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ABSTRACT Due to the rapid utilization of cloud services, the energy consumption of cloud data centres
is increasing dramatically. These cloud services are provided by Virtual Machines (VMs) through the
cloud data center. Therefore, energy-aware VMs allocation and migration are essential tasks in the cloud
environment. This paper proposes a Branch-and-Price based energy-efficient VMs allocation algorithm
and a Multi-Dimensional Virtual Machine Migration (MDVMM) algorithm at the cloud data center. The
Branch-and-Price based VMs allocation algorithm reduces energy consumption and wastage of resources
by selecting the optimal number of energy-efficient PMs at the cloud data center. The proposed MDVMM
algorithm saves energy consumption and avoids the Service Level Agreement (SLA) violation by performing
an optimal number of VMs migrations. The experimental results demonstrate that our proposed Branch-
and-Price based VMs allocation with VMs migration algorithms saves more than 31% energy consumption
and improves 21.7% average resource utilization over existing state-of-the-art techniques with a 95%
confidence interval. The performance of the proposed approaches outperforms in terms of SLA violation,
VMs migration, and Energy SLA Violation (ESV) combined metrics over existing state-of-the-art VMs
allocation and migration algorithms.

INDEX TERMS Cloud computing, data center, virtual machine, physical machine, energy-aware, branch-
and-price, SLA, ESV.

I. INTRODUCTION
To provide different types of cloud services, such as
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS), cloud data center’s
consist of thousands of interconnected Physical Machines
(PMs). Therefore, nowadays, geographically distributed data
centers consume more energy. A cloud services provider
provides different services to customers on a pay-as-you-
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go model. The pay-as-you-go model says that customers
have to pay the same amount for resources/services utilized
by the customer [1]. A study on energy consumption of
worldwide geographically distributed data centers high-
lighted that from 2010 to 2020, US-based data centers’
energy consumption and worldwide data centers’ energy
consumption increased by 36% and 56% respectively [2],
[3]. Another study demonstrated that worldwide data center’s
energy consumption is expected to increase in the coming
years. Hence, the worldwide cloud data center’s energy
consumption bill will rise to 78 billion dollars by 2025
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[4]. Thus, the increased energy consumption will cause
several consequences, such as high operational cost, high heat
density, reduced reliability, degraded service performances,
and environmental pollution [5], [6].
Therefore, the cloud data centre must reduce energy
consumption to resolve the highlighted issues. Several
approaches, such as energy-efficient VMs allocation and
migration, energy-efficient task scheduling, green energy
utilization, etc., can reduce the energy consumption of
the cloud data center. In this paper, we are only dealing
with energy-efficient VMs allocation and migration policies.
The multi-dimensional VMs allocation problem is called
an variable size bin packing problem [7], where VMs are
the items and PMs are the bins. Since the bin packing
problem is NP-hard/NP-complete, the complexity of the
multi-dimensional VMs allocation problem is also defined
in non-polynomial time [8]. Therefore, an approximate or
fast exact algorithm is required to solve the VM allocation
problem. The key limitation of an approximate algorithm is
that it does not guarantee an optimal solution to the given
problem. Thus, this paper focuses on the exact algorithm and
proposes a Branch-and-Price-basedVMallocation algorithm.
On the other hand, in the VM migration problem, the
migration of VMs from underutilized/over-utilized PM to
energy-efficient PM is required. The migration of VMs
from one PM to another PM is performed in such a
manner to reduce energy consumption and SLA violation
at the cloud data center. Hence, both VM allocation and
migration problems are critical and challenging. There are
many approaches for VM allocation and migration, such as
approximation algorithms [9], bio-inspired algorithms [10],
[11], and greedy approaches [12]. However, the critical
limitations of the existing algorithms are based on a heuristic
system and do not ensure the optimal solution to the
multi-objective VM allocation problem.
In short, the core idea of our proposed work is described as
follows:

• A Linear Programming (LP) based mathematical model
of the proposed multi-objective VMs allocation problem
is designed.

• Branch-and-Price based VMs allocation algorithm is
designed at the cloud data center. In the proposed
Branch-and-Price based VMs allocation algorithm,
a MP in VMs allocation is generated. This MP is
converted into a RMP by developing a primary solution
to the problem.

• An Linear Programming Relaxation (LPR) is solved for
the RMP, and a dual of the restricted MP is generated.

After generating the dual of the RMP, a sub-problem is solved
by passing duals. Column generation and power consumption
evaluation are performed to calculate the optimal solution
to VMs allocation problem. A VMs migration algorithm is
designed and developed in the second phase at the cloud
data center. The proposed MDVMM algorithm is based on
the multiple resources utilization and least square method.
The proposed VMs allocation and migration algorithms are

applied to the data center. To check the performance of
the proposed algorithms in terms of different performance
metrics such as energy consumption, resource utilization and
SLA violation are calculated at the cloud data center. In short
the key contributions of the proposed work in this paper are
as follows:

1) To design a mathematical model of a multi-objective
VMs allocation problem using Linear Programming.

2) To design and develop a Branch-and-Price based VMs
allocation algorithm for reducing power consumption
and resource wastage.

3) To design and develop a VMs migration policy for
reducing energy consumption and SLA violation.

4) To evaluate the performance of our proposed VMs
allocation and migration algorithms with other state-
of-the-art algorithms in different performance metrics.

The remainder of this paper is organized as follows.
Section II deals with the background and related work.
Section III describes the proposed work. Section IV describes
the experimental setup and performance evaluation of the
proposed VMs allocation and migration algorithms. Finally,
the concluding remarks are given in Section V.

II. BACKGROUND AND RELATED WORK
The existing work on energy-efficient resource allocation is
described in terms of energy-efficient VMs allocation, task
scheduling, and VMs migration policies at the cloud data
center. To reduce the energy consumption at the cloud data
center, the existing approaches are described as follows:

Masoudi et al. [20] proposed a two-phase energy-efficient
load balancing through VM migration using Particle Swarm
Optimization (PSO). In the first phase, the author deactivated
many PMs, reducing energy consumption at the cloud data
center. In the second phase, the author performed load
balancing using the PSO. Their proposed approach also
considered the Dynamic Voltage Frequency Scaling (DVFS)
technique. In experimental work, they saved approximately
10% energy consumption of the cloud data center by using
their proposed method over the PSO algorithm.

Mandal et al. [21] proposed an energy-aware VM migra-
tion technique at the cloud data center. In their proposed
approach, they selected the VM for the live migration in
such a manner that reduced the energy consumption and
avoided the SLA violation. The proposed VM selection
algorithm is known as MECpVmS. The author conducted
their experimental work on a cloudsim simulator, and they
utilized a real time dataset. Their proposed approach reduced
a significant amount of energy with low SLA violation at the
cloud data center.

Li et al. [22] proposed a pareto optimal multi-objective
VMs consolidation algorithm (MOEA/D) in the cloud
environment. They mainly focused on reducing energy
consumption and improving resource utilization. In their
proposed work, the authors applied a dynamic workload,
saving energy consumption and resource wastage at the
cloud data center. Ullah and Chakir [23] proposed a task
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TABLE 1. Summary of related work.

distribution approach using a load balancing technique. The
author applied a modified BAT algorithm for load balancing
in their proposed method. They performed two changes in the
BAT algorithm:

(1) modifying the fitness function during load balancing
and (2) modifying the search process in the BAT dimension
section. The proposed algorithm improved accuracy and
efficiency regarding task distribution at the cloud data center.

Memari et al. [24] proposed a meta-heuristic improved
TABU search algorithm for VMs allocation. They improved
the performance of the TABU search algorithm by applying
ANN and fruit fly optimization (FOA) algorithms. In their
experiment, they optimized different factors such as exe-
cution time, latency, and memory allocation compared to
other Bio-inspired algorithms. Further, They also performed
latency-aware task scheduling with their proposed approach.

Li et al. [25] proposed an energy-efficient task scheduling
optimizer for the cloud data center. The author considered the
data centre’s energy efficiency in their proposed approach.
Further, to reduce the energy consumption at the cloud data

center Polverini et al. [26] designed and developed an online
multi-objective batch job scheduling algorithm (GreFar) in a
geographically distributed data center environment. In their
proposed approach, authors reduced multiple cloud data
centres’ queuing delay, energy cost, and thermal temperature.
Further, by utilizing the offered GreFar jobs scheduling
algorithm, they processed the jobs when the queue length was
sufficiently large or electricity prices were adequately low.

In their proposed work, Huang et al. [27] collected VMs
from different users and allocated the VMs on PMs based
on their throughput requirement and current CPU utilization.
They also proposed a VMs migration policy by setting the
utilization threshold of a PM. In their proposed approach,
the author reduced energy consumption and avoided the SLA
violation at the cloud data center.

Lv et al. [28] proposed a multi-cloud broker model called
the CoMCLOUD. In their proposed approach for VMs
allocation, they applied Ant Colony Optimization (ACO)
at the cloud data center. Further, they also designed and
developed a multi-broker model to handle the cost and
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Quality of Service (QoS) trade-off. They also proposed
a minimum disruption based VMs migration policy. The
proposed VMs allocation and migration policies reduced the
cost and SLA violation and the minimum disruption time of a
VMat the cloud data center. The proposed approach is helpful
for live VM migration. Cerroni and Esposito [29] proposed
a Linux-based live VMs migration policy; in their proposed
approach, they reduced the interruption time of the VMs
during the live migration. They also presented a geometric
programmingmodel for VMsmigration; the key objectives of
the proposed geometric programming model are to optimize
the bit rate allocation and reduce the livemigration time of the
VMs. Anwar et al. [30] designed a VM migration approach
for solving theVMmigration timing problem. Their proposed
method used game theory concepts to solve the VMmigration
timing problem. They formulate the VM migration problem
for capturing the data leakage model. The proposed model is
helpful to pay off when the cloud utilizes intrusion detection
systems that detect side-channel attacks.

Nikzad et al. [31] proposed a cloud resource management
technique by applying multi-objective VMs allocation in a
dynamic cloud environment. The author considered eight
criteria to reduce energy consumption and SLA violation
in their proposed approach. Further, they solved the same
multi-objective problem by applying heuristics and meta-
heuristic algorithms. In their proposed work, they saved
energy consumption up to 12.5% compared to other algo-
rithms. They also reduced the SLA violation and number of
VMs migrations at the cloud data center.

Li et al. [32] proposed a Modified Particle Swarm
Optimization (MPSO) based energy efficient VMs migration
and consolidation algorithm at the cloud data center. Their
proposed work migrated the VMs based on double threshold
values and consolidated the maximum number of VMs
to fewer PMs at the cloud data center. Their scheme
reduced energy consumption and avoided the SLA violation
at the cloud data center. Li et al. [33] designed and
developed an Energy Efficient and QoS-aware (EEQoS) VMs
consolidation algorithm at the cloud data center. In their
proposed work, first, they defined the objective function in
terms of energy and QoS for the cloud data center. Further,
they utilized the PSO algorithm for VMs consolidation to
fewer PMs. Their experiment reduced the response time, SLA
violation, and energy consumption by 27.2%, 31.4%, and
3.8%, respectively. Further, Table 1 summarizes the related
work w.r.t. VM allocation and migration at the cloud data
center.

III. PROPOSED WORK
Two different algorithms, such as Branch-and-Price based
VMs allocation and multi-resource utilization based
VMs migration algorithms, are proposed in this paper.
Since the VMs allocation problem is a combinatorial
multi-dimensional optimization problem, it looks like a
multi-dimensional bin packing problem. Hence, we applied
a Branch-and-Price method to solve the multi-dimensional

combinatorial optimization problem. Further, the proposed
VMs migration problem is a pareto optimal multi-objective
problem in which we not only reduce the energy consumption
but also need to avoid the SLA violation at the cloud data
center. Fig. 1 shows the block diagram of the proposed work
concerning multi-objective VMs allocation and migration
problems at the cloud data center. The block diagram includes
a broker, central unit, and node controller. The user requests
the resources in terms of VMs from the broker. A broker
collects all the user’s requested VMs and forwards them
to the cloud services provider. The cloud services provider
provides the cloud services by the data center. After getting
the VMs allocation requests from the broker, the proposed
algorithm executes itself and allocates VMs to PMs at the
cloud data center. Hence, the central maintenance unit is
responsible for assigning and migrating the VMs on the PMs
at the cloud data center. The proposed VMs allocation and
migration algorithms are deployed in the centre maintenance
unit. One node controller unit is deployed on each PM at
the cloud data center. The node controller unit is responsible
for keeping the resource utilization record of a PM, and it is
also responsible for allocating the resources among the VMs.
Hence, a mathematical model of the VM allocation problem
is required before designing the VM allocation and migration
algorithms.

A. VMS ALLOCATION PROBLEM FORMULATION
The LP based VMs allocation problem formulation at the
cloud data center is described as follows. Let us consider
a data center consisting of the ’m’ number of PMs and ’n’
number of VMs requested by the users at time instance ’t’.
The different resources of a PM (pmj) (j ∈ {1, 2, . . .m}),
such as MIPS, RAM, Storage, and Processing elements, are
described by pmmipsj , pmramj , pmstoragej , pmpej respectively.
Similarly, the dimensions (mips, ram, storage, and processing
element) of a VM (vmi) where i ∈ {1, 2, . . . n}) are defined
as vmmipsi , vmrami , vmstoragei , vmpei respectively. We aim to
allocate the ’n’ number of VMs to a minimum number
of energy-efficient PMs at the cloud data center. Hence,
an objective function of a VMs allocation problem is
described as follows:

min f =

m∑
j=1

Pjxj (1)

where Pj represents the power consumption of a PM (pmj);
xj represents a binary variable, its value is 1 when at least
one VM is allocated to pmj; otherwise, it is 0. The power
consumption of a pmj in Eq. 1 is described as follows:

Pj = (Pmaxj − Pminj )u+ Pminj (2)

where (ut ) represents the CPU utilization of a PM at time
instance ’t’; The maximum and minimum power consumption
of the PM is described by (Pmaxj ) and (Pminj ) respectively.
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FIGURE 1. Block diagram of proposed work.

subject to the following constraints
m∑
j=1

xij = 1, ∀i ∈ {1, 2, . . . .n} (3)

n∑
i=1

vmmipsi xij ≤ pmmipsj , ∀j ∈ {1, 2, . . . .m} (4)

n∑
i=1

vmrami xij ≤ pmramj , ∀j ∈ {1, 2, . . . .m} (5)

n∑
i=1

vmstoragei xij ≤ pmstoragej , ∀j ∈ {1, 2, . . . .m} (6)

vmpei xij ≤ pmpej , ∀j ∈ {1, 2, . . . .m} (7)

Eq. 1 describes the objective function of the VMs allocation
problem in terms of minimizing the power consumption of the
cloud data center by utilizing a minimum number of energy-
efficient PMs; Eq. 2 describes the power consumption of a
PM; Eq. 3 ensures that each VM is assigned to only one PM;
Eqs. 4 to 7 describe the resources capacity constraints such
as mips, ram, storage, and pe, respectively (The sum of a
particular resource of all the VMs is lesser than the capacity
of a PM on which these VMs are allocated); xij describes a
binary variable; its values is one if vmi is assigned to pmj
otherwise it values is ‘0’.

Let us consider a possible set of solutions for VMs
allocation in the case of pmj is represented by kj =

{x j1, x
j
2, . . . x

j
k}. A feasible solution such as x jk satisfies all

the constraints defined in Eq. 4 to Eq. 7. Out of ’k’ feasible
solutions of pmj, we can select only one possible solution.
In Fig. 1 allocation of vm1, vm2, and vm3 on pM1 represents
the infeasible VMs allocation because this allocation not
satisfy the constraint defined in Eq. 4 to Eq. 7. The selection
of a feasible solution for pmj is described by a binary
variable yjk .
yjk=1 if feasible allocation x

j
k is selected;otherwise y

j
k=0.

Hence, based on feasible solutions, the Generalized
Assignment Problem (GAP) is formulated as follows:

min f ′
=

m∑
j=1

ki∑
k=1

(
n∑
i=1

Pjxij)y
j
k (8)

Subject to the following constraints:

m∑
j=1

kj∑
k=1

x jky
j
k = 1, ∀i ∈ {1, 2, . . . n} (9)

kj∑
k=1

yjk ≤ 1, ∀j ∈ {1, 2, . . .m} (10)

yjk ∈ {0, 1}, j ∈ {1, 2, ..m} k ∈ kj (11)

where Eq. 8 represents the new objective function of a GAP;
Eq. 9 ensures that each VM is assigned to only one PM in
GAP; Eq. 10 provides that a maximum one feasible solution
is selected for a pmj; Eq.11 describes that a boolean variable
(yjk ) can take a binary value.

B. PROPOSED BRANCH-AND-PRICE ALGORITHM
The Branch-and-Price is a combinatorial optimization tech-
nique for solving Integer Linear Programming (ILP) and
Mixed Integer Linear Programming (MILP) problems with
many variables. This technique is similar to a Branch-and-
Cut technique. In the case of the Branch-and-Cut technique,
we mainly focus on row generation, whereas, in the case
of Branch-and-Price, we focus on column generation. The
Branch-and-Cut is defined as Branch-and-Boundwith cutting
planes such as (Branch-and-Cut = Branch-and-Bound +

Cutting Planes); it is called row generation. Therefore, the
Branch-and-Price algorithm combines Branch-and-Bound
with column generation such as (Branch-and-Price=Branch-
and-Bound+column generation). A search tree is constructed
to calculate the solution to the VMs allocation problem in the
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Branch-and-Price technique. A column may be generated at
each search tree node to improve the LP relaxation. In the
case of the Branch-and-Price technique, a set of columns is
left out as an LP relaxation for solving a large ILP problem.
Thus, using the Branch-and-Price technique, we can handle
many variables in the ILP problem.

Since the optimal solution to an original VMs allocation
problem consists of many zero columns, a sub-problem is
solved to calculate the optimal solution of the given situation.
A branch is generated when the solution to the problem
does not satisfy the defined integrity constraints. A flowchart
of the proposed Branch-and-Price algorithm is described
in Fig. 2. First, we formulate the original VMs allocation
problem as an LP problem. Solving it takes work since the
original LP problem consists of many variables and constants.
Hence, there is a need to convert an actual LP problem
into two problems: a GAP problem and a subproblem. The
GAP problem is known as the MP. The main advantage of
reformulating the original problem into a MP is that we can
apply Dantzig-Wolfe decomposition to the MP. Since the MP
still consists of many variables, the MP is converted to the
Restricted Master Problem (RMP).

The RMP consists of a lesser number of variables.
Therefore, an LPR is solved for the same RMP. The solution
of the LPR gives the dual of the RMP. This dual is passed to
solve the sub-problem. After solving the subproblem, there
is a need to verify the different columns generated in the
solution. If the solution is integral, accept the solution that
consumes less power; otherwise, we need to create a new
branch and start the process from the LPR, as mentioned in
Fig. 3. Further, we can generate the additional columns for
the RMP in terms of VMs allocation problem by solving the
following two subproblems:

max( 1 ≤ j ≤ m{z(KPj) − vj}) (12)

where vi describes the dual associated with convexity
constraints of pmj; z(KPi) represents the optimal solution to
the RMP knapsack problem.

n∑
i=1

vmmipsij x jk ≤ pmmipsj , ∀j ∈ {1, 2, . . .m} (13)

n∑
i=1

vmramij x jk ≤ pmramj , ∀j ∈ {1, 2, . . .m} (14)

n∑
i=1

vmstorageij x jk ≤ pmstoragej , ∀j ∈ {1, 2, . . .m} (15)

n∑
i=1

vmpeij x
j
k ≤ pmpej , ∀j ∈ {1, 2, . . .m} (16)

From Eq. 13 to Eq. 16, describe the resource constraints such
as MIPS, RAM, Storage, and Pe for the RMP problem.

Hence, our objective is to search for the optimal allocation
of VMs to PMs at the cloud data centre, done by the first sub-
problem.

max(1 ≤ j ≤ mz(KPj) − vj) (17)

The sub-problem generates the column with a highly
reduced cost. The RMP keeps growing during the column
generation process. It is optional to solve the sub-problem
optimally and create the column with reduced power
consumption. If the objective function value is less than or
equal to ’0,’ then the current optimal solution of the RMP is
also optimal for the MP.

1) BRANCHING STRATEGIES
If a solution to the MP is fractional, then the solution for a
common problem is also fractional. Each branch in the search
tree of standard formulation of the problem corresponds to
an equivalent branch in the Master’s Problem. In the typical
VMs allocation problem, by fixing xij to zero, we can prohibit
vmi from being assigned to pmj. In the case of the MP, this
condition can be achieved by the following description: if
x jk=1, then yjk=0 for all k ∈ Ki. Conversely, in case we want
vmi to be assigned to pmj, if x

j
k=0, then yjk=0 for all k∈ Ki

and for some L̸= i if x jk=1, then ylk=0 for 1≤L̸=i≤m and k
∈ Ki.

2) EXAMPLE
An example describes the overall description of the proposed
Branch-and-Price based VMs allocation problem. Let us con-
sider the Generalized Assignment Problem (GAP) consists of
m=2 PMs and n=3 VMs, and power consumption associated
with allocation of vmi to pmj is described by Pij. Further, kj
represents the feasible allocation of VMs to PMs at the cloud
data center. Thus, k1=(1,0,0,), (0,1,0), (0,0,1), (1,0,1), and
k2=(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1). Hence,
the Master Problem (MP) is formulated as follows:

max z = 5y11 + 7y12 + 3y13 + 8y14 + 2y21
+ 10y22 + 5y32 + 12y42 + 15y52 (18)

Subject to the following constraints:

y11 + 0 + 0 + y14 + y21 + 0 + 0 + y42 + 0 = 1 (u1) (19)

0 + y21 + 0 + 0 + 0 + y22 + 0 + y42 + y52 = 1 (u2) (20)

0 + 0 + y31 + y14 + 0 + 0y32 + 0 + y52 = 1 (u3) (21)

y11 + y21 + y31 + y14 ≤ 1 (v1) (22)

y11 + y22 + yy32 + y+ 24 + y52 ≤ 1 (v2) (23)

where ui, and vj represent the duals associated with vmi and
pmj respectively.
Let us randomly choose the columns y11 and y52 which are
feasible solutions. Hence, the Restricted Master’s Problem
(RMP) is described as follows:

max z = 5y11 + 15y52 (24)
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FIGURE 2. Flow chart of proposed Branch-and-Price algorithm.

Subject to Constraints

y11 + 0 = 1 (u1) (25)

0 + y25 = 1 (u2) (26)

0 + y25 = 1 (27)

y11 + 0 = 1 (28)

0 + y25 = 1 (29)

The last three constraints are redundant. Therefore their
corresponding duals are zero.

B =

1 0

0 1

 (30)

Therefore

B−1
=

1 0

0 1

 (31)

cBB−1
=

(
5 15 5

)
(32)

Hence, u1=5, u2=15, u3=5, v1=0, v2=0. Thus, the sub
problem for pm1 is described as follows:

max(5 − 5)x11 + (7 − 15)x21 + (3 − 5)x13 (33)

Subject to the following constraints

3x11 + 4x21 + 2x13 ≤ 5 (34)

The optimal solutions are (1,0,0) and (0,0,0), each with z=0.
Hence, z(KP1)-v1=0-0=0
Sub problem for pm2

max(2 − 5)x21 + (10 − 15)x22 + (5 − 5)x23 (35)

Subject to the following constraints

5x21 + 3x22 + 4x32 ≤ 8 (36)

The optimal solutions are (0,0,1) and (0,0,0), each with z=0.
Hence, z(KP2)-v2=0-0=0. Thus the reduced cost for all the
columns is 0. Therefore y11=1, y15=1, y23=0 is the optimal
solution. Hence, the optimal VM allocations are: (1,0,0)for
pm1, such that vm1 is allocated to pm1.
(1,1,0) for pm2, such that vm1, and vm2 are allocated to

pm2. Thus, the optimal solution is zoptimal=5+10+5=20.

C. PROPOSED MDVMM TECHNIQUE
Our proposed online MDVMM technique reduces energy
consumption and avoids SLA violations at the cloud data
center. The proposed MDVMM is an online VMs migration
technique therefore, to meet multiple objectives, such as
reducing energy consumption and SLA violation, there is a
need to select the underutilized and overutilized PMs at the
cloud data center. Migrating VMs from underutilized PM
to energy-efficient PM will reduce energy consumption, and
migrating VMs from overutilized PM to energy-efficient PM
will reduce the SLA violation.
The proposed MDVMM technique consists of four steps:

(1) Detecting the overutilized and underutilized PMs in the

107486 VOLUME 11, 2023



N. K. Sharma et al.: Novel Energy Efficient Multi-Dimensional VMs Allocation and Migration

cloud data center. (2) Selecting VMs from the overutilized
PMs for the migration. (3) Selecting new PMs where VMs
to be migrated. (4) Implementing the proposed migration
technique to all the overutilized and underutilized PMs at the
cloud data center.

To detect the overutilized and underutilized PMs at the
cloud data centre, there is a need to set an upper and lower
threshold utilization at the cloud data centre. A PM’s upper
and lower threshold utilization can be set by two approaches,
i.e., static and dynamic. Since the cloud data centre works in
a dynamic environment where the workload of a PM changes
continuously (unpredictable), and our proposed technique
is an online VM migration technique. Therefore, instead
of taking a static threshold utilization of a PM, we need
to calculate the dynamic threshold utilization of a PM at
the cloud data center. Therefore, in our proposed MDVMM
technique, we place a dynamic threshold of a PM. The
calculation of a dynamic threshold of a PM is based on the
statistical analysis of the historical utilization of a PM.

Further, the aggressive VMs migration (consolidating
more VMs to fewer PMs) will increase the SLA violation, and
fewer VMs consolidated to more PMs will increase resource
wastage and energy consumption at the cloud data center.
Therefore, we performed the trade-off between SLA violation
and energy consumption during our proposed MDVMM
algorithm.

To ensure SLA violation and energy efficiency in the
proposedMDVMM technique, we set a PM’s upper and lower
threshold utilization defined in [34]. The upper and lower
threshold utilization in [34] is based on the Inter Quartile
Range (IQR) technique. The IQR technique is applied to the
historical data (previous utilization of a PM in terms of CPU,
RAM, and Storage), and a whisker plot of a PM is generated
in the proposed approach. The developed whisker plot of a
PM gives different information such as min value, IQR, max
value, and outliers. Hence, in our proposed approach, we set a
PM’s lower and upper threshold utilization based on the IQR
range.

Let us consider w1, w2, and w3 are the weight of the
CPU, RAM, and Storage of a PM in the cloud data center,
i.e. (w1 + w2 + w3 = 1). The CPU, RAM, and Storage
utilization of a PM are described as pmcpu, pmram, and
pmStorage, respectively. Thus, the load (L) of a PM in terms
of Multi Dimensional Load (MDL) is defined as follows:

L =
w1

1 − pmcpu
×

w2

1 − pmram
×

w3

1 − pmStorage
(37)

where 0 ≤ pmmipsj , pmramj , pmstoragej < 1
The core idea of the proposed MDVMM technique is that

in a given time series data, if there are ‘w’ MDL values
(L) more than as compared to the upper threshold utilization
value of ‘z’ most recently observed values of a PM, where
(w ≤ z) then the PM is treated as overutilized PM, on the other
hand, if there are ‘w’MDLvalues less than as compared to the
lower threshold utilization value of ‘z’most recently observed
values of a PM then the PM is treated as underutilized PM.

In this approach, there are two possible conditions associated
with ‘w’, such as for a given ‘z’, a small value of ‘w’
will cause aggressive detecting of the overloaded PMs at
the cloud data center, which will lead to more number of
VMs migration at the cloud data center. Thus, more SLA
violations at the cloud data center. On the other hand, a large
value of ‘w’ will take a lot of time to predict the overloaded
PM at the cloud data center. In the case of (w=z=1), the
highest aggressive approach is to find the overloaded and
underloaded PMs at the cloud data center.

Hence, to improve the accuracy of the proposed MDVMM
technique in addition to ‘w’ out of ‘z’ values, we need to
check a PM’s overload and underload conditions on the
following predicted value, i.e. (z+1). The expected value
of ‘L’ on the (z+1) time instance is based on the previous
‘z’ values; hence, if the PM is overloading on ‘w’ values,
it should be overloaded on the (z+1) value. The proposed
approach uses a time series prediction technique to predict
a PM’s load ‘L’ on (z+1) time instance.

Let us consider a sequence of observed values ‘L’ of a PM
is L1,L2, . . . . . .Lz to predict the Lz+1, we use the least square
method to calculate the load Lz+1 at time instance (z+1). The
prediction of Lz+1 is described as follows:

Lz+1 = a+ bXz+1 (38)

where ‘a’ and ‘b’ represents the constants; ‘Xz+1’ represents
the time. The normal equation for parameter ‘a’ is described
as:

z∑
i=1

Li = za+ b
z∑
i=1

Xi, where i ∈ {1, 2, . . . z} (39)

The normal equation for parameter ‘b’ is described as:

z∑
i=1

XiLi = a
z∑
i=1

Xi + b
z∑
i=1

X2
i , i ∈ {1, 2, . . . z} (40)

If
∑z

i=1 Xi = 0 then a=
∑z

i=1 Li
n , and b=

∑z
i=1 XiLi∑z
i=1 X

2
i
.

Where, Xi =
xi−xorigin

t , xorigin = (z + 1)/2 if ‘z’ is odd,
otherwise if ‘z’ is even then xorigin = z/2; t=Time interval.

1) VMS MIGRATION PERFORMANCE METRIC
After selecting the underutilized and overutilized PMs at the
cloud data center, VMs are selected for migration. In the
case of VMs migration VMs are reallocated from their parent
PM to another PM. The migration of a VM affects both the
performance, such as source and destination PMs at the cloud
data center. In a cloud data center, one online VM migration
from source PM to destination PM takes approximately 10%
overhead in terms of PM resources (CPU, RAM, Storage)
defined in [34]. This overhead leads to SLA violations and
performance degradation at the cloud data center. Based on
the existing work [34], the VM migration time (Tmi ) and
performance degradation (Ud

i ) are described for an online

VOLUME 11, 2023 107487



N. K. Sharma et al.: Novel Energy Efficient Multi-Dimensional VMs Allocation and Migration

VM migration as follows:

Tmi =
Mi

Bi
(41)

Ud
i = 0.1

∫ t0+Tmi

t0
Ui(t)dt (42)

where Tmi represents the completion time of migration
for vmi; Mi and Bi describe the amount of memory and
bandwidth are used by vmi during migration; Ud

j describes
the degradation of performance by vmi; Uj(t) represents the
CPU utilization of vmi

2) SLA VIOLATION METRIC
SLA violation is an important performance metric for the
cloud service provider because high SLA violation leads to
QoS degradation. Further, the cloud service provider may
lose the customer due to high SLA violations. A cloud SLA
violation is defined in different terms, such as increased
response time, low bandwidth, high downtime, minimum
throughput, etc. The definition of the SLA violation depends
on the application type running on the cloud. Hence, the SLA
violation metric at the IaaS level is defined in two different
parameters:

(1) Percentage of time CPU utilization is at total capacity,
i.e. 100% CPU utilization. In case of full CPU utilization,
it will not provide the required performance to the VM [34].
A mathematical expression of SLA violation for the PMs in
case of full CPU utilization (SLA(f))is defined as follows:

SLA(f ) =
1
m

m∑
j=1

T fj
T aj

(43)

where ‘m’ describes the number of PM; T fj represents the
total time span pmj utilized in full capacity; T aj represents
the active time span of a pmj.
(2) The SLA violation due to migration of a vmi from the

pmj is described as follows:

SLA(m) =
1
n

n∑
i=1

Cd
i

C t
i

(44)

where ‘n’ represents the number of VMs to be migrated;
Cd
i represents the performance degradation due to vmi

migration; C t
i represents the amount of resource requested

by vmi.
A combined performance metrics of SLA violation

(SLAV) in terms of full PM utilization and degradation of
performance due to VM migration is defined as follows:

SLAV = SLA(f ) × SLA(m) (45)

Further, a combined performance metric (ESV), which
depends on energy consumption and SLA violation,
is described as follows:

ESV =

∫ t

0
Pj(t)dt × SLAV (46)

3) REALLOCATION OF VMS
After collecting the VMs from underutilized and overuti-
lized PMs, there is a need to migrate these VMs to
energy-efficient PMs. In the proposed MDVMM technique,
a selection of PMs for reallocating the VMs is performed
based on their energy efficiency. A detailed description of
the proposed MDVMM technique is described as follows:
First, we list VMs to be migrated from the underutilized
and overutilized PMs at the cloud data center. After that,
we arrange the VMs in decreasing order based on their
resource utilization and place the PMs in non-decreasing
order based on their resource capacity. After setting the
VMs and PMs in reducing and non-decreasing order,
we migrate the VMs based on the First Fit technique.
Algorithm 1 describes the overload and underload PMs
detection, and Algorithm 2 describes the detailed description
of the proposed VMs migration policy.

Algorithm 1 Overload and Underload PM Detection
Input: List of PMs [], List of VMs []
Output: Overload list (O[]), Underload list (U [])
O[]={}, U[]={}

foreach PMj in PM[] do
Compute Lj //Computes total load

if
(
Lj ≥ Thuj

)
then

Add PMj in O[];
else(

Lj ≤ Thlj
)

Add PMj in U[];
end

end
return O and U

D. CONFIDENCE INTERVAL
To check the acceptability of the proposed VMs allocation
and migration algorithms, we calculate the confidence
interval of the proposed algorithms. In this process, we con-
ducted our experiment multiple times and calculate the
different parameters. The calculation of confidence interval
is described as follows:

CI = x̄ ± zα/2
σ

√
n

(47)

‘σ ’represents the standard deviation; ‘n’ represents sample
size; ‘x̄’ represents sample mean;α represents significance
value.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS
We used a cloudsim simulator to check the performance
of our proposed Branch-and-Price VMs allocation and
MDVMM VMs migration algorithms. The cloudsim sim-
ulator provides different packages such as power and
network packages and files such as VM specification,
PM specification, etc. Therefore, a vital advantage of the
cloudsim simulator is that, we can crate the cloud data
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TABLE 2. PM’s configuration.

Algorithm 2 VMs Migration
Input: List of Overload PMs (O []), List of Underload PMs

(U[])
Output: Destination PM
foreach PMj in PM[] do

Compute Tc =
(
PMCPU

j × PMRAM
j × PMStorage

j

)
end
Arrange PMs in increasing order based on Tc
foreach VMi in VM[] do

Compute Tr =
(
VMCPU

i × VMRAM
i × VMStorage

i

)
end
Arrange VMs in decreasing order based on Tr
foreach PMj in (O [] + (U []) do

foreach VMi in PMj: do
if (VMi ∈ O []) then

Reallocate VMi] using FFD policy
After reallocating VMi calculate Lj
if

(
Lj < ThU

)
then

break;
else

if (VMi ∈ U []) then
Reallocate VMi] using FFD policy
After reallocating VMi calculate Lj
if

(
Lj == 0

)
then

break;
end

else
break;

end
end

end
return list of VMs[] migrated;

center environment as per our requirement and deploy our
proposed VMs allocation and migration policies. In cloudsim
simulator, we created a heterogeneous cloud data center
environment by taking three different types of PMs at
the cloud data center [35]. Table 2 describes the resource
capacity of all the PMs at the cloud data center. After
creating the heterogeneous cloud data center environment
in cloudsim simulator, we created five different types of
VMs requested by the cloud customers at the cloud data
center. To create a number of VMs, we used PlanteLab
dataset [36], and Amazon Ec2 VM instances. An overall

TABLE 3. VM’s instances.

configuration of different types of VMs is described in
Table 3. In the PlanetLab dataset, we randomly selected
several VMs requested in 10 days from March 2011 to
April 2011. Further, we divided the total number of VMs
requested by the customer during a day into five categories:
small, medium, large, extra large, and 2 large. Fig. 3 shows
the day-wise VMs requested by the cloud customer a the
cloud data center. Further, we performed VMs allocation
and migration at the cloud data center by implementing
our proposed VMs allocation and migration algorithms in
cloudsim simulator’s VMs allocation and migration classes.
To check the superiority of our proposed Branch-and-
Price VMs allocation algorithm, we compared our proposed
algorithm with state-of-the-art designed four approximation
algorithms such as First Fit Decreasing (FFD), Best Fit
Decreasing (BFD), Modified Best Fit Decreasing (MBFD)
[20], First Fit Decreasing Height (FFDH) [37], and two
Bio-inspired algorithms such as Genetic Algorithm (GA),
and Energy Efficient Task Scheduling Algorithm (ETSA)
[38]. The performance of the proposed VMs allocation with
existing algorithms is compared on the basis of different
performance metrics such as resource utilization and power
consumption. Fig. 4 shows the day-wise percentage of CPU
utilization at the cloud data center.

The percentage of CPU utilization is high in the case of
our proposed Branch-and-Price VMs allocation algorithm
compared to other existing algorithms. The key reason
behind the high CPU utilization in the case of Branch-and-
Price is that Branch-and-Price selects the optimal number
of PMs for the VMs allocation. Therefore, CPU wastage is
less in the case of the Branch-and-Price algorithm. Fig. 5
and Fig. 6 show the percentage of RAM and percentage
of storage utilization respectively. In the case of both the
resources such as RAM and storage the proposed Branch-
and-Price VMs allocation algorithm performs better than
existing approximation and Bio-inspired algorithms. The key
reason behind the high resource utilization in the case of
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FIGURE 3. VMs requested at the data center.

FIGURE 4. % of CPU utilization.

FIGURE 5. % of RAM utilization.

the proposed algorithm is that because the Branch-and-Price
algorithm is an exact algorithm therefore, for VMs allocation,
it selects the best PM from the datacenter by generating the
branch in the search tree. Therefore, the resource wastage
is less in the case of the proposed Branch-and-Price VMs
allocation algorithm than other algorithms.

Among all the VM allocation algorithms, FFD and GA
perform worst because FFD is an approximation algorithm
that allocates the VM based on the first fit decreasing;
therefore, FFD does not search for the best PM for the
VM allocation. In the case of GA, it performs a random

search using crossover and mutation operations; therefore,
the probability of getting the best PM is low. Further,
BFD and MBFD are the approximation algorithms that do
not guarantee the optimal solution. The day-wise power
consumption of the cloud data centre is shown in Fig. 7. The
day-wise power consumption is less in the proposed Branch-
and-Price algorithm than other VMs allocation algorithms
because Branch-and-Price selects the minimum number of
energy-efficient PMs using the search tree at the cloud
data centre. The proposed Branch-and-Price VMs allocation
algorithm consolidates more VMs into fewer energy-efficient
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FIGURE 6. % of storage utilization.

FIGURE 7. Power consumption at the cloud data center.

PMs resulting in more number of PMs in switched-off
conditions at the cloud data centre. A larger number of
switched-off PMs reduced the power consumption at the data
centre.

After allocating VMs to PMs at the cloud data
center, we evaluate the performance of our proposed
multi-dimensional VMs migration algorithm. In this process,
we applied the Google 2019 cluster workload dataset [39].
The Google 2019 cluster dataset consists of fields such
as Workload ID, workload arrival time, CPU requirement,
memory requirement, storage requirement, etc. To check
the superiority of the proposed VMs migration technique,
we compared our proposed VMs migration algorithm with
recently proposed state-of-the-art VMs migration algorithms
such as CPU utilization-based VMs migration, Inter Quartile
Range (IQR) [40], SLA aware energy-efficient virtual
machine selection (MECpVmS) [21], Look-ahead Energy
Efficient VM Allocation (LAA) [38].
Fig. 8 shows the day-wise energy consumption at the cloud

data center. The energy consumption of the cloud data center
for the proposed MDVMM migration policy is less than
other state-of-the-art VMs migration techniques because the
proposed VMs migration technique migrate the VMs from

source PM to destination PM by taking into account all
the resources such as CPU, RAM, and Storage utilization.
Further, in the proposed VMs migration algorithm, a PM
selection for the VMs migration is based on the energy
efficiency and current workload of the PM. Therefore,
an optimal number of VM migrations are performed in the
proposed VMs migration algorithm. In the case of other
existing VMs migration algorithms the selection of VMs
is based on the CPU utilization only; therefore aggressive
number of VMs migration lead to more energy consumption
and SLA violation at the cloud data center.

In our proposed VMs migration algorithm all the VMs
from source PM (underutilized state) to destination PM
(energy-efficient state) are performed at the cloud data center.
After migrating all the VMs from source PM to destination
PM the source PM is switched off and thereby, we reduced
the energy consumption at the cloud data center.

Since, the VMs allocation and migration problems are
not only related to energy efficiency but also related to
SLA violation therefore, we evaluated different performance
metrics: energy consumption, number of VMs migration,
SLA violation, and ESV metrics. Fig. 9 shows the cloud
data centre’s min, max, and median energy consumption.
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FIGURE 8. Day-wise energy consumption at the cloud data center.

FIGURE 9. Energy consumption.

FIGURE 10. VMs migration.

The cloud data centre’s min, maximum, and median energy
consumption is low in the case of the proposed algo-
rithms because the proposed VMs allocation and migration
techniques consolidate the maximum number of VMs
into a minimum number of energy-efficient PMs at the
cloud data center. The medan power consumption in the
case of proposed MDVMM is very close to min power
consumption represents the selection of energy-efficient PM
as a destination PM during the VMs migration. Fig. 10
shows the min, max, and median number of VMs migrations

FIGURE 11. SLA violation.

FIGURE 12. ESV metric.

during the experiment. The min, max, and median number
of VMs migration is low in the case of proposed MDVMM
algorithm as compared to existingVMsmigration algorithms.
The Inter quartile Range (IQR) difference between the first
quartile range (Q1) and third quarterly range (Q3) i.e.
(Q1-Q3) is low in the case of MDVMM as compared to other
existing algorithms. The low Inter quartile Range describes
the stability of our proposed VMs migration algorithm as
compared to the algorithms.
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FIGURE 13. Confidence interval w.r.t power.

FIGURE 14. Confidence interval w.r.t VMs migration.

Fig. 11 shows the SLA violation of different VMs
migration techniques. The SLA violation is low in the case
of the proposed MDVMM technique because the proposed
approach migrates the VMs by considering all the resources,
such as CPU, RAM, and Storage. Hence, an optimal number
of VMs migrations promotes less SLA violation at the cloud
data center. In the case of other VMsmigration technique they
only considered the CPU utilization; therefore aggressive
(more number of VMs migrations) leads to more SLA
violations at the cloud data center.

Fig. 12 shows the performance of different VMs migration
algorithms on a combined performancemetric ESV. The ESV
metric shows the performance of the data center in terms of
two Pareto optimal objectives, such as energy consumption
and SLA violation. The min, max, and median values are
low in the case of the proposed approaches as compared to
other state-of-the-art techniques. Since the proposed method
performs well over both energy and SLA parameters, the
proposed system performs well on the ESV metric.

To check the applicability of our proposed VMs allocation
algorithm andmigration policy, we conducted our experiment
10 times and calculated the confidence interval of all the algo-
rithms. In this process, with 95% confidence, we calculate
upper and lower limits w.r.t. mean power consumption and
mean VMs migration. We added and subtracted the margin
of error with the point estimate (mean power consumption)
to calculate the upper and lower limits. In our experiment,
we set the significance value (α = 0.05), and the number of
experiments (n=10) and calculate the margin of error.

Fig. 13 shows the confidence interval of all the algo-
rithms w.r.t. mean power consumption at the cloud data
center. Fig. 13 horizontal bar represents the mean power
consumption during ten experiments. A small vertical line
on the horizontal bar represents the algorithm’s error margin.
In our experiment, the mean power consumed by the
cloud data center over different VMs allocation algorithms
is FFD(1050.6 KW), GA(1020 KW), BFD(865.3 KW),
MBFD(820.8 KW), FFDH(819.7 KW), ETSA ( 798.2 KW),
Branch-and-Price(705.9 kW). Further, a margin of error is
calculated for GA, FFD, MBFD, FFDH, ETSA, and Branch-
and-Price algorithms are 130.15, 49, 38.3, 32.9, 110, and 22,
respectively. Among all the VM allocation algorithms, the
margin of error is high in the case of GA and ETSA because
GA and ETSA are based on the randomized search, resulting
in a higher deviation of power consumption during different
experiments. Thus, GA and ETSA show low confidence.
Furthermore, the proposed Branch-and-Price is an exact
algorithm and uses the search tree to calculate the best
solution; therefore, the margin of error in the case of Branch-
and-Price is low. A low margin of error in the case of
the proposed Branch-and-Price VMs allocation algorithm
shows the high acceptability of our proposed VMs allocation
algorithm for the commercial cloud data center.

Fig. 14 shows the 95% confidence interval w.r.t. mean
number of VMs migration. The mean number of VMs
migrations calculated for CPU Based, IQR, MECpVMs,
LAA, and MDVMM are 1232, 1168, 1094, 1063, and 969,
respectively. Further, the margin of error for CPU Based,
IQR,MECpVMs, LAA, andMDVMMare 77, 65, 55, 40, and
37, respectively. The optimal number of VMsmigrations with
a low margin of error shows the superiority and adaptability
of the proposed VMs migration algorithm at the cloud data
center.

In the proposed MDVMM VMs migration technique,
we predicted a PM’s over-utilization and under-utilization
state by the least square method. The least square method
is simple to apply, computationally efficient, and flexible in
modelling. Therefore, it is helpful in real-timeVMsmigration
for commercial cloud data centers. But the critical limitation
of the least square method is that it assumes linearity and does
not consider the seasonality in the time series data.

V. CONCLUSION AND FUTURE WORK
This paper presented a Branch-and-Price-based VMs allo-
cation and MDVMM technique in two phases. In the first
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phase, a Branch-and-Price-based VMs allocation algorithm
is presented, reducing energy consumption and increasing
resource utilization. Further, PlanetLab-based VMs were
created in the data center. The proposed Branch-and-Price-
based VMs allocation algorithm reduced approximately 31%
power consumption and increased 20.7% average resource
utilization over other state-of-the-art techniques. Further,
we evaluated the performance of the proposed MDVMM
technique by applying Google cluster load to the data
center. The proposed MDVMM technique reduced energy
consumption and avoided the SLA violation at the cloud
data center. The proposed MDVMM technique migrated an
optimal number of VMs with a median value of 3300, which
is low compared to other methods. The proposed MDVMM
technique also performed well on performance metrics such
as energy, SLA violation, and ESV with 85 KWH, 0.61,
and 52 median values, respectively. Therefore, in the future,
we predict a PM’s over-utilization and under-utilization state
by applying different statistical models and machine learning
algorithms. In the future, we predict a PM’s over-utilization
and under-utilization state by applying different statistical
models and machine learning algorithms. We will also work
on reducing the network device’s energy consumption by tak-
ing the networking device’s (switches) power consumption at
the cloud data center.

REFERENCES
[1] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, ‘‘Cutting

the electric bill for internet-scale systems,’’ inProc. ACMSIGCOMMConf.
Data Commun., Aug. 2009, pp. 123–134.

[2] (Jan. 2023). U.S. Environmental Protection Agency. [Online]. Available:
http://www.hightech.lbl.gov/documents

[3] Z. Zhou, M. Shojafar, M. Alazab, J. Abawajy, and F. Li, ‘‘AFED-EF:
An energy-efficient VM allocation algorithm for IoT applications in a
cloud data center,’’ IEEE Trans. Green Commun. Netw., vol. 5, no. 2,
pp. 658–669, Jun. 2021.

[4] (2011). EPA Report on Server and Data Center Energy Efficiency.
Accessed: Jan. 2023. [Online]. Available: http://www.energystar.gov

[5] M. Pedram, ‘‘Energy-efficient datacenters,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 10, pp. 1465–1484, Oct. 2012.

[6] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, ‘‘Energy-efficient
resource allocation and provisioning framework for cloud data centers,’’
IEEE Trans. Netw. ServiceManage., vol. 12, no. 3, pp. 377–391, Sep. 2015.

[7] L. Guo, C. Lu, and G. Wu, ‘‘Approximation algorithms for a virtual
machine allocation problem with finite types,’’ Inf. Process. Lett., vol. 180,
Feb. 2023, Art. no. 106339.

[8] Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, and L. Liu, ‘‘Service level
agreement based energy-efficient resource management in cloud data
centers,’’ Comput. Electr. Eng., vol. 40, no. 5, pp. 1621–1633, Jul. 2014.

[9] X. Ruan, H. Chen, Y. Tian, and S. Yin, ‘‘Virtual machine allocation
and migration based on performance-to-power ratio in energy-efficient
clouds,’’ Future Gener. Comput. Syst., vol. 100, pp. 380–394, Nov. 2019.

[10] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, ‘‘Particle swarm
optimization for energy-aware virtual machine placement optimization
in virtualized data centers,’’ in Proc. Int. Conf. Parallel Distrib. Syst.,
Dec. 2013, pp. 102–109.

[11] N. K. Sharma and G. R.M. Reddy, ‘‘Novel energy efficient virtual machine
allocation at data center using genetic algorithm,’’ in Proc. 3rd Int. Conf.
Signal Process., Commun. Netw. (ICSCN), Mar. 2015, pp. 1–6.

[12] K. H. Kim, A. Beloglazov, and R. Buyya, ‘‘Power-aware provisioning
of virtual machines for real-time cloud services,’’ Concurrency Comput.,
Pract. Exper., vol. 23, no. 13, pp. 1491–1505, Sep. 2011.

[13] R. A. C. da Silva and N. L. S. da Fonseca, ‘‘Topology-aware virtual
machine placement in data centers,’’ J. Grid Comput., vol. 14, no. 1,
pp. 75–90, Mar. 2016.

[14] D. Borgetto, R. Chakode, B. Depardon, C. Eichler, J. M. Garcia, H. Hbaieb,
T. Monteil, E. Pelorce, A. Rachdi, A. Al Sheikh, and P. Stolf, ‘‘Hybrid
approach for energy aware management of multi-cloud architecture
integrating user machines,’’ J. Grid Comput., vol. 14, no. 1, pp. 91–108,
Mar. 2016.

[15] V. Ebrahimirad, M. Goudarzi, and A. Rajabi, ‘‘Energy-aware scheduling
for precedence-constrained parallel virtual machines in virtualized data
centers,’’ J. Grid Comput., vol. 13, no. 2, pp. 233–253, Jun. 2015.

[16] N. J. Kansal and I. Chana, ‘‘Energy-aware virtual machine migration for
cloud computing—A firefly optimization approach,’’ J. Grid Comput.,
vol. 14, no. 2, pp. 327–345, Jun. 2016.

[17] S. Ilager, K. Ramamohanarao, and R. Buyya, ‘‘ETAS: Energy and
thermal-aware dynamic virtual machine consolidation in cloud data center
with proactive hotspot mitigation,’’ Concurrency Comput., Pract. Exper.,
vol. 31, no. 17, Sep. 2019, Art. no. e5221.

[18] H. Li, Y. Zhao, and S. Fang, ‘‘CSL-driven and energy-efficient resource
scheduling in cloud data center,’’ J. Supercomput., vol. 76, no. 1,
pp. 481–498, Jan. 2020.

[19] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, and O.
Rana, ‘‘An energy and performance aware consolidation technique for
containerized datacenters,’’ IEEE Trans. Cloud Comput., vol. 9, no. 4,
pp. 1305–1322, Oct. 2021.

[20] J. Masoudi, B. Barzegar, and H. Motameni, ‘‘Energy-aware virtual
machine allocation in DVFS-enabled cloud data centers,’’ IEEE Access,
vol. 10, pp. 3617–3630, 2022.

[21] R. Mandal, M. K. Mondal, S. Banerjee, G. Srivastava, W. Alnumay,
U. Ghosh, and U. Biswas, ‘‘MECpVmS: An SLA aware energy-efficient
virtual machine selection policy for green cloud computing,’’ Cluster
Comput., vol. 26, pp. 651–665, Jul. 2022.

[22] Z. Li, K. Lin, S. Cheng, L. Yu, and J. Qian, ‘‘Energy-efficient and load-
aware VM placement in cloud data centers,’’ J. Grid Comput., vol. 20,
no. 4, p. 39, Dec. 2022.

[23] A. Ullah and A. Chakir, ‘‘Improvement for tasks allocation system in
VM for cloud datacenter using modified bat algorithm,’’Multimedia Tools
Appl., vol. 81, no. 20, pp. 29443–29457, Aug. 2022.

[24] P. Memari, S. S. Mohammadi, F. Jolai, and R. Tavakkoli-Moghaddam,
‘‘A latency-aware task scheduling algorithm for allocating virtualmachines
in a cost-effective and time-sensitive fog-cloud architecture,’’ J. Supercom-
put., vol. 78, no. 1, pp. 93–122, Jan. 2022.

[25] D. Li, Y. Yu, W. He, K. Zheng, and B. He, ‘‘Willow: Saving data center
network energy for network-limited flows,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 9, pp. 2610–2620, Sep. 2015.

[26] M. Polverini, A. Cianfrani, S. Ren, and A. V. Vasilakos, ‘‘Thermal-aware
scheduling of batch jobs in geographically distributed data centers,’’ IEEE
Trans. Cloud Comput., vol. 2, no. 1, pp. 71–84, Jan. 2014.

[27] Y. Huang, H. Xu, H. Gao, X. Ma, andW. Hussain, ‘‘SSUR: An approach to
optimizing virtual machine allocation strategy based on user requirements
for cloud data center,’’ IEEE Trans. Green Commun. Netw., vol. 5, no. 2,
pp. 670–681, Jun. 2021.

[28] P. Lv, Z. Zhang, Y. Deng, L. Cui, and L. Lin, ‘‘HVMM: A holis-
tic virtual machine management strategy for cloud data centers,’’
IEEE Trans. Netw. Service Manage., early access, Jul. 3, 2023, doi:
10.1109/TNSM.2023.3291890.

[29] W. Cerroni and F. Esposito, ‘‘Optimizing live migration of multiple virtual
machines,’’ IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 1096–1109,
Oct. 2018.

[30] A. H. Anwar, G. Atia, and M. Guirguis, ‘‘A game-theoretic framework
for the virtual machines migration timing problem,’’ IEEE Trans. Cloud
Comput., vol. 9, no. 3, pp. 854–867, Jul. 2021.

[31] B. Nikzad, B. Barzegar, and H. Motameni, ‘‘SLA-aware and energy-
efficient virtual machine placement and consolidation in heterogeneous
DVFS enabled cloud datacenter,’’ IEEE Access, vol. 10, pp. 81787–81804,
2022.

[32] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, and C. He, ‘‘Energy-efficient
migration and consolidation algorithm of virtual machines in data centers
for cloud computing,’’ Computing, vol. 98, no. 3, pp. 303–317, Mar. 2016.

[33] H. Li, G. Zhu, Y. Zhao, Y. Dai, and W. Tian, ‘‘Energy-efficient and QoS-
aware model based resource consolidation in cloud data centers,’’ Cluster
Comput., vol. 20, no. 3, pp. 2793–2803, Sep. 2017.

[34] A. Beloglazov and R. Buyya, ‘‘Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,’’ Concurrency
Comput., Pract. Exper., vol. 24, no. 13, pp. 1397–1420, Sep. 2012.

107494 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNSM.2023.3291890


N. K. Sharma et al.: Novel Energy Efficient Multi-Dimensional VMs Allocation and Migration

[35] IBM-Power-Model. (2014). Power Consumption Specification of Servers.
[Online]. Available: http://www-03.ibm.com/systems/power/hardware/

[36] P. CloudWorkload. (Jan. 2023). PlanetLab CloudWorkload Cluster Trace.
[Online]. Available: http://cloudbus.org/cloudsim/

[37] J. Lu, W. Zhao, H. Zhu, J. Li, Z. Cheng, and G. Xiao, ‘‘Optimal machine
placement based on improved genetic algorithm in cloud computing,’’
J. Supercomput., vol. 78, pp. 3448–3476, Jul. 2021.

[38] S. Talwani, J. Singla, G. Mathur, N. Malik, N. Z. Jhanjhi, M. Masud,
and S. Aljahdali, ‘‘Machine-learning-based approach for virtual machine
allocation and migration,’’ Electronics, vol. 11, no. 19, p. 3249, Oct. 2022.

[39] G. C. Workload. (Jan. 2023). Google Cluster Workload Cluster Trace.
[Online]. Available: https://research.google/tools/datasets/google-cluster-
workload-traces-2019/

[40] İ. Çağlar and D. T. Altílar, ‘‘Look-ahead energy efficient VM allocation
approach for data centers,’’ J. Cloud Comput., vol. 11, no. 1, pp. 1–16,
2022.

NEERAJ KUMAR SHARMA received the B.E.
degree from JIT, Khargone, Madhya Pradesh,
India, in 2005, the M.E. degree from IET, DAVV,
Indore, Madhya Pradesh, in 2010, and the Ph.D.
degree from the Cloud Computing, National Insti-
tute of Technology Karnataka, Surathkal, India,
in 2018, with a focus on energy efficient resources
management. He is currently an Assistant Pro-
fessor with the Department of Computer Science
and Engineering, SRM University AP, Amaravati,

India. He has published many research articles in high-impact factor
journals of IEEE TRANSACTIONS, Elsevier, and Springer. He has published
many papers in international conferences and book chapters. His research
interests include machine learning, deep learning, cloud computing/green
data centers, computer vision, and NLP.

SRIRAMULU BOJJAGANI (Senior Member,
IEEE) received the B.Tech. degree from JNTU
Hyderabad, India, the M.Tech. degree in infor-
mation technology from the Andhra University
College of Engineering, Visakhapatnam, India,
and the joint Ph.D. degree from the School of
Computer and Information Sciences, University
of Hyderabad, and the Institute for Development
and Research in Banking Technology (Established
by the Reserve Bank of India), in 2019, with a

focus on design, testing and formal verification of secure mobile payment
protocols. He is currently an Assistant Professor with the Department of
Computer Science and Engineering, SRMUniversity AP, Amaravathi, India.
He has published in many SCI/SCIE-indexed journals and international
conference proceedings and was the inventor of several Indian patents. His
research interests include the secure protocol design and formal verification
of mobile payment applications, IoV, the IoT, and IoMT. He is a Reviewer of
many reputed journals, such as IEEE INTERNETOF THINGS, IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON INTELLIGENT
VEHICLES, IEEE ACCESS, Elsevier, Springer, and Wiley. He has been involved
in the research community as a Technical Program Committee (TPC)
member for more than a dozen international conferences of high repute. He
received a cash prize for the IDRBT Annual Awards 2019 for his research
work on ‘‘A secure end-to-end proximity NFC-based mobile payment
protocol" published in CSI-Elsevier.

Y. C. A. PADMANABHA REDDY received
the B.Tech. degree from MITS, Madanapalle,
the M.Tech. degree from RGMCET, Nandyal,
Kurnool, and the Ph.D. degree from JNTUA,
Anathapuramu, in 2019, with a focus on fast
semi-supervised clustering methods to find arbi-
trary shaped clusters. He is currently an Associate
Professor with the Department of CSE, B V
Raju Institute of Technology, Narsapur, Telangana,
India. His research interests include machine

learning, deep learning, and pattern recognition.

MANOJKUMAR VIVEKANANDAN received the
Ph.D. degree from the National Institute of
Technology, Tiruchirappalli, India, (IDRBT Fel-
lowship) in 2021, with a focus on designing and
developing authentication protocols for various
applications. He is currently anAssistant Professor
with the Department of Computer Science and
Engineering, SRM University AP, Amaravati,
India. He has published many SCIE-indexed jour-
nals with good impact factors, many conference

papers, and book chapters of international repute. His research interests
include mobile cloud computing, the Internet of Things, authentication,
cryptography, and blockchain. He is a Reviewer of some reputed journals,
including The Journal of Supercomputing and the Journal of Ambient
Intelligence and Humanized Computing (AIHC).

JAGADEESAN SRINIVASAN received the B.E.
degree in computer science and engineering from
the Dhanalakshmi Srinivasan Engineering Col-
lege, Anna University, in 2006, the master’s degree
in software engineering from Anna University,
Tiruchirappalli, in 2009, and the Ph.D. degree in
wireless ad-hoc networks from Anna University,
Chennai, India, in 2019. He has been in the
teaching profession, since 2009. He is currently an
Assistant Professor Senior Grade 2with the School

of Information Technology and Engineering, Department of Software and
Systems Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu,
India. He has published many SCIE-indexed journals with good impact
factors, many conference papers, and book chapters of international repute.
His research interests include network security, intrusion detection, cross-
layer design, wireless ad-hoc networks, and cyber security.

ANUP KUMAR MAURYA received the B.Sc.
degree in mathematics from DDU Gorakhpur
University, the master’s degree in computer appli-
cation from Uttar Pradesh Technical University,
the M.Tech. degree in artificial intelligence from
the University of Hyderabad, and the joint Ph.D.
degree in secure wireless sensor networks and
Internet of Things from the Institute for Devel-
opment and Research in Banking Technology
(IDRBT, established by RBI) and the University of

Hyderabad. He was selected as a Visiting Researcher at The State University
of New York at Buffalo (Centre for Unified Biometrics and Sensors),
USA, and has worked there on biometric-based efficient user authentication
protocols. He is currently an Assistant Professor with the Goa Institute of
Management. He has various research publications, including one special
mention, where he got the Best Research Paper Award from the International
Symposium on Security in Computing and Communication Manipal. He is
a reviewer of various reputed international journals.

VOLUME 11, 2023 107495


