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ABSTRACT Precise estimation of crop yield is crucial for ensuring food security, managing the supply
chain, optimally utilizing resources, promoting economic growth, enhancing climate resilience, controlling
losses, and mitigating risks in the agricultural industry. Accurate yield prediction depends upon several
interactive factors, including crop genotype, climate conditions, soil fertility, sowing & irrigation plan, and
crop management practices. For this purpose, remote sensing data and machine learning (ML) algorithms
are emerging as indispensable tools that can significantly increase farm productivity while using minimal
resources and reducing environmental impact. In this context, the study presents a framework for wheat
grain yield prediction using three regression techniques including RandomForest, XtremeGradient Boosting
(XGB) regression, and Least Absolute Shrinkage & Selection Operator (LASSO) regression. Various aspects
of the three models are investigated and results are compared to explore the optimal technique. Drone-based
multispectral sensors are employed to acquire data from three wheat experimental fields with three different
sowing dates (SD1, SD2, SD3), and the effect of the seeding plan on crop yield is examined. The prediction
performance of models is assessed at different growth stages of the crop using several evaluationmetrics. The
results show that LASSO achieved the highest performance in April with the coefficient of determination
(R2) of 0.93 and mean absolute error (MAE) of 21.72. The average annual predicted yield is 260.54 g/m2,
201.64 g/m2, and 47.29 g/m2 in the wheat field with SD1, SD2, and SD3 respectively. This study can help
farmers and agronomists to make informed decisions about crop management activities such as planting &
harvest plans, and resource handling.

INDEX TERMS Regression, wheat yield, remote sensing, machine learning, food security, unmanned aerial
vehicle (UAV), vegetation indices (VI’s).

I. INTRODUCTION
According to the World Food Programme (WFP) the number
of people facing high levels of food insecurity in 2023 more
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than doubled the number in 2020. The war in Ukraine,
supply chain disruptions, the continued economic fallout of
the COVID-19 pandemic, heat waves, heavy rainfall, and
droughts due to global warming are all factors pushing
food prices to all-time highs. Without appropriate solutions,
falling crop yields will push many people into poverty. As an
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example, approximately 43 million people in Africa alone
may fall below the poverty line by 2030. Accurate and timely
prediction of crop yields of large farmlands using innovative
technologies such as UAVmonitoring, multi-spectral sensors,
satellite imagery analysis, and use of machine learning tools
is a promising area of research to tackle world food insecurity.
Recognizing the importance of this, the upcoming USA farm
bill - a massive piece of legislation that funds agricultural
programs budgeted at more than USD $1 trillion is expected
to direct billions of dollars to such solutions that help
farmers conserve resources, fight climate change or cope with
disasters.

Wheat is the most widely grown crop in the world, owing
to its vital role in global food security and contribution
to the national economy of a country. For 35% of the
world’s population, wheat-based foods serve as their primary
source of nutrition crop [1] and contribute more calories
& protein to the global diet than any other grain crop.
There are various factors that significantly affect the global
food supply chain, such as climate change, population
growth, urbanization, market trends, pandemics, regional
conflicts, plant diseases, availability & management of
agricultural resources, etc [2]. In this perspective, timely yield
prediction of wheat yield prior to harvesting can help farmers
and other stakeholders to plan and implement necessary
interventions for mitigating any adverse impact and ensuring
food security. For this purpose, several techniques have
been developed, including process-based simulation models
and data analysis-based statistical algorithms employing
multi-source data [3]. Among these techniques, Machine
Learning (ML) is a powerful statistical technique that
delivers promising results due to its ability to autonomously
learn complex relationships and solve complicated real-
world problems. Random Forests (RF), Linear Regression,
Least Absolute Shrinkage and Selection Operator (LASSO),
K-Nearest Neighbor (KNN), Ridge Regression, Support
Vector Machine (SVM), Gradient Boosting algorithms, Light
Gradient Boosting (LightGBoost), Convolutional Neural
Network (CNN), and Deep Neural Network (DNN) are
well-known ML techniques for yield prediction [4], [5].
For the prediction of crop yield using ML techniques,

data acquisition is a critical preliminary phase that substan-
tially impacts the quality and accuracy of the prediction.
In this context, remote sensing platforms are commonly
employed to acquire optical, multispectral, and hyperspectral
data. Analysis of this data provides useful insights about
crop phonology and forms the basis for estimating crop
yield [6], [7]. Commonly used remote sensing platforms
include satellites, specially equipped planes, and unmanned
aerial vehicles (UAVs). Each platform collects data with its
own specific spatial & temporal resolution and acquisition
rate [8]. Typically, the satellites provide low spatial resolution
data with a fixed temporal resolution, which limits their
use for certain agricultural applications. Recently, UAVs
and drones have become promising substitutes for remote

sensing satellites as these can collect high-resolution data
with flexible timings, making these more appropriate for
crop yield prediction [9] Following data collection, data
pre-processing is the next critical process where the collected
data is reviewed, formatted, and prepared for further analysis.
It includes noise removal, dealing with the inconsistent &
missing values, data augmentation & aggregation, feature
selection & creation, and discretization etc [10].
The remote sensing data, containing hyperspectral and

multispectral information, is used to compute different
vegetation indices (VIs) which help to capture several
parameters related to crop phenology and growth. These
VIs are derived from the measurement of reflected solar
radiations across the electromagnetic spectrum that represent
specific vegetation characteristics. The most common VIs
are the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation
Index (SAVI), Leaf Area Index (LAI), Infrared Percentage
Vegetation Index (IPVI), Normalized Difference Red Edge
Vegetation Index (NDRE), Normalized Difference Water
Index (NDWI), Atmospherically Resistant Vegetation Index
(ARVI), Wide Dynamic Range Vegetation Index (WDRVI),
Green Ratio Vegetation Index (GRVI), and Green Chloro-
phyll Vegetation Index (GCI) [8], [11], [12]. Subsequently,
the computed VIs are utilized as input for the ML algorithm
to perform a particular task of interest including yield
prediction. Duan et al. [13] used UAV drone imagery to
compute several VIs including NDRE, NDVI, GNDVI, EVI,
etc, and then employed linear regression for the estimation
of rice yield. The results show that NDVI and GNDVI are
the most appropriate VIs for rice yield prediction with an
estimation error of less than 10%. In another study [14], UAV
multispectral data is used to compute WDRVI, NDVI, and
GRVI for maize yield prediction. The results indicate that
WDRVI is the most relevant VI to predict maize yield with
the nitrogen application of 250-300 kg/ha.

In addition to the ML techniques, the usage of deep
learning (DL) techniques is also becoming increasingly
popular in the agriculture sector where deep CNN and
long short-term memory networks (LSTM) are commonly
employed architectures. Nevaruori et al. [15] used a deep
CNN model with six layers to predict the wheat yield
using UAV multispectral and optical data. The model was
able to accurately predict yield with a mean absolute error
of 484.3 kg/ha and a mean absolute percentage error of
8.8%. Similarly, Wang et al. [16], used LSTM to predict
the wheat yield using LAI where the MSE was found to
be 522.3 kg/ha with a coefficient of determination (R2)
as 0.87. Cao et al. [17] explored the usage of random
forest, deep neural network, LSTM, and 1D CNN for wheat
yield prediction and compared results obtained from the
application of ML and DL techniques. The results reveal that
all aforementioned models have the predictive capability to
estimate the winter wheat yield with the R2 ≥ 0.85 and
RMSE ≤ 768 kg/ha.

VOLUME 11, 2023 108641



U. Shafi et al.: Tackling Food Insecurity Using Remote Sensing and ML

FIGURE 1. Wheat grain yield prediction workflow.

Recent studies highlight the increasing trend of utilizing
data from multiple sources to enhance predictive perfor-
mance. For this purpose, data from heterogeneous sources
such as meteorological data, soil-related data, and remote
sensing data are exploited. In [18], wheat yield is predicted
using multi-source data including remote sensing data, cli-
mate data, and soil data. For this purpose, eight different ML
techniques are applied to the collected data, where Gaussian
process regression (GPR), SVM, and Random Forest (RF)
achieved the highest performance with prediction error <
10%. Moreover, the predictive performance is evaluated in
the four wheat growth stages to find the best time for
predicting the crop yield. Similarly, in [19], a novel approach
for crop yield prediction is presented that integrates data from
several sensors (RGB, multi-spectral, and thermal infrared)

installed on UAV platform which collects extensive data sets
related to plant health, growth patterns, and environmental
variables. Subsequently, different ML models are applied to
combined data including Random Forests, NN, SVM, Cubist,
and Ridge Regression for grain yield estimation. The key
finding of the study is that multi-sensor data fusion-based
yield prediction performed better than individual-sensor data.
In [20], crop yield is predicted using MODIS data along with
the twelve different climate variables using ML techniques
including LASSO, SVM, NN, and FR regression. The results
indicate that SVM outperformed with the R2 of 0.79. Another
study [21] presents a framework to predict crop yield using
data collected from different sources including environmental
data, Sentinel-2 data, and yield data. The results show that RF
achieved the highest accuracy with the R2 of 0.91.
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It is observed from the literature that the utilization of
data from diverse sources has become common. Moreover,
the significant parameters related to crop yield are recorded
during the entire growth cycle to perform yield prediction.
However, a few studies have investigated the different growth
stages to find the most appropriate stage for precise yield
estimation. Furthermore, a notable gap exists in the literature
pertaining to the influence of sowing dates on crop production
and its implications for crop productivity enhancement.
While various studies have examined predictive models
based on comprehensive datasets, there is a limited focus on
the temporal aspect of crop growth, specifically the effect
of different sowing dates on subsequent yield production.
This gap is particularly significant because the timing of
crop sowing has a direct impact on crop development,
phenology, and yield. In this context, the proposed study
aims to bridge this gap by introducing a framework that
incorporates heterogeneous data and predictive models, and
also explicitly investigates the impact of different sowing
dates on crop yield. For this purpose, multispectral images
of the crop field are captured throughout the growth cycle
and various VIs are computed to assess crop phenology.
Additionally, field surveys are performed to record several
agronomic parameters to analyze the behavior of crop
growth. Subsequently, different predictionmodels are applied
to the collected datasets and further evaluated for different
growth stages to discover the time window that optimally
captures the crop progression. The step-wise workflow of
the proposed framework for wheat grain yield prediction is
shown in Figure 1.

The objectives of this research are listed below:

1) Feature Selection for Prediction: To select the best set
of predictors for enhancing the prediction performance

2) Optimal Time for Prediction: To identify the suitable
time window for accurate wheat yield prediction

3) Best Regression Model Selection: To identify the
most appropriate prediction model for wheat yield
estimation.

4) Optimal Sowing Timing: To explore the effects of
different sowing dates on crop yield and find the best
time for crop sowing.

In light of these objectives, the research endeavors to
provide valuable insights into the optimization of wheat yield
prediction by leveraging different data sources, temporal
considerations, and robust predictive modeling techniques.

II. MATERIALS AND METHODS
A. STUDY AREA AND EXPERIMENTAL DESIGN
This research is based on data collected from the wheat exper-
imental field of the National Agricultural Research Centre
(NARC), located in Islamabad, Pakistan (33.6692481◦ N,
73.1076928◦ E). The experimental field consists of three
main plots where wheat is grown with three different sowing
dates (SD) including (i) SD1: Nov 15, 2021, (ii) SD2:
Dec 15, 2021, (iii) SD3: Jan 15, 2022. Each of these plots
is further divided into three replications and each replicate

contains plots of 15 different wheat varieties of area (1.5m
X 6m). Wheat seeds of fifteen different varieties (V1,
V2, . . .V15) are planted at the rate of 112.5 g/plot in every
replicate. Hence, there are 45 plots for each SD organized
in three replicates and each replicate contains 15 plots
corresponding to 15 varieties of wheat seed to minimize
statistical error for the study. The experimental setup utilized
a randomized complete block design (RCBD) as illustrated in
Figure 2.

B. DATA PREPARATION
1) DATA COLLECTION
For the purpose of wheat yield estimation, data pertaining
to multispectral bands and various agronomic traits are
collected during the whole growth cycle of the crop. The
multispectral data is captured by DJI Phantom 4 drone
mounted with the Sentera multispectral imager that acquires
red and near-infrared (NIR) bands. The drone is employed to
collect aerial imagery of the field using a flight pattern that
is fully automated and designed using customized Sentera
‘FlightAgent’ software. For data acquisition, multiple flights
are carried out at the height of 80ft with more than 80%
overlapping of ground coverage during days of clear skies
and minimal wind speeds, between 10:00 am to 11:00 am
local time. Drone data collection was initiated in February
2022, coinciding with the ‘single shot stage’ of the crop sown
under SD3, and concluded during the ‘ripening stage’ of
the crop sown under SD1. Subsequently, data was acquired
via eight drone sessions on the following dates: (i) February
10, 2022, (ii) February 21, 2022, (iii) March 2, 2022,
(iv) March 11, 2022, (v) March 17, 2022, (vi) March
31, 2022, (vii) April 8, 2022, (viii) April 15, 2022. After
capturing multiple individual images covering the entire
experimental field, the raw images are processed to generate
a mosaic using WebODM which is an open-source software
developed by OpenDroneMap [22]. This powerful tool is
capable of generating point clouds, georeferenced models,
elevation models, and 3D maps. It provides support for
multiple processing engines, enhancing the efficiency of
UAV and satellite image processing using Structure from
Motion (SfM) and Multi-View Stereo (MVS) techniques.
The software employs a web-based interface, simplifying
the utilization of complex image processing algorithms.
Its primary objective is to analyze extensive datasets and
transform photographs into accurate georeferenced outputs.
These outputs find applications in diverse fields like agricul-
ture, urban planning, and environmental monitoring, among
others.

After generating the ortho mosaic images by WebODM,
the resultant images are further segmented into 135 polygonal
shapes in order to extract valuable insights for the crop
sown in each plot. Additionally, several ground surveys
were performed during the month of March 2022 and April
2022; where the wheat crop undergoes different development
stages with respect to their sowing dates. Subsequently, the
parameters related to wheat yield are recorded including
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FIGURE 2. Experimental design (a) Study area, (b) Experimental field layout.

FIGURE 3. Statistical data distribution of all computed VIs corresponding to different sowing dates SD1, SD2, and SD3 in the
month of February 2022.

the number of tillers/m2, bundle weight/m2, and grains
weight/m2, where all collected data is used to predict the
wheat yield.

2) DATA PREPROCESSING
It is an essential phase that involves transforming the raw data
into an appropriate format prior to the application of advanced
data analysis techniques. It mainly focuses on data cleaning,

feature engineering, data scaling, dealing with categorical
features, data integration, and feature selection [23], [24].
In order to enhance the quality of the data for regression
analysis, we performed the following preprocessing steps
considering our dataset:

• Data Cleaning: It is a mandatory phase prior to
applying the regression technique and leads to the high
performance of the ML model. For this purpose, the
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FIGURE 4. Statistical data distribution of all computed VIs corresponding to different sowing dates SD1, SD2, and SD3 in the
month of March 2022.

collected data is deeply analyzed to check for outliers,
missing values, noise, and inconsistencies in the data
points. Observed anomalies in the dataset are removed
prior to the application of ML.

• Feature Engineering: It involves the manipulation of
data to extract underlying significant patterns using
domain knowledge that substantially impacts the perfor-
mance of ML algorithms. For this study, nine features
are generated from the collected data including six
VIs, crop growth stage, no. of tillers/m2, and bundle
weight/m2. Subsequently, these features are fed into
regression models to predict the grain yield.

• Data Scaling: It refers to transforming the data to fit
inside a certain range to improve the effectiveness of the
MLmodel. Later, data scaling is applied to the computed
features to fit them into a specific scale of [0-1].

• One hot Encoding: It is a technique used to deal with
the categorical features in the dataset as discussed in
[25], [26]. In the collected feature set for wheat grain
yield prediction, the growth stage is a categorical feature
that has been transformed into a numerical feature using
one-hot encoding.

• Feature selection: It is an important preprocessing phase
that boosts the performance of the ML regression model
and prevents overfitting. In this step, a subset of the most
relevant features is selected from the large feature set to
perform regression analysis. The feature set created for
the wheat grain yield prediction contains nine features.

The top ‘k’ most important features, out of the complete
feature set, are selected by computing the correlation of
each feature with the target variable [27].

C. VEGETATION INDICES (VIs)
Vegetation Indices (VIs) are derived from the measured
values of surface reflectance at two or more wavelengths
to emphasize a specific characteristic of vegetation. The
multispectral data collected by the drone is used to compute
several VIs including NDVI, SR, IPVI, SAVI, OSAVI, and
TSAVI by using relationships and hyperparameters as given
in Table 1.
Figure 3 shows various VIs, computed in the month of

February, for the crop sown on different dates i.e., SD1, SD2,
and SD3. It is evident from Figure 3 that all computed VIs
have higher values in the wheat field with SD1 where the
crop is in the ‘stem elongation’ stage. On the other hand,
the crop with SD2 is in the ‘tillering stage’ and all VIs have
slightly smaller values as compared to the early planted wheat
crop with SD1. However, all VIs have very small values in
the wheat field with SD3 which is still in the ‘single shot’
stage. It is also evident from these plots that the wheat crop
with SD1 is in the ‘50% heading’ stage, the wheat crop with
SD2 is in the ‘booting’ stage, and the wheat crop with SD3
is in the ‘stem elongation’ stage. Subsequently, the variation
in all computed VIs with respect to the crop growth can be
visualized in Figure 4 which lists observed parameters in the
month of March. Likewise, Figure 5 depicts the values of VIs
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FIGURE 5. Statistical data distribution of all computed VIs corresponding to different sowing dates SD1, SD2, and SD3 in the
month of April 2022.

in the month of April where the wheat crop with SD1 is in
the ‘50% ripening’ stage, the wheat crop with SD2 is in the
‘milk development’ stage, and wheat crop with SD3 is in the
‘100% heading’ stage.

D. REGRESSION TECHNIQUES
After preprocessing the collected data, different regression
techniques are employed to predict the grain yield of the
wheat crop. These techniques are discussed in the following
subsections:

• Least Absolute Shrinkage and Selection Operator
(LASSO): It is a popular regression technique that uses
a statistical approach to determine the linear relationship
between features and the target variable [34]. To prevent
overfitting and optimize feature selection, a penalty term
is incorporated into the cost function that incentivizes
the model to choose a subset of the most significant
features. The goal of LASSO regression is to find the
set of predictor variables that strongly influence the
output while penalizing the magnitude of the regression
coefficients to avoid overfitting. This is accomplished
by employing a penalty term that represents the total of
the absolute values of the regression coefficients. In this
way, regression coefficients having the least relevance
to output are effectively set to zero, removing the
corresponding predictors from the model [35]. LASSO
is particularly useful for high dimensional data having
a large number of predictor variables and some of these

may not be relevant for predicting the outcome variable.
In this research study, the LASSO regression is applied
with the regulation parameter ‘alpha’ set to 0.1.

• Random Forest: It is a well-known decision tree-based
ensemble technique used for ML classification and
regression problems [36]. The basic idea is to develop
several decision trees, where each decision tree is
developed utilizing a subset of features and a random
sample of data. In order to predict the target value, each
decision tree generates an output and the final value
is evaluated by aggregating all generated outputs [37].
Random forest is considered a robust ML model that
can deal with noisy data and multiple features without
overfitting. To predict wheat grain yield, the random
forest is applied with the number of the estimator set to
100 while the ‘squared_error’ function is employed for
assessing the quality of the split.

• Xtreme Gradient Boosting (XGB) Regression: It
is another powerful ensemble learning-based ML
model employed for both regression and classification
[38], [39]. This technique combines different weak
models (commonly decision trees) to generate a stronger
model. It iteratively builds and combines decision trees
to reduce the loss function during each iteration in
such a way that the new model attempts to rectify
the errors of previous decision trees. In order to find
the best hyperparameters of XGB, ‘GridSearchCV’ is
used where the model is tested against several values
and combinations of hyperparameters. Subsequently, the
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TABLE 1. Vegetation indices.

XGB regression model with ‘n_estimator’ value of 100,
and a ‘max_depth’ value of 3 is used to predict grain
yield.

In order to evaluate the performance of the regression mod-
els, the following commonly employed evaluation metrics
have been used [40]:

• Coefficient of determination (R2): It is a dimensionless
metric in the range from 0 to 1 that is used to assess
the ability of the regression model to predict the
outcome. It represents the percentage of the variance
in the dependent variable (target variable) that can
be predicted from the independent variables (feature
variables). A higher value of the coefficient implies
better prediction performance. It is computed by using
Eq 1.

R2 = 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(1)

where n is the number of data points, ŷi is the predicted
value of the dependent variable for the ith data point, yi
is the actual value of the outcome for the ith data point,
and ȳ is the mean value of the dependent variable.

• Mean Absolute Error (MEA): This metric assesses the
performance of the regression model by measuring the

average absolute deviation between the predicted values
and the actual value. It is evaluated using the Eq 2.

MEA =
1
n

n∑
i=1

|yi − ŷi| (2)

where yi is the actual value of the output variable for
the ith data point, ŷi is the predicted value of the output
variable for the ith data point, and n is the number of
observations in the dataset.

• Root Mean Square Error (RMSE): It is a commonly
used statistical parameter to evaluate the prediction
performance of the regression model. It is based on the
square root of the average squared difference between
the predicted values and the actual values of the output
variable. It is calculated by using Eq 3.

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (3)

where yi is the actual value of the output variable for the ith
data point, ŷi is the predicted value of the output variable for
the ith data point, and n is the number of observations in the
dataset.
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FIGURE 6. Correlation of input features with the target variable in
February 2022.

FIGURE 7. Correlation of input features with the target variable in
March 2022.

III. RESULTS
In order to predict the wheat grain yield, three regression
techniques are selected including random forest, LASSO, and
XGB. All three techniques are commonly employed in sit-
uations having multiple features while avoiding overfitting.
The collected dataset comprised nine features including the
number of tillers, bundle weight, SR, SAVI, OSAVI, IPVI,
NDVI, TSAVI, and growth stages. The target feature for
prediction was grain weight.

To analyze the relationship between the selected feature
variables with the target variable, the correlation matrices are
created for the three different growth stages of the wheat
crop as shown in Figure 6, 7, and 8. However, the values
of correlation matrices vary according to the growth stage
of the crop. In the month of February, all computed VIs
are highly correlated with the target variable; whereas the
values of correlation coefficients start to decrease in March
and April. These variations in the values of VIs are attributed
to the chlorophyll content in the vegetation which keeps on
increasing until the wheat crop reaches the grain-filling stage
and then starts declining for the rest of the growth cycle.

FIGURE 8. Correlation of input features with the target variable in
April 2022.

It is noteworthy that the dataset collected in February does
not include the parameters ‘Bundle weight’ and ‘Number of
tillers’, as these particular parameters were not recorded until
March 2022.

It is evident from Figure 6, 7, 8 that the feature variables
have correlations with each other leading to multicollinearity
which makes it difficult to determine the individual effect of
the features on the target variable. To address this problem,
correlation statistics are used to compute ‘k’ most important
and relevant features. For this purpose, the correlation of
each feature variable with the target variable is computed and
converted to an F-value representing the feature importance
score. Figure 9 shows the F-value of all numerical features in
different growth stages of the wheat crop.

The features with the highest F-value are selected for
regression, whereas the rest of the features are eliminated
from the model to avoid overfitting. In the month of February,
the selected features were ‘NDVI’, ‘IPVI’, ‘SAVI’, ‘TSAVI’,
and ‘OSAVI’; where the remaining features have been not
considered. However, in the month ofMarch, ‘bundle weight’
has the largest F-value followed by ‘SR’ and ‘TSAVI’.
The remaining VI features have an equal F-value; where
‘NDVI’ is selected after assessing its effect on regression.
Likewise, ‘Bundle weight’, ‘No of tillers’, ‘Growth stage
heading complete’, and ‘NDVI’ are the selected features for
the month of April. The feature selection phase addressed
the first objective of the research i.e., to select the best set
of predictors for enhancing the prediction performance.

After feature selection, the regressionmodels are applied in
different growth stages of wheat crops and their performance
is evaluated using three metrics: R2, MAE, and RMSE.
For this purpose, the dataset comprising all sowing dates
is divided into training and testing splits with a ratio of
7:3 respectively. Table 2 shows the performance comparison
of the regression models on the data collected in February
2022; whereas Figure 10 illustrates the deviation between
the predicted and actual wheat grain yield on a testing split
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FIGURE 9. Feature selection using correlation statistics (a) February 2022 (b) March 2022 (c) April 2022.

FIGURE 10. Deviation between the actual and the predicted grain yield in February 2022.

TABLE 2. Performance comparison of regression techniques applied to
the data collected in February 2022.

containing 37 data points. It is apparent from Table 2 that
LASSO generates the best prediction results with R2 of
0.92, MAE of 27.95 g/m2 and RMSE 33.32 g/m2. However,
Random Forest performed better than XGB with R2 of 0.90,
MAE of 28.49 g/m2.
Similarly, Table 3 presents the performance comparison

of regression techniques applied to the dataset collected in
March 2022. Best results are again generated by LASSO
giving the highest R2 of 0.93 with the MAE of 22.91 g/m2

and RMSE of 31.06 g/m2. Figure 11 shows the predicted
grain yield versus actual grain yield against three regression
techniques based on observations made in the month of
March.

TABLE 3. Performance comparison of regression techniques applied to
the data collected in March 2022.

TABLE 4. Performance comparison of regression techniques applied to
the data collected in April 2022.

Table 4 compares the results of three regression models on
the basis of data collected in April 2022. The predicted grain
yield for the various regression techniques versus actual yield
is shown in Figure 12. These results clearly demonstrate that
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FIGURE 11. Deviation between the actual and the predicted grain yield in March 2022.

FIGURE 12. Deviation between the actual and the predicted grain yield in April 2022.

FIGURE 13. Contribution of each feature using SHAP value on data collected in February 2022.

LASSO once again performed better than Random Forest and
XGB for the dataset from the month of April.

In order to evaluate the influence of individual features
on regression performance, the widely used SHAP (Shap-
ley Additive explanations) method is employed [41]. The
SHAP feature importance graphs provide a comprehensive
insight into the model’s interpretability and sensitivity to
individual features and their contributions to predictions.
To quantify the performance of each feature on the prediction
model, all possible combinations of features are consid-
ered, and computing the difference in predictions when a
particular feature is included versus when it is excluded.

This difference served as SHAP value which signifies the
degree of influence a feature wields on a prediction in
comparison to its absence. Figure 13, 14, and 15 illustrate
SHAP feature importance graphs that are computed on
the datasets collected in February 2022, March 2022, and
April 2022.

It is evident from the SHAP feature importance graphs that
all selected features demonstrate roughly equal contributions
in the case of Random forest on the dataset collected
in February 2022. However, ‘NDVI’, and ‘SAVI’ have a
significant contribution in the case of LASSO regression;
whereas ‘NDVI’ has a dominant contribution in the case
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FIGURE 14. Contribution of each feature using SHAP value on data collected in March 2022.

FIGURE 15. Contribution of each feature using SHAP value on data collected in April 2022.

FIGURE 16. Performance comparison of regression techniques in February 2022 using (a) Violin graph showing the statistical summary of predicted
and actual wheat grain yield, (b) Taylor diagram exhibiting the model performance in terms of standard deviation ratio, correlation, and centered
root-mean-square error from the reference dataset and (c) scatter plot illustrating the difference in actual and predicted values of wheat grain yield
on test dataset.

of XGB regression. Conversely, a distinct pattern emerges
with the data collected in March 2022 and April 2022.
where ‘Bundle weight’ has more contribution than any other
feature. Similarly, the comprehensive visual representation of
each feature’s contribution across all regression techniques
can be observed in Figures 13, 14, and 15. In conclusion,
the analysis of these graphs offers valuable insights into
the influential dynamics of specific features in shaping the
model’s outcome. Notably, changes in features with high
positive SHAP values (indicated by red color code) can
lead to proportionate shifts in predictions, while those with
negative values(indicated by blue color code) might cause
counteractive shifts. This profound understanding of feature
importance not only enhances interpretability but also sheds
light on the intricate relationships between input variables and
outcomes.

Furthermore, to conduct an in-depth analysis of the
performance exhibited by various regression techniques,

different graphs have been generated including a violin graph,
Taylor diagram, and scatter plot as shown in Figure 16, 17,
and 18. The violin graphs provide a statistical summary
of actual versus predicted wheat grain yield by different
regression techniques.Whereas, the scatter plots illustrate the
difference in actual versus predicted wheat grain yield by
plotting test data. However, Taylor diagrams provide deeper
insights into the model performance in terms of standard
deviation ratio, correlation, and centered root-mean-square
error from the reference dataset [42]. These graphs offer a
holistic view of how well each regression technique matches
up against the true data, allowing for a deeper understanding
of their relative performance. It is evident from these graphs
that the regression results are pretty good on the dataset
collected in April 2022 as compared to February 2022 and
March 2022. Furthermore, it is notable that the LASSO
regression technique produces prediction results that more
closely approximate the actual dataset.
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FIGURE 17. Performance comparison of regression techniques in March 2022 using (a) Violin graph showing the statistical summary of predicted and
actual wheat grain yield, (b) Taylor diagram exhibiting the model performance in terms of standard deviation ratio, correlation, and centered
root-mean-square error from the reference dataset and (c) scatter plot illustrating the difference in actual and predicted values of wheat grain yield
on test dataset.

FIGURE 18. Performance comparison of regression techniques in April 2022 using (a) Violin graph showing the statistical summary of predicted and
actual wheat grain yield, (b) Taylor diagram exhibiting the model performance in terms of standard deviation ratio, correlation, and centered
root-mean-square error from the reference dataset and (c) scatter plot illustrating the difference in actual and predicted values of wheat grain yield
on test dataset.

TABLE 5. Comparison of average predicted and actual wheat grain yield
in the wheat field with different sowing dates (SD1, SD2, and SD3).

It can be observed from the regression results that
minimum MAE and RMSE are achieved by LASSO in the
month of April 2022. This addresses the second research
objective of this study i.e., to identify the suitable time
window for accurate wheat yield prediction.

The results from Tables 2, 3 and 4 show that LASSO
achieved the best performance due to its ability to deal
with high dimensional data and avoid overfitting. This
addressed the third objective of the research i.e., to identify
the most appropriate prediction model for wheat yield
estimation.

A comparison of an average wheat grain yield versus
predicted yield for wheat fields with different sowing dates
SD1, SD2, and SD3 is given in Table 5. It can be clearly
seen that the highest average grain yield is achieved from the
wheat field where the crop was sown on 15 November 2021
(SD1). This finding addressed the fourth objective of this
research study i.e., to explore the effects of different sowing
dates on the crop yield for identifying the best crop sowing
time.

In order to further analyze the growth behavior of the crop
with different sowing dates, NDVImaps of the wheat field are
developed as shown in Figure 19. The maximum greenness
is observed in the month of March 2022 in the wheat field
with SD1 which depicts the ideal growth behavior for the
wheat crop. On the other hand, less vegetation is observed
in the wheat field with SD2, and minimal vegetation is seen
in the field having SD3. This is due to the fact that wheat,
like any other crop, requires a specific temperature profile for
its optimal growth. The wheat fields with SD2 and SD3 are
sown in the months of December and January respectively.
For wheat sown during thesemonths, the temperature profiles
do not match the optimal values required for crop growth,
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FIGURE 19. NDVI profiles of wheat crop in SD1, SD2, and SD3.

resulting in reduced grain yield. The correspondingly highest
yield is obtained for SD1 and wheat production reduces as
sowing is delayed beyond the optimal sowing date.

It is worth mentioning that fifteen different wheat varieties
were sown on three different dates in the experimental fields.
It has been concluded that the highest average yield was
obtained for SD1 and production dropped as sowing was
delayed. However, the yield was found to vary for different
varieties even for the same sowing date. Figures 20-22 show
the wheat grain yield obtained by fifteen different wheat
varieties on three different sowing dates (SD1, SD2, and
SD3).

A. EFFECT OF DIFFERENT SOWING DATES, CLIMATE
VARIATIONS AND GENOTYPES ON CROP GROWTH AND
YIELD
Varying sowing dates have a great impact on wheat
yield. For this purpose, an investigation is carried out to
check the response of wheat crop growth and yield of
different advanced lines under three diverse sowing dates.
The maximum average annual yield is recorded with the
sowing date SD1 (292.25 g/m2), followed by sowing date

FIGURE 20. Grain yield of different varieties in a wheat field with sowing
date SD1.

SD2 (180.0 g/m2), and the minimum is recorded with
the sowing date SD3 (58.25 g/m2) respectively (Table 5).
Among different genotypes (varieties), the maximum yield is
recorded with V8 (351 g/m2), followed by V3 (347 g/m2) in
the wheat crop with sowing date SD1.Whereas, the minimum
yield is recorded with V12 (225 g/m2) respectively as shown
in Figure 20. In the wheat field with sowing date SD2, the
highest yield is recorded with V13 (218 g/m2) followed
by V6 (210 g/m2), and the lowest response is recorded

VOLUME 11, 2023 108653



U. Shafi et al.: Tackling Food Insecurity Using Remote Sensing and ML

FIGURE 21. Grain yield of different varieties in a wheat field with sowing
date SD2.

FIGURE 22. Grain yield of different varieties in a wheat field with sowing
date SD3.

with V9 (153 g/m2) as depicted in Figure 21. Similarly, the
response of genotypes sown on sowing date SD3 is different
in comparison to SD1 and SD2, where the highest yield is
recorded with V14 (119 g/m2), followed by V3 (85 g/m2),
and the minimum yield is recorded with V10 (17 g/m2) as
illustrated in Figure 22. It is concluded that the maximum
yield is obtained with SD1 as compared with the wheat crops
sown in succeeding sowing dates. However, due to the genetic
potential of different genotypes, a significant variation is
observed in the wheat yield response under different sowing
dates.

IV. DISCUSSION
The crop yield prediction holds significant importance
in optimizing agricultural resources and boosting overall
productivity. To this end, a field experiment is presented to
predict wheat grain yield; where different regression tech-
niques have been investigated including LASSO, Random
Forest, and XGB regression. For this purpose, the multi-
spectral data is collected by drone in different crop growth
stages along with different agronomic traits. Moreover, the
effect of different genotypes and the sowing plan on wheat
growth and its yield is analyzed by sowing the crop on
three different sowing dates. Subsequently, three regression
techniques are applied to three different datasets collected
in February 2022, March 2022, and April 2022 to determine
the best time window to accurately estimate the wheat crop
yield.

The results revealed that the best results for wheat grain
prediction were observed in the month of April, where
LASSO outperformed XGB and Random Forest with the

minimum difference between the actual and predicted yield
(31.69 g/m2, 21.64 g/m2, and 10.96 g/m2 for SD1, SD2
and SD3 respectively). Figure 16, 17, and 18 illustrate
the performance comparison among regression techniques
using a violin graph, scatter plot, and Taylor diagram.
It is clearly evident that LASSO provides a more accurate
estimation of wheat grain yield as compared to XGB and
Random Forest. The effectiveness of LASSO in control-
ling overfitting with limited data, its ability to provide
sparse solutions, and its interpretability make it particularly
well-suited for addressing this specific problem. In con-
trast, the Random Forest and XGBoost algorithms, while
powerful and capable of handling complex relationships
within data, might struggle with limited data. These ensemble
methods inherently rely on aggregating multiple decision
trees, and their performance typically improves with larger
datasets. With a small amount of data, there’s a higher
risk of overfitting due to the complexity of these models.
Additionally, tuning the hyperparameters of these algorithms
becomes crucial, and without sufficient data, finding optimal
hyperparameters can be challenging, leading to suboptimal
performance.

It is observed from the results that the optimal time for
sowing the wheat crop is November (SD1); where the max-
imum grain yield of 351 g/m2 has been recorded. Whereas,
the minimum yield of 17 g/m2 has been observed for the crop
that was sown lately in January (SD3) due to a reduction
in the length of the growing season. The suitable time of
sowing is imperative to achieve the maximum yield on a
sustainable basis becausewheat production is highly sensitive
to elevated temperatures. Erratic climate has influenced the
optimum time of wheat sowing and grain production by
variations in temperature during the growth period of the
crop. The process of plant development accelerates due to
elevation in temperature; however growth parameters reduced
such as leaf area, tillers, and length of the spikes which
results in a significant reduction of yield [43], [44]. Late
sowing seriously affects germination, growth rate, grain
development, and reduced tillering in low temperatures
and ultimately concealed yield [45]. Similarly, elevation
in temperature during vegetative and reproductive growth
stages badly affects the emergence of plants and succeeding
crop growth stages [46]. For this purpose, an optimum
and appropriate environment results in a higher economic
yield which aids genotypes to express their full growth
potential. Wheat, as a cereal, requires specific environmental
conditions for improved growth and production [43] and
is vulnerable if exposed to high temperatures through the
reproductive phase at grain formation [47]. The favorable
temperature that is essential for the anthesis & grain filling
phase of wheat ranges from (12 ◦C - to 22 ◦C). High
temperature accelerates the process of development of grain
filling [48], thus resulting in a reduction of assimilation
of carbohydrates, deposition of starch in grains, and yield
of grains [49]. With the management of the sowing date,
potential variety and environmental factors production of
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wheat can be increased by 10-80% [50]. Whereas, late
planting affects germination, growth, and development of
grains and produces poor tillers due to winter injury in low-
temperature [45], [51]. Therefore, it is very necessary to find
the relationship between varying environments and newly
developed genotypes. An appropriate sowing time for wheat
plays a significant role in growth and development. However,
in varying climatic conditions of Pakistan, it is estimated that
yield may be decreased by 58.2 % in delayed sowing practice
[52]. The precise and exact information of sowing time of
specific variety at a particular location is crucial for meeting
the potential yield of grains as discussed in [53].

Optimum environmental conditions are prerequisites for
attaining the maximum yield. It has been found from
research that each variety has its specific requirements
of temperature and light for flowering and development of
grains [54], [55]. However, the emergence and number of
days to earing for the crop with sowing date SD1 decreased
with delayed planting to sowing date SD2. Cultivation of
wheat under late sowing results in a reduction of air and
soil temperature causing a decrease in the emergence and
crop stand establishment [56]. It has been reported in various
studies that elevated temperature affects the emergence of
crops [57]. Late planted crops decreased no. of tillers due to
high temperature during the growth stage of tillering [58] and
also decreased the duration of grain filling at the reproductive
stage leading to a reduction in enzyme activity and yield
of crop [45], [59]. Maximum yield can be obtained when
the crop is sown earlier as it received extensive duration of
grain filling in comparison with late sowing caused warmer
environment.

The results obtained from our analysis provide a foun-
dation for practical implementations in the agricultural
domain. The benefits of this research lie in its potential
to equip farmers and agronomists with valuable insights
that can drive more efficient and productive agricultural
practices. The farmers could make decisions related to
crop management, resource allocation, and harvest planning.
Moreover, optimizing crop yield predictions can lead to more
efficient resource utilization and improved crop planning,
contributing to increased profitability. By addressing crucial
gaps and leveraging data-driven insights, this study has
the capacity to catalyze positive transformations within the
agricultural landscape. that can drive more efficient and
productive agricultural practices.

V. CONCLUSION AND FUTURE WORK
Accurate and timely yield prediction of wheat crops is essen-
tial for global food security. Towards this end, a framework
for wheat grain yield prediction is presented in this research
study. Multispectral data spanning the crop growth cycle
from three experimental fields, each planted with the wheat
crop at different sowing dates, is collected using drone-
based sensors. Following the preprocessing of datasets, the
most relevant predictors are identified and three well-known
ML regression models including Random Forest, XGB

regression, and LASSO regression are employed to estimate
crop yield. The results show that LASSO achieved the
best prediction performance with R2 of 0.93, and MAE
of 21.72 g/m2. The annual predicted yield is found to be
260.54 g/m2, 201.64 g/m2 and 47.29 g/m2 for the crop
sown in November (SD1), December (SD2) and January
(SD3) respectively. Additionally, the best prediction results
are obtained from the observations made in the month of
April. This research will help farmers and agronomists to
timely and accurately estimate crop yields and manage crop
resources prior to harvesting.

At present, the estimation of wheat grain yield is accom-
plished through the use of multispectral data and machine
learning techniques. However, in the future, we plan to
explore deep learning techniques like CNN, LSTM, etc.,
to analyze drone optical data for crop yield forecasting.
In addition, we plan to integrate more predictors like soil and
climate data for enhancing the accuracy of yield estimation.
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