IDS. An alternative is using the network
flows format, which aggregates packets in a time interval
with certain properties. The typical shared properties are
network protocol, Source IP, Destination IP, Source Port, and
Destination Port [43]. The flow definition varies depending
on the testbed configuration. We also use a customized
definition of flow since our testbed uses theModbus protocol,
which always uses port number 502 as the default port.
Therefore, we define a flow as an aggregated record of
network packets within a time interval with a similar source
address, a destination address, and network protocol. Based
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TABLE 3. Flow features.

TABLE 4. General features.

on the time setting of our testbed, we considered 500 ms as
an interval for flows in this experiment.

To generate a network flow dataset, we developed the
ICSFlowGenerator tool using the Scapy library, which is
available in our public GitHub repository.18 The ICS-
FlowGenerator tool follows the procedure presented in
Algorithm 1. It iterates through network packets in a
dumped PCAP file and generates flow features based on the
interval option. The output is a flow file in CSV format,
containing flow-based features. For network flows that are
not TCP-based, the TCP payload features columns are empty.
In addition to TCP traffic, our dataset includes ARPmessages
to detectMitM attacks. To account for the lack of IP addresses
in ARP messages, we generate ARP flows based on their
MAC addresses.

The flow dataset contains 54 columns, including 50 fea-
tures and 4 label columns. Feature columns are categorized
into three categories: flow features, general features, and TCP
features. Table 3 presents the flow features, including the
source address, destination address, and network protocol.
Table 4 introduces the general features category with
23 features that are shared for all network flows regardless of
the protocol type. This dataset also contains 24 TCP header
features outlined in Table 5. These features are extracted from
TCP headers and contain statistics about Flags, time to live,
TCP window, and delays.

D. LABELLING
The goal of labeling is to provide information about the
context of data. Although the quality of labelling data is
not precisely defined, several articles have stressed the
importance of accurate labeling as a crucial component
of producing high-quality network traffic datasets [44].

18https://github.com/AlirezaDehlaghi/ICSFlow

Algorithm 1 - ICSFlowGenerator
Inputs: PcapFile, Interval
Output: FlowFile

1: procedure GenerateFlows
2: flows← ∅
3: foreach packet, timeinPcapFile

// discard LCC frames without protocol
4: if ‘type‘notinpacket.fields then
5: Conitnue
6: src← Min(packet.src, packet.dst)
7: dst ← Max(packet.src, packet.dst)
8: protocol ← packet.protocol
9: if flows[src, dst, protocol] then
10: flow← flows[src, dst, protocol]
11: else

// a flow is a collection of packets
12: flow← new flow(src, dst, protocol)

// flush flows that was open for windows lenght
13: if time− flow[0].time > Interval then
14: Print(flow) in FlowFile
15: flow← ∅
16: flow.add(packet, time)
17: flow.UpdateFeatures()
18: foreach flow in flows

// flush rest of flows
19: Print(flow) in FlowFile

Human-guided or automatic labeling are two possible
strategies to label datasets. In this study, automatic labeling
was employed since it is fast, requires little expertise, and is
easy to adapt for all types of attacks [17]. The data required
for training ML models are different depending on how we
define ML-based intrusion detection. In this article, we aim
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TABLE 5. TCP features.

TABLE 6. Label features.

to support two types of definitions: anomalous network flow
detection and intrusion detection.

In anomalous network flow detection, the network trace
dataset is labeled as normal or malicious, and the ultimate
goal is to classify network flows into different categories.
Several approaches exist to do this classification, including
binary classifications for attack detection or multi-class
classifications for attack identification. However, the labeled
dataset is always required as a training set in supervised
approaches or an evaluation set for unsupervised ML
methods, as record labels are available in some datasets
such as [11], [16], [24], and [26]. Automatically recognizing
anomalous network traces from normal traffic is challenging
[17]. To overcome this, we use two different strategies for
labeling; namely, Injection Timing (IT) [45] and Network
Security Tools (NST) [17]. In the former strategy, we consider
all network traffic during an attack anomalous, while
in the latter strategy, we only consider network traffic
coming from or going toward the attacker node as an
anomaly.

In intrusion detection, the ultimate objective is to find
attack occurrences by analyzing unlabeled datasets and
system logs. In other words, we do not look for anomalous
flows but rather for anomalous system behavior in a time
period. A log data of attack occurrence, along with unlabeled
network and system data, is required for this task to verify
the intrusion detection results. As pointed out in [28],
a combination of unlabeled network traces and the attack
log file forms an unsupervised or semi-supervised dataset for
attack detection.

By labelling network flows using IT and NST strategies,
we provide a dataset with the flexibility to perform all
described anomaly detections. The label features are listed
in table 6. Additionally, as a complement to the label
features using the IT and NST labeling strategy in binary and

TABLE 7. Attack log file.

multi-class values, we present the attack log file in Table 7 to
provide a ground for further analysis.

IV. DATASET ANALYSIS
This section will provide a detailed account of how we
implemented our experiment and conduct a thorough analysis
of the ICS-Flow dataset. The analysis will include statistical
information about the dataset records, an explanation of the
final format of the dataset files, and using 2D representations
to visualize the dataset.

The network configuration was optimized to accommodate
the burst of network packets caused by a DDoS attack.
To capture all packets, we increased the buffer size of the
Switch to 400MB and utilized TCPdump to capture traffic.
The testbed was operational for three hours, with the first
hour being attack-free. This period without attacks provided
normal samples for anomaly detection techniques that use
semi-supervised AI. Over the following two hours, attacks
were conducted randomly and intermittently. We included
gaps between attacks to prevent attack overlaps, considering
the time required for system recovery after each attack.

We captured 2GB of raw network traffic, comprising over
25 million packets. Subsequently, we analyzed this traffic
using ICSFlowGenerator and generated a final dataset of
45719 network flows. The detailed statistics on the labeled
flows using IT and NST labeling strategies are presented in
Table 8 and Figure 3. These statistics reveal that the number of
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TABLE 8. Flow statistics using IT and NST labeling strategies in ICS-Flow
dataset.

FIGURE 3. IT and NST Class labels distribution over ICS-Flow dataset.

attack flows identified using the NST approach is lower than
that of the IT approach, as the NSTmethod has stricter criteria
for classifying a flow as an attack. Furthermore, as part of
the experiment, we logged process variables using the PLCs’
logger. These log files are available in CSV format and can
aid researchers in identifying anomalies based on process
variable analysis. Lastly, the dataset comprises four files,
namely, the raw Pcap file, the labeled network flow dataset,
the attack log file, and process state variables, all of which are
publicly accessible in our repository.19

Visualizing dataset records helps us identify data patterns.
However, many normal network flows in this unbalanced
dataset obscure the attack network flows. To alleviate this
problem, we chose to visualize only the second half of the
dataset, which contains a mix of normal and attack records.
We applied two techniques to show multi-dimensional data
in the 2D diagrams. Firstly, we applied Principal Component
Analysis (PCA) [46], a popular technique for analyzing large
datasets with many features. Although PCA is primarily
used for reducing data dimensions, extracting the first two
or three features enables us to demonstrate data in 2D
or 3D presentation. Figure 4-A demonstrates that while
PCA helps visualize data, it does not clearly show data
clusters. Secondly, to visualize the high-dimensional data,
we employed t-Distributed Stochastic Neighbor Embedding
(t-SNE) [47], a statistical method known for its effectiveness
in dimensionality reduction. We conducted a grid search over
a range of perplexity values [30, 50, 100, 250, 500, 1000] and
chose a perplexity of 250 based on its optimal performance.
Figure 4-B illustrates the 2D display of the ICS-Flow dataset
using t-SNE with perplexity 250. Our analysis revealed
that DDoS, Port-Scanning, and MitM attacks form distinct
clusters. However, distinguishing between replay attacks
and normal attacks is challenging since replay attacks
are designed to mimic the behavior of a normal system.

19https://www.kaggle.com/datasets/alirezadehlaghi/icssim

Furthermore, IP-Scan attack records are merged with other
groups, which we will analyze and explain in the results and
discussion section.

V. ML-BASED ANOMALY DETECTION MODELS
We conducted two separate experiments with the dataset:
intrusion detection and identification. The objective of
the intrusion detection experiment was to identify attack
flows irrespective of their attack type. To achieve this,
we classified records into normal or attack flows. In the
intrusion identification experiment, we aimed to identify the
specific attack type, which could help devise an effective
mitigation strategy. The performance evaluation of the ML
methods on the ‘ICS-Flow’ dataset was conducted using a
four-phased methodology, depicted in Figure 5. In the rest
of this section, we will talk about actions performed in these
phases in detail.

A. DATA PREPARATION
During the dataset preprocessing phase, the following steps
were conducted:

1) In the dataset, certain rows have missing column
values due to the inability to compute TCP features
for non-TCP protocol flows like UDP flows. We have
replaced the missing values with a placeholder value of
‘0’ to address this.

2) For the attack detection and identification experiments,
the ‘NST-B-Label’ and ‘NST-B-Label’ columns were
chosen as output variables, respectively.

3) The sender address (‘sAddress’) and receiver address
(‘rAddress’) columns were excluded from the exper-
iment to prevent the attack detection task from
becoming trivial due to using a fixed IP for the attacker.

4) The start time (‘start’ and ‘startOffset’) and end time
(‘end’ and ‘endOffset’) columns were eliminated,
as they solely entail temporal data and do not offer any
valuable understanding of the cyberattacks.

5) The dataset was partitioned into three subsets: training,
validation, and test sets, which comprised 50%, 20%,
and 30% of the data, respectively.

6) We utilized the ‘Min-Max’ normalization method
described in Eq. 1 to normalize the numerical features.
Here, Min and Max represent a feature’s minimum and
maximum values in the training set, respectively.

VNorm =
V −Min
Max −Min

(1)

B. FEATURE SELECTION
During the feature selection phase, we utilize the Maximum
Relevance and Minimum Redundancy (MRMR) technique
[48] to reduce the dimensionality of our data. MRMR
assigns a score to each feature based on its relevance and
redundancy with other feature columns. To constrain the size
of our feature set, we only select features with scores above
0.07. This threshold was determined by iteratively testing
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FIGURE 4. 2D presentation of ICS-Flow dataset records using PCA and t-SNE techniques.

FIGURE 5. Methodology to assess ML-methods.

TABLE 9. MRMR score of selected feature.

various thresholds and measuring the model’s accuracy
on the validation set. Note that many of our parameters,
such as ‘sBytesAvg’ and ‘rByteAvg’, are dual counterparts;
Therefore, selecting one requires selecting its corresponding
dual parameter. Table 9 presents the 23 features that have been

TABLE 10. Hyper-parameters search space of ML algorithms.

selected for our experiment, along with their corresponding
MRMR scores.

C. MODEL CONSTRUCTION
In the third phase, we apply supervised ML models for
the flow classification. During this phase, we use three off-
the-shelf classification techniques, which have shown better
performance in previous studies [49], [50]: Decision Tree
(DT), Random Forest (RF), and Artificial Neural Networks
(ANN). We also optimize the accuracy of these algorithms
by giving effective values to their hyper-parameter settings
and measuring their performance on the validation set.
Table 10 summarizes the examined hyper-parameters for each
approach.

D. MODEL VALIDATION
We chose not to balance the classes in the dataset we
generated, as we could not identify a realistic distribution
of attacks in operating ICSs. Nevertheless, to handle the
unbalanced data, we employed performance metrics that
could effectively measure the model’s precision on such data.
Hence, in addition to accuracy, we employed metrics such as
accuracy(Eq. 2), recall (Eq. 3), precision (Eq. 4), and F1-
score (Eq. 5), and confusion matrix to showcase how well
the ML methods performed on unbalanced data.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(2)
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TABLE 11. Hyper-parameters of ML algorithms.

TABLE 12. Test results of three ML-methods for attack detection.

Recall =
TP

TP+ FN
(3)

Precision =
TP

TP+ FP
(4)

F1− Score =
2

1
Precision +

1
Recall

(5)

where FP= False Positive, FN = False Negative, TP= True
Positive, and TN = True Negative.

VI. RESULTS AND DISCUSSION
The results for ML-based intrusion detection using the
optimal hyper-parameter setup (Table 11) are shown in
Table 12. While all algorithms identify attack flows with
greater than 99.4% accuracy, the RF technique outperforms
the others with 99.5% accuracy and a higher F1-score.
Despite the 98.2% precision of the RF algorithm in detecting
attacks, even a low number of false alarms can impose high
disruption costs in system operation.

In another experiment, we assessed the performance ofML
methods for attack identification, and the results are presented
in Table 13. The RF method outperformed the others with an
accuracy of 98.4%. However, the ML methods exhibited a
decrease in accuracy due to their inability to recognize certain
attack types. Although all three methods remained above
98.1% accuracy, there was a significant decline in F1-score,
which is a more reliable assessment metric when dealing
with imbalanced classes. Despite this, the ML methods
effectively identified normal flows, as evidenced by their F1-
score exceeding 0.99. The high F1-score for DDoS attack
identification was expected since DDoS flows are easily
detectable by monitoring massive packets and connections
during the attack. Conversely, the F1-scores for IP-scan,
Port-Scan, MitM, and Replay attack indicate that accurately

TABLE 13. Test results of three ML-methods for attack identification.

classifying flows into the correct attack types is a non-trivial
task, especially for IP-Scan with an F1-score of only 0.52.

Figure 6 depicts the RF classifier’s confusion matrix to
analyze misclassification samples. The majority of mistakes
are caused by either 1) attack records that were mistakenly
classified as IP-Scan attacks and 2) confusion between
records of replay and MitM attacks. After conducting an
in-depth technical analysis of the Port-Scan, Replay, and
MitM attacks, it was discovered that they employ the ARP
poisoning technique as part of their process, which is
remarkably similar to the IP-Scan process. This similarity
in process results in the misclassification of some flows.
Additionally, both the Replay and MitM attacks follow a
same strategy for directing packets to the attacker node.
Although theMitM attacker node alters routed packets, while
the replay attacker node simply records packets temporarily,
both attacks have the same routine for route redirection,
causing similar impacts on network traffic.

Finally, the findings in this section show that ML methods
can detect cyberattacks with high accuracy. However, deter-
mining attack types is not always straightforward. Individual
flow analysis cannot differentiate between flows of identical
processes used in different attack procedures. Although the
impacts of various cyberattacks on network parameters are
sometimes remarkably similar, assessing the network status
before and after individual records can provide a more
accurate approximation of the type of prospective attack
on the system. To tackle the mentioned problem, analyzing
the predecessor and successor is a promising technique,
which is the primary goal of sequence anomaly detection
techniques.

VII. THREATS TO VALIDITY
To enhance the validity of our research against potential
challenges, we have adopted the well-established guidelines
outlined in [51]. As part of this process, we have identified
potential validity threats and implemented appropriate miti-
gation strategies to address them.
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FIGURE 6. Confusion matrix of RF model for attack identification.

A. THREATS TO CONSTRUCT VALIDITY
In order to simulate cyber threats, we had to select a
limited number of attacks. We focused on attacks commonly
referenced in previous studies, such as those cited in [16],
[25], and [32]. These attacks are also recognized as common
cyberattacks on ICSs by globally-accessible knowledge
bases, such as the ’MITRE ATT&CK’20 and reports from
the European Union Agency for Cybersecurity (ENISA)
[38]. Moreover, while there is no standard approach or
tool for implementing cyber attacks, we simulate attacks
using common and open-source tools like Scapy and NMap.
This decision was made to reduce the possibility of attack
simulation errors, which could compromise the construct
validity of our results.

Attack implementation in our analysis assumes that the
attacker has already gained access to the control zone
network. This type of access can be obtained using various
methods, including physical access to network equip-
ment, hijacking ICS wireless communications, or exploiting
infected ICS components with malware, as described in [35].
For example, malicious software, such as trojans and viruses,
can enable unauthorized operations on the ICS. In addition,
attackers may establish backdoors or use remote access
software to access the control zone network remotely.

B. THREATS TO INTERNAL VALIDITY
To mitigate any potential bias towards fake results, we took
measures to ensure the integrity of our findings. Expressly,
we set aside 30% of the data as a test dataset and allocated
50% of the data for training themodel and 20% for validation.
This rigorous approach allowed us to avoid any potential
bias introduced by hyper-parameter tuning, and the results
presented in Section VI can be considered reliable.

Given the lack of a realistic distribution of carried attacks
in operating ICSs, we deliberately decided not to balance the
classes in our generated dataset between normal and under-
attack samples. Instead, we utilized various performance
metrics such as F1-score, precision, recall, and confusion

20https://attack.mitre.org/techniques/ics/

matrix to assess the efficacy of our ML methods on
unbalanced data. This approach allowed us to accurately
evaluate the performance of our model without artificially
manipulating the data distribution.

C. THREATS TO INTERNAL VALIDITY
We have made significant contributions to the ICSSIM
Framework [35] by enhancing it to create a network
dataset that other researchers can utilize to develop IDSs.
Our ICS-Flow dataset was created by identifying relevant
network properties that could be employed in other ICSs to
detect intrusions. To facilitate the creation of this dataset,
we developed an open-source ICSFlowGenerator tool that
can calculate network flow features from raw network traffic
data. These features can be extended or utilized in similar
research to convert network traffic into a network flow
dataset. Furthermore, the intrusion detection ML models
we have described can be retrained with new environment
network data for different ICSs. This opens up opportunities
for other researchers to build upon our work and adapt it to
their use cases.

VIII. CONCLUSION
The ICS-Flow dataset is introduced in this paper as a bench-
mark for validating ML-based network intrusion detection
techniques in ICSs. The dataset was created using ICSSIM
Tools to set up a virtual ICS testbed for a sample bottle-filling
factory. To simulate realistic attacks on ICSs, we employed
various common attack types, drawing from observations
in ‘ENISA’ and ‘MITRE ATT&CK’. We recorded the
ICS’s network packets and physical process state vari-
ables during normal and attack scenarios. To handle the
computational complexity of analyzing individual network
packets, we developed the ICSFlowGenerator tools as a
free and open-source solution for processing captured raw
network data into a network flow dataset. This tool can
analyze network packets and produce network flows that
include 50 different network features, such as flow features,
general features, and TCP features. We also labeled the
network flow records using various strategies to facilitate
supervised learning studies and provide a foundation for
testing unsupervised approaches. We have made the raw
network traffic, the flow dataset, and log attack files publicly
available for research in this field. Finally, we evaluated the
dataset’s applicability for intrusion detection validation using
several supervised ML techniques, including ANN, DT, and
RF.

Implementing IDS in industrial systems poses a number
of challenges, with false alarms being the most significant
obstacle. These false alarms can lead to costly interruptions in
regular system operations. To mitigate this issue, a promising
direction for future research is to explore the use of
extended monitoring periods or sequence anomaly detection
techniques, which have the potential to reduce the incidence
of false alarms. Another challenge associated with IDS
implementation is the unpredictability of attacker techniques.
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Attackers may use novel techniques that cause different
effects on network packets, making it impossible to detect
them using supervised ML. For this reason, investigating
unsupervised binary and multiclass classification is another
direction for future work.

Moreover, it is worth noting that network attacks not
only impact network traffic but can also modify physical
processes. As the ICS-Flow dataset includes both types
of data, a potential direction for future research would
be to integrate network monitoring with physical process
monitoring to identify cyberattacks.
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