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ABSTRACT Due to the inherent limitations of matching algorithms and the complexities associated
with image contents, mismatches are inevitable and can have detrimental effects on downstream tasks in
computer vision and remote sensing. Researchers have published numerous reviews on mismatch removal,
which may suffer from two primary deficiencies. Firstly, these reviews are often embedded within studies
that primarily focus on image matching, thereby limiting the detailed and comprehensive analysis of
mismatch removal methods. Secondly, reviews of deep learning (DL)-basedmethods, despite their numerous
existence and interconnection, tend to be fragmentary and lack a systematic approach. To address these two
shortcomings, this paper presents a comprehensive survey of DL-based mismatch removal principles and
methods.We provide a summary of network architectures, techniques for extracting geometrical information,
and various training modes. Specifically, we highlight the importance of permutation invariance in mining
operations, enumerate amajority of existingminingmethods, and provide an explanation of their permutation
invariant properties. Furthermore, we present both the intuitive motivation and mathematical analysis of
commonly used methods, elucidating their underlying principles and efficacy. In the conclusion, we predict
upcoming trends based on the findings of our review, aiming to provide valuable insights into mismatch
removal techniques and guide their practical applications.

INDEX TERMS Image matching, mismatch removal, deep learning, geometrical information mining,
permutation invariant.

I. INTRODUCTION
Image matching lies the core of fundamental computer and
remote sensing vision tasks [1], [2], such as instance retrieval
[3], [4], 3D scene reconstruction [5], [6], automatic position-
ing of sensors [7], [8], and image classification [9], [10]. Due
to inevitable radiometric and geometric distortions between
images, considerable mismatches are mixed with correct
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matches which will impair the subsequent applications. Thus,
a mismatch removal process is necessary to retain as more
correct matches while maintain high matching precision. The
key challenge in solving the mismatch removal problem lies
in modeling the geometric invariance among correct matches.
However, two major challenges still exist: firstly, the invari-
ance cannot be accurately represented by a single model, as is
the case in nonrigid matching [11], [12] and multi-model
image matching [13]; Secondly, there is a lack of robust
estimators that can accurately estimate the model without
being influenced by mismatches.
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Researchers have made extensive efforts to address the
first challenge by accurately describing the local or global
geometric transformations between image pairs. Global
transformations are commonly used when image pairs exhibit
rigid geometric relationships. For instance, the fundamen-
tal or essential matrix is suitable for image pairs captured
by pin-hole cameras [14], while the homography matrix is
appropriate for images captured by satellite cameras [15],
[16], [17]. On the other hand, local transformations provide a
more generalized approach and can describe complex geo-
metric relationships between image pairs. These complex
relationships can arise due to various factors, including non-
rigid transformations [18], [19], [20], [21], [22], [23], [24],
[25], [26], occlusion and repetitive patterns [27], [28], [29],
[30], [31], and sensor distortions [32], [33], [34], [35], [36],
[37]. Both global and local transformations offer unique
advantages in handling image geometry. Global transfor-
mations can be easily and accurately estimated, resulting
in efficient algorithms. However, their application is often
limited to specific scenarios. In contrast, local transforma-
tions can be applied to arbitrary image pairs. The local
transformations are often estimated by non-rigid transforma-
tion estimators. For example, Grid-based Motion Statistics
(GMS) [25] proposes a real-time and robust estimator by
encapsulatingmotion smoothness as statistical likelihood of a
certain number of neighboring matches; Locality Preserving
Matching (LPM) [11] proposes an algorithm of linear time
and space complexity by mining neighboring true matches;
Locality Affine-invariantMatching (LAM) [38] is also an lin-
ear time and space complexity algorithm, while the estimator
is implemented a local barycentric coordinate and matching
coordinate matrices. These non-rigid transformation estima-
tors are still prevalent because of their effectiveness and
efficiency, and they have great impacts on the designs of
neural networks ofmismatch removal.While their calculating
processes can be progressive and involve numerous user-
defined parameters that may not be easily tuned.

To tackle the second challenge, various robust estimators
have been introduced. In the early years, techniques such as
data-snooping [39] and iteratively reweighted least squares
(IRLS) [40] were employed to estimate models with low
outlier rates in matching. Since its introduction in 1981,
RANdom Sample Consensus (RANSAC) [41] and its vari-
ants have remained prevalent for over four decades [41].
Generally, these resample-based methods follow a process
of sampling, hypothesis formation, and verification. Firstly,
samples are drawn from a probability distribution established
under mild assumptions [41], [43], [44] or estimated based on
spatial coherence or radiometric similarity [45], [46], [47],
[48], [49], [50], [51]; Subsequently, geometric models (rigid
or non-rigid) are estimated during the hypothesis formation
stage. Finally, the estimated models are verified using puta-
tive matches, and the optimal model is selected based on
the maximum consensus set. Resample-based methods, such
as RANSAC and its variants, are typically more robust to

higher outlier rates compared to data-snooping and IRLS. For
example, the most recent Quadratic-time Guaranteed Outlier
Removal (QGORE) [52] certifies the geometric consistency
via resampling processes for upper bound estimation, and
it is claimed that the method is efficient and can cope with
outlier rate higher than 95%, while the algorithm is designed
specially for point cloud registration.

In addition, non-resample-based robust estimators can
also be immune to high outlier rate. For example, Adap-
tive M-estimators (AM-estimators) [53] uses shape-control
parameters to replace the original constant parameter in the
weight function, and it applies a coarse-to-fine process to
purify the matches, experiments show that AM-estimators
can deal with matches with outlier rate as high as 80%;
Scaled Welsch q-Norm [54] likewise uses a coarse-to-fine
process but changes the weight function by decreasing its
scale parameter, the proposed method is still robust even if
the outlier rate is up to 90%. However, non-resample-based
robust estimators are analogous to the non-rigid transfor-
mation estimators, they both have many scenario-specified
parameters which are not easily tuned.

Deep learning (DL)-based methods have the ability to
address both challenges (comparisons of representative meth-
ods are shown in Figure 1). The problem ofmismatch removal
can be seen as a binary classification problem that has been
extensively studied and successfully addressed using DL.
DL-based methods employ deep neural networks (DNNs)
to generate a matching probability or weight that signifies
whether a match is an outlier. Theoretically, an appropri-
ate DNN can accurately approximate the geometric model
among inliers [55], [56]; moreover, the generated weights
can be leveraged to further refine the geometric model; addi-
tionally, the DNN is trained iteratively to enhance prediction
precision and model accuracy. Thus, given sufficient train-
ing data, DL-based methods usually outperform traditional
handcrafted methods. Nonetheless, when employing DNNs
for mismatch removal, three issues need to be resolved.

Firstly, DNNs applied in image classification cannot be
directly migrated to the classification of matches since
inputted training data in these two tasks have noteworthy
differences. Images are composed of pixels arranged in a
specific order, and altering the order of pixels generates
new images. While matches can be viewed as point clouds
composed of unordered pairs of 2D coordinates. Despite the
disordering of these coordinate pairs, they remain the same
point clouds. Therefore, changes in the order of matches do
not affect the features of the matches (note, the features will
be used to separate inliers from outliers). Mathematically, if a
DNN g follows the formula:

g(P× F) = g(F) (1)

where F ∈ RN×C is a feature map, its every row vector is
a feature vector of a match which is embedded with geo-
metrical information, and P ∈ {0, 1}N×N is a permutation
matrix, then the network is called a permutation-invariant
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network (PIN) [57]. To ensure permutation-invariant, some
operations typically employed in processing images, e.g.,
convolutions with kernel size greater than one, cannot be
utilized to extract geometrical information of matches. Alter-
natively, numerous permutation-invariant operations, such as
points-wise multilayer perceptron (point-wise MLP [57], i.e.,
convolution with kernel size equal to one), pooling [58],
k-nearest neighbor (KNN) [59], [60] aggregation, normal-
ization [61], attention [62], [63], as well as some operations
based on graphs (e.g., graph convolution [64], graph pooling
[65], and graph attention [66]) are widely employed to extract
local-global information, thereby aiding in the removal of
mismatches.

Secondly, PINs should integrate the local with global geo-
metric information to enhance the separability of matches;
meanwhile, the information should be specifically gathered
from matching inliers while excluding any contamination
from matching outliers. Local information gathered from
neighboring matches can be effectively modeled, as local
geometric variations between images exhibit smoothness.
Global information is generally constructed based on local
information, which is concatenated with local informa-
tion to enhance the distinguishability. The main concern is
how to aggregate information from matching inliers while
neglect noise from outliers. Currently, attention [62], [63] and
weighting are widely used solutions due to their simplicity
and interpretability.

Thirdly, most PINs are trained in a supervised man-
ner, remanding matching labels or ground truth geometrical
constraints, such as epipolar geometrical (EG) constraints
or homography transformation between matches. Whereas,
labeling data is cumbersome and time-consuming, and
inevitable wrong labels may pose negative effects on the
performances of the PINs [67]. Therefore, an unsupervised
learning approach is crucial and urgent in order to improve
both training efficiency and the generalization of PINs.
Currently, most unsupervised methods are built upon the
assumption that the optimal geometrical model is the one
with the maximal consensus set. That is, the maximal cluster
of matches in high dimensional space form an inlier set
under the constraint of the correct geometrical model. Thus,
to construct an unsupervised learning framework, the first
step is applying PINs to project coordinates of matches to
high dimensional space (i.e., extracting features of matches);
then modulating these features to output matching proba-
bilities (weights); finally, utilizing resampling methods [68]
or weighted regression methods [69] to obtain a maximal
consensus matching set.

Since the first DL-based mismatch removal paper, ‘‘Learn-
ing to Find Good Correspondences’’ (LFGC) [70] was
introduced in 2018, extensive research has been conducted
to address and resolve the aforementioned issues. However,
to our knowledge, no existing paper thoroughly summarizes
the similarities and differences between these algorithms,
the theoretical foundations behind their operations, and

FIGURE 1. Exampled representative methods, remaining correct and false
matches are linked by green and red lines, respectively. (a) RANSAC [40],
remaining 73 correct and 33 false, (b) GMS [25], remaining 231 correct
and 85 false, (c) LFGC [70], remaining 125 correct and 30 false, and
(d) ULMR [68], remaining 258 correct and 9 false.

provides systematic classifications of the proposed methods.
In this regard, we provide a comprehensive survey of the
DL-based methods, explain the permutation-invariance of
operations, and analyze the effectiveness of mathematical
models. The paper is organized as follows. Section II for-
mulates the mismatch removal problem, Section III gives the
commonly-used network architectures, Section IV presents
the permutation-invariant operations, Section V shows how
to build a supervised or an unsupervised training framework,
and Section VI concludes representative DL-based methods
(shown in Table 1) and points out the future trends.

II. PROBLEM FORMULATION
Given an image pair (I , I ′), a putative matching set
X = {xi}Ni=1 can be extracted by handcrafted methods
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(e.g., SIFT [71]) or learning-based methods (e.g., Super-
Glue [72]), where N is the element number of the matching
set, xi = (ui, vi, u′

i, v
′
i) is a match, (ui, vi) and (u′

i, v
′
i) are the

2D coordinate of two matched keypoints in image I and I’,
respectively. The match xi representing by a 4D coordinate
are sometimes normalized by the image size [72] or camera
intrinsic parameters [70] to alleviate the negative effect of
scale changes:

(u, v) = ((ur − a1)
/
a2, (vr − b1)

/
b2) (2)

where (u, v) is the normalized 2D coordinate, (ur , vr ) is the
original pixel coordinate; if the camera intrinsic parameters
are given, a2 = fx and b2 = fy are the focal lengths in
x and y direction, respectively; (a1, b1) = (cx , cy) is the
principal point offset; if the camera intrinsic parameters are
not available, (a2, b2) = (l1/2, l2/2) where l1 and l2 are the
image width and height, a1 = b1 = max(l1, l2).
As stated in [1], mismatch removal is a process of removing

false matches from putative matching sets by using extra
geometric constraint. Specifically, from the perspective of
DL, this process can be formally described as:

w = gω(X ), E = ϕ(w,X ) (3)

where w is a vector of weights and wi is the matching proba-
bility of match xi, X is the matrix representation of the set X ,
ϕ(·, ·) is a weighted regression model and E is the regressed
geometrical model between matches, gω(·) is a PIN with a
learnable parameter ω. Note, some radiometric information,
such as nearest neighboring distance ratios (NNDR) [71]
generated from descriptor matching, can be included in xi,
while Equation (3) does not loss the generality since increas-
ing the depths of the first convolutional layer of g can still
accommodate these types of data.

The objective of DL-based methods is to design a PIN and
learn its optimal parameters. The optimal PIN assigns higher
weights for matching inliers and lower weights for outliers
(ideally, 0 for outliers and 1 for inliers). Consequently, though
mixed with considerable mismatches, correct matches are
retained as more as possible and matching precision are also
maintained.

III. NETWORK ARCHITECTURE
The network architectures of PINs for mismatch removal
mainly contain two types of blocks: (1) information min-
ing blocks (IMBs), aiming to mine geometrical information
to build features of matches; (2) weight generating blocks
(WGBs), aiming to modulate these features to output match-
ing probabilities. Furthermore, IMBs are constructed by a
series of permutation-invariant operations, and WGBs are
typically located at the end of DL networks and use activation
functions to normalize the upstream outputted digits to a
range of 0 to 1.

Many activation functions, such as Sigmoid function [73],
[74] and binary step function, have the ability of normalizing
a digit number to 0 to 1, and debates regarding the perfor-
mances of activation functions are still ongoing [75].While in

mismatch, the choice of activation functions somewhat have
clues: if there needs to regress a geometric model between
matches (e.g., E in Equation (2)), then the activation function
could be the combination of rectified linear unit (ReLU) [76]
and hyperbolic tangent (Tanh) function [77]; if the regression
is not needed, Sigmoid and Softmax function are suitable
alternatives. This is because outliers can be perceived as
chaotic noises that cannot contribute to regular and powerful
positive signals or features. The combination of the activa-
tion functions effectively suppresses weak features that are
generated from outliers, and it can be illustrated in Figure 2.
Comparing to Sigmoid function, the combination functions
yield greater response if the signal intensity is greater than
6.000, and they exhibit weaker responses if the input is
smaller than 0.881.

WGBs and IMBs are combined to form a linear structure
and a ‘‘T’’ structure. The specific details of these two struc-
tures will be presented in the following sections.

FIGURE 2. Plots of f(x) = Sigmoid(x) and f(x) = ReLU(Tanh(x)).

A. LINEAR STRUCTURE
The linear structure is constructed by a cascade of IMBs,
and a residual connection [78] may be included between two
adjacent IMBs to avoid the vanishing gradient problem [79].
At the end of the linear structure, a WGB is used to produce
the weights (as shown in Figure 3).

The majority of existing PINs are linear, with LFGC [70]
is of the typical. The IMBs of LFGC is consist of 12 Resnet
blocks (the block is also called as PointCN, where CN is
short for context normalization and it will be detailed in the
following), andWGB is at the end of the network constructed
by the combination of ReLU and Tanh. Attentive Context
Normalization Network (ACNe) [80] uses a weighted CN on
the consideration of CN may be afflicted by outliers; to com-
pensate for the missing local information of CN, Neighbor
Mining Network (NM-Net) [81] employs K nearest neighbor
(KNN) searching to aggregate local information; Order-
Aware Network (OA-Net) [82] utilizes pooling algorithm to
integrate local information. Henceforth, CN, KNN mining,
and pooling are the standard operations for constructing a
linear structure.

The IMBs in the linear structures can be organized in two
modes [83]: one-shot and progressive. The former operates
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FIGURE 3. Linear structure of PIN architecture.

FIGURE 4. Organization modes of IMBs.

with features and fine-tuned features as input and output,
while for the latter, the input and output are correspon-
dences and pruned correspondences, respectively (schematic
illustrations of the two modes are shown in Figure 4). For
instance, in order to address the imbalance between inliers
and outliers, Guided Loss and Hybrid Attention (GLHA)
[84] constructs a coarse-to-fine cascade network by using
attention mechanism; Consensus Learning Network (CLNet)
[83] learns a network by progressively pruning the correspon-
dences; Interactive Generative Structure Network (IGS-Net)
[85] captures the coarse-to-fine transformations of matches
through progressive representation learning. In summary, for
the purpose of designing a deeper network, most of the IMBs
are organized in the one-shot mode. While input and output
features in the progressive mode have different feature sizes
which lead to networks cannot be skip-connected, therefore
progressive- mode networks cannot go deeper.

B. ‘‘T’’ STRUCTURE
Drawing inspiration from the ‘‘squeeze-and-extraction’’
operation [86], [87], ‘‘T’’ structure is proposed aiming to
extract channel-wise geometric information. It has two main-
streams: a ‘‘−’’ mainstream and a ‘‘|’’ mainstream. The ‘‘−’’
stream is organized as the linear structure, and the ‘‘|’’ stream
receives the outputs of every IMB in the ‘‘−’’ stream and
finally outputs the features of matches (the schematic illus-
tration of the ‘‘T’’ structure is shown in Figure 5).

FIGURE 5. ‘‘T’’ structure of PIN architecture.

‘‘T’’ structure network was firstly introduced by
T-Net [84]. It adopts ‘‘−’’ stream to iteratively learn fea-
tures of matches and another ‘‘|’’ stream to integrate the
features and generate matching probabilities. ‘‘T’’ structure
has enlightened the design of sub-networks. For example,
Point2CN [89] leverages PointCN [70] to extract the hier-
archical features from subsets of feature maps and fuses the
learned results by weighted addition; similarly, Permutation-
Equivariant Split Attention Network (PESA-Net) [90] begins
by splitting features into paths and learning multiple geomet-
ric information by MLPs, it then applies a union operation to
aggregate information and ultimately generates the matching
probabilities; additionally, Preference-Guided Filtering Net-
work (PGFNet) [91] employs the same splitting operation
as PESA-Net and introduces a grouped residual attention
mechanism to recalibrate and fuse the input features.

C. COMPARISON OF NETWORK STRUCTURES
Compared to the linear structure, ‘‘T’’ structure theoretically
has two main merits. Firstly, networks of the linear structure
cannot go deeper although residual connections are often
used. In contrast, the ‘‘T’’ structure has a network depth that
is approximately half of the linear structure, theoretically
enabling the networks to go greater depths. Secondly, in the
linear structure, as shown in Figure 3, only the outputs of the
last IMB are used for predicating the matching probabilities,
resulting in the loss of valuable information generated by the
previous IMBs [88], while for ‘‘T’’ structure, all the outputted
results are treated equally to predict the probabilities and
thus can retain as much information as possible. While it is
a common sense that network should be deeper, thus most
mismatch removal networks are linear, and ‘‘T’’ structure
networks are sometimes function as Resnet aiming to avoid
vanishing gradient problem.

IV. GEOMETRICAL INFORMATION MINING
To construct stable and separable features of matches, exten-
sive algorithms are proposed to construct IMBs trying to
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mining more geometric information while keeping IMBs
invariant to permutation of matches. There exist some oper-
ations making up the foundational basis of IMBs, to sum
up, the foundation operations consist of point-wise MLP
(Section IV-A), normalization (Section IV-B), attention
mechanism (Section IV-C), and some operations on the graph
(Section IV-D). This section will provide formal descriptions
of the aforementioned operations along with proofs or expla-
nations to demonstrate their invariance. Furthermore, some
technical details and variants of these operations are also
presented.

A. POINT-WISE MLP
Point-wise MLP [57] is a prerequisite operation for project-
ing coordinates of correspondences, and it also a common
operation for altering the dimensions of learned features.
To simplify and without losing generality, let’s consider a
feature fi and assume the MLP is a one-layer network without
activation, then point-wise MLP can be written as:

MLP(fi) = W × fi (4)

where W is a learned projecting matrix. The function of the
point-wiseMLP, as demonstrated in Equation (4), is to project
the feature fi to other space. If fi is a match, it is a 4D coordi-
nate andmay not be separable due to its low dimensional [92].
By using point-wise MLP, the 4D point is re-projected to a
high dimensional space in which the separability of the match
will be increased [92]; if fi is a feature, the point-wise MLP is
utilized to learn distinctive features in different dimensional
spaces, these features are subsequently aggregated by the
downstream IMBs to facilitate the separation of inliers from
outliers.

Since point-wise MLP is operating on a signal feature and
the learnable parameters are shared (as shown in Figure 6),
permutation of a feature is itself. Therefore, the point-wise
MLP is permutation invariant.

FIGURE 6. Schematic illustration of point-wise MLP. W is the shared
learnable parameters, fi is the input feature, and f ′

i is the corresponding
learned feature.

B. NORMALIZATION
Commonly used normalizations [61] in DL, such as batch
normalization (BN) [93], instance normalization (IN) [94],
layer normalization (LN) [95], and et. al., can benefit for
the performances of PINs if they are appropriately used.

Additionally, some specialized normalization methods exist
for PINs that aim to improve the separability, such as CN [70]
and Attentive Context Normalization (ACN) [80].

1) CONTEXT NORMALIZATION
CN, Similar to MLP, is another standard operation used
in the construction of a PIN. Given a set of features
F = {fi}N1 , CN normalize the features by the mean and
standard deviation:

CN(fi) =
fi − µ

σ
,

µ =
1
N

N∑
i=1

fi, σ =

√√√√ 1
N

N∑
i=1

(fi − µ)2 (5)

where µ is the mean and σ is the standard deviation. Since
the mean and standard deviation are invariant to permutation
of features, and CN is operating on a single feature (i.e., CN
is point-wise). Therefore, CN is permutation invariant. It is
important to note that although the mathematical form of CN
is very similar to BN, the two have distinct meanings. In BN,
F represents a batch of features, and N is the batch size
which can be various; While for CN, F denotes a feature set
generated from putative matches,N is the feature number and
is fixed if matches are established.

The effectiveness of CN is very similar to that of data-
snooping [38] which is referred as an ancient outlier removal
method. Given li is a measurement of l, thenN measurements
can generate a set of residual errors, each consisting of N
elements. In Ordinary Least Square (OLS) [96], the set of
residual errors can be denoted as R = {ri}N1 = {li − µl}

N
1

where µl is the exception of l. Additionally, we can cal-
culate the normalized residual error of ri: r̄i = ri

/
σri =

(li − µl)
/
σri , where σri is the standard deviation of ri. It has

been proven that if the measurements do not contain outliers,
then r̄i admits a standard normal distribution [39]. If the
absolute value of calculated r̄i is significantly large, it indi-
cates a deviation from the assumption of a standard normal
distribution. Consequently, the corresponding measurement
li may contain gross error and can be classified as an outlier.
In mismatch removal networks, CN generally functions as a
denoiser that enhances the responses of inliers and suppresses
the responses of outliers.

2) ATTENTIVE CONTEXT NORMALIZATION
Equation (5) demonstrates that the mean and standard devi-
ation can be obtained through the calculation of the first and
secondmoments of the features. This holds true in the context
of OLS, where measurements only contain random errors.
However, when a significant number of outliers are present,
the estimations of mean and standard deviation become
imprecise, resulting in negative impacts on the performance
of CN. To address this issue, ACN [80] is proposed:

ACN(fi) =
fi − µw

σw
,
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FIGURE 7. Illustration of the two attention modes. (a) SA, and (b) CA.

µw =

N∑
i=1

wi × fi,

σw =

√√√√ N∑
i=1

wi(fi − µw)2, w = gω(F) (6)

where σw and µw are the weighted mean and standard devia-
tion,w ∈ RN is the learned weights ranging from 0 to 1 andwi
is the weight corresponding to feature fi, g is a neural network.
ACN is permutation invariant since g is a PIN.
If g is capable of learning appropriate weights for the

features, then it will be unaffected by outliers and can make
precise estimations of the mean and standard deviation. Con-
sequently, the performance of CN will be improved. While in
shallow networks, the weights cannot be effectively learned
due to the less distinguishable output features of the net-
works. To address this limitation, the improved version of
ACN, Bayesian Attentive Context Normalization (BACN)
[84], was introduced. Whereas, BACN employs NNDR [71]
to compensate for the dilemma of weight learning in shal-
low networks, which are not available if matches are not
generated from feature matching. As CN is generally fol-
lowed by other normalizations which will cause disturbing
information from other image pairs [97], Two-step Sparse
Switchable Normalization (TSSN-Net) [98] learns a switch-
able normalizer among BN, IN, and LN, and therefore avoids
the disturbance of the defective information. In summary,

normalization methods can be served as denoisers that
enhance signals from inliers and suppress that from outlier,
therefore they are commonly used as a preprocessing step to
filter features of matches.

C. ATTENTION
Attention is one of the widely employed techniques in the
field of natural language processing (NLP) [62], it is firstly
introduced to eschew recurrent networks (such as long short-
term memory [99], and gated recurrent [100]). Subsequently,
attention is introduced to the field of computer vision [101],
and later, it gains prominence in mismatch removal for its
effectiveness and ease of implementation. Formally, attention
defines a function on a feature set F :

W = ATN(F) (7)

where F ∈ RN×C is the matrix representation of F , ATN(F)
is the attention from F , W is the attention map. There are
massive variants of attentions, and these variants can be
classified into two primary types: spatial attention (SA) [62]
and channel attention (CA) [86], [102], the former generates
weights from the spatial compatibility and reweights fea-
tures, the latter generates weights from feature channels and
recalibrates feature channels (the two modes are depicted in
Figure 7).
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FIGURE 8. Illustration of two-head attention. SA1 and SA2 are the two-head attentions which produce the weights W SA1 and
W SA2 , then weighting on the V1 and V2 respectively to generate two features F SA1 and F SA2 , and concatenating the two to
output the final features.

1) SPATIAL ATTENTION
SA leverages spatially (geometrically) related information
among features and assigns weights to these features based on
their spatial compatibility. Commonly, SA has the following
form:

W SA
= SA(F) = Softmax(Q× KT ) (8)

where K = gω1 (F) ∈ RN×C and Q = gω2 (F) ∈ RN×C are
referred to as key and query, respectively, C is the number of
channels, gω1 (·) and gω1 (·) are PINs with learnable param-
eters ω1 and ω2, W SA

∈ RN×N with its elements ranging
from 0 to 1 is the weight generated by SA. W SA is generally
called self-attention since it is essentially originated from the
feature set F and itself. By using W SA, the features can be
reconstructed:

FSA = W SA
× V (9)

where V = gω3
(F) ∈ RN×C is called value.

Equation (8) can be rewritten as an element-wise form:

wSAi,j = Softmaxi(qi × kTj ) (10)

where wSAi,j is the element of W SA in i-th row j-th column, qi
and kj are the i-th and j-th row vector ofQ andK , respectively.
Since K and Q are the outputs of PINs, they can be regarded
as the features of F in new spaces. In addition, the dot product
represents the spatial correlation between two vectors. Thus,
Equation (10) provides the spatial compatibilities of two
feature vectors. As wSAi,j is generated from feature pairs and it
remains unchanged when the order of features is exchanged,
thus SA is permutation invariant.

By using Equation (10), Equation (9) can be rewritten as:

f SAi =

N∑
j=1

wSAi,j × vj (11)

where vj is the j-th feature vector in V , and f SAi ∈ R1×C the
new generated i-th feature inFSA. Equation (11) demonstrates
that the newly generated feature is a weighted summation

of multiple features: if the j-th feature is highly correlated
with i-th feature, then j-th feature will contribute more in
generating f SAi . As wSAi,j represents the spatial consistency,
f SAi is essentially embedded with the motion coherence of
features [103].

SA can be extended to multiple heads [62]. Multiple head
attentions can be constructed by multiple projections of F ,
and the final features are produced by concatenating the
generated features of each head (an example is shown in
Figure 8). Multi-head attention is analogous to multi-filter
used in Convolutional Neural Networks (CNNs), this tech-
nique can enhance the separability of matching features by
capturing multiple distinctive patterns [104].
Also, SA can be cross [72] in which attentions are orig-

inated from different feature sets (schematic illustration is
shown in Figure 9). Cross SA can be beneficial since correct
matched point pairs in the left and right image usually exhibit
similar geometric layouts, which can be attributed to their
spatial compatibility. Similar to self SA, cross SA has the
following form:

W SA
= SA(F1,F2) = Softmax(Q× KT ) (12)

where K = gω1 (F1) ∈ RN×C and Q = gω2 (F2) ∈ RN×C ,
and they have same meanings as defined in Equation (8).
By using cross SA, the mined features are cross vali-
dated and the distinctiveness and separability are further
improved [104].
Besides, SA can be local (LSA) and global (GSA).

Equation (9) actually is a GSA since the weights are gen-
erated for all the feature pairs regardless of their distances.
Actually, feature pairs that are far apart in distances are
very likely irrelevant, and calculating the attentions of these
feature pairs is futile. Moreover, extensive researches demon-
strate that spatially close matches in images exhibit motion
coherence (i.e., local matches move together) [11], [25],
[105], and mining information from neighboring features
improves the precision of match representations [81], [106].
Therefore, to increase efficiency and precision, LSA only use
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FIGURE 9. Schematic illustration of cross attention.

the k nearest neighbors (KNNs) to compute attentions. Note
each feature can be extended to have multi-KNNs [96], [107],
[108] in which multiple KNN sets are contained.

Extensive works apply SA to construct features of matches
that incorporate both local and global information. NM-Net
[81] searches consistent KNNs and aggregate information
from these neighbors, while only geometrical information of
single KNN is utilized; Local Neighborhood Correlation Net-
work (LNCNet) [109] divides matches into sets of KNNs and
calculates the correlation matrix among these features, the
resulting correlation matrix is subsequently used to weight
the features ofmatches, while the correlationmatrix only uses
local information. Local-Global Self-Attention (LAGA)-
LFGC++ [110] enriches the representations of matches by
combining global-local information obtained through self-
attention, and similar to NM-Net, the local information is
mined from KNNs, while it ignores multi-scale information;
Multi-Scale Attention Network (MANet) extends the mine
scopes to multiple scales, and it [111] respectively employs
an attentive PointCN [70] block and an attentive pooling layer
to capture both global and local information in a discrim-
inative manner; Context Structure Representation Network
(CSR-Net) [112] formulates the representations of matches
as a whole-part consensus learning (similar to local-global
information mining), and it also uses attention mechanism
to recalibrate the mined features; IGS-Net [85] performs a
search and visualization of KNNs to create a representation
[113] that contains local context information of potential
correspondences; Hierarchical Consensus Attention Network
(HCA-Net) [114] incorporates a consensus attention mech-
anism to regularize sparse matches, the consensus attention
is essentially a local attention as it primarily focuses on the
nearest neighbors in Euclidean space.

In addition, several works have focused on mining infor-
mation from both SA and CA, such as PESA-Net [90],
Spatial-Channel Self-Attention Network (SCSA-Net) [115],
Complex Information Extraction (CIE-Net) [116], Channel-
Spatial DifferenceAugment Network (CSDA-Net) [117], and
et. al. For the works concentrating on the integration of
spatial-channel attention, we will give a detailed list in the
following.

2) CHANNEL ATTENTION
SA estimates weights based on the similarity between feature
pairs, while CA considers that not all the feature channels
are essential for separating inliers and outliers, and some
channels may be affected by noise, leading to a decrease
in classification precision. The objective of CA is to assign
lower weights on the classification-irrelative channels and
suppress them to recalibrate the features [86], [101], [118].
The general form of CA is illustrated in Figure 7(b), and the
recalibrated features can be represented by

FCA = V ×WCA (13)

where V = gω(F) ∈ RN×C is the projected features of F , and
g is the network and ω is its parameters. Analogous to spatial
attention, Equation (13) can be rewritten as

f CAj =

C∑
i=1

wCAi,j × ci (14)

where f CAj ∈ RN×1 is the j-th recalibrated channel (column)
vector, wCAi,j is the i-th row and j-th column element of WCA,
and ci ∈ RN×1 is i-th channel (column) vector in V . It can
be seen clearly that the channel attention is performed on the
channels: if the weight is higher, the corresponding channel
will be augmented; conversely, the channel is suppressed and
nonsignificant in classification. By the ways of constructing
the attention, CA that applies in mismatch removal can be
classified into three types: global average pooling (GAP),
covariance, and normalized covariance.

The strategy of using GAP to generate CA is proposed
by Squeeze-and-Excitation Network (SE-Net) [86]. SE-Net
squeezes the feature map F in channel dimension to calculate
GAP, then it applies a simple gating mechanism [86] to
capture channel-wise dependencies:

WCA
= Sigmoid(W2ReLU(W1GAP(F))) (15)

whereW1 ∈ R
C/r×C andW2 ∈ RC×

C/r are the two learnable
matrices and r is the reduction ratio. SE-Net is invariant to
permutation since GAP is element-wise.

T-Net [88] utilizes GAP strategy to generate CA, while it
replaces linear projection of SE-Net by a 1 × 1 convolutional
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kernel that captures more valuable channel-wise geomet-
rical information and simultaneously maintain permutation
invariance; CIE-Net [116] also employs GAP strategy to
construct CA, which is used as a preprocessing process
of SA; CSDA-Net [117] uses a max pooling (MP) oper-
ation, which is effective and efficient, to compensate for
GAP, and it designs an overlay attention mechanism to inte-
grate CA with SA; Relation-Aware Network (RANet) [119]
also adopts the approach of simultaneously utilizing GAP
and MP to generate CA, the features are synchronously
weighted by SA and CA, and concatenating the weighted
features as the final output; Multi-Scale Attention Network
(MSA-Net) [120] also applies GAP to generate CA, aim-
ing to exploit global information embedding in the channel
dimensions, and it simultaneously mines local information
by SA, both these two attentions are summed up to form
a multi-scale attention to recalibrate the features; Unlike
RANet, Joint Representation Attention Network (JRA-Net)
[121] employs GAP to capture global information and SA
to capture local information; Local Structure Visualization-
Attention network (LSV-ANet) [113] incorporates SE-Net
as a post-processing step to dynamically recalibrate the fea-
tures, aiming to enhance useful feature channels and suppress
needless channels; Representation-recalibration Network
(R-Net) [122] applies the same gating mechanism previously
employed in SE-Net to learn prominent channel, it combines
with multiple KNNs to increase the versatility of learned
features; Graph Context Attention Network (GCA-Net) [123]
also follows the diagram of R-Net to process channel infor-
mation, while it utilizes a graph context attention block to
capture the local context exchanges. In summary, GAP is a
rather simple method since it only considers the first-order
channel correlation (concretely, mean values of features).
Though it is effective, while some complex information (e.g.,
second-order information) can not be utilized, while leads to
unsatisfied results in specific scenarios.

GAP is proposed based on the first-order statistics char-
acteristic of features, although it is intuitional and effective
in exploiting the significant channels of features, it is too
simplistic for capturing complex global information, espe-
cially high order statistics [101]. To address this issue, many
researchers propose to use correlations, such as covariance
matrices, of features to model second-order statistics [124],
[125], [126], [127], [128], [129], [130], [131]. Generally,
covariance matrix of features can be expressed in the follow-
ing form:

Z̃ = Cov(F̃) = F̃T × F̃, F̃ = F −
1
N

N∑
i=1

fi (16)

where Cov(·) computes the pairwise channel correlations, fi is
the i-th row of F , Z̃ ∈ RC×C is the covariance matrix. And
CA generated from the covariance matrix is

WCA
= Softmax(Z̃ )=Softmax(F̃T × F̃) (17)

Generating CA from covariance matrix is permutation
invariant since

Softmax(Cov(PF̃)) = Softmax(F̃TPT × PF̃)

= Softmax(F̃T F̃) (18)

where PT × P = I holds since P is a permutation matrix.
SCSA-Net [115] is a typical network that applies covari-

ance matrix to extract CA, it also utilizes SA to mine the
geometric information, both channel and spatial information
is fused together to enhance the network’s representative
capability; Attention in Attention Network (ANA-Net) [132]
takes into account the computational complexity associated
with the covariance matrix, and it employs a linear approxi-
mation of the covariance matrix, which significantly reduces
the complexity from O(N 3) to O(N ).

The covariance presented in Equation (15) is essentially
derived under Maximum Likelihood Estimation (MLE) of
normally distributed features [131], and it is well known
that MLE is not robust to features contaminated by out-
liers, or features of large dimensions with small size [133].
To address this issue, regularized MLE [134] and shrinkage
principle (i.e., shrinking the largest eigenvalues and stretch-
ing the smallest ones) are proposed to robustly estimate
the covariance, a notable method in this regard is Matrix
Power Normalized COVariance (MPN-COV) [125], [128],
[131], [134]. The normalized covariance estimated by
MPN-COV is

Z̄ = NCov(F) = Z̃1/2
= B× DIAG(

√
λ1,. . . ,

√
λC ) × BT

(19)

where NCov(·) is the normalized covariance of features,
DIAG(

√
λ1, . . . ,

√
λC ) is a diagonal matrix and its diago-

nal elements are non-increasing, λi is the eigenvalue of the
covariance matrix Z̃ , B =

(
b1, . . . , bC

)
is an orthogonal

matrix and its column vector bi is the eigenvector correspond-
ing to the eigenvalue λi. The adherence of the solution to the
shrinkage principle is clearly evidenced, as the square roots
of eigenvalues are enlarged if they are smaller than 1.0, and
lowered if they are greater than 1.0. Normalized covariance
is permutation invariant since

NCov(PF))=(F̃TPT × PF̃)1/2 = Z̃1/2 (20)

Correspondence Attention Transformer Network
(CAT-Net) [136] proposes to use normalized covariance to
compute CA since it argues that normalized covariance has
two distinctive merits. Firstly, normalizing covariance is a
precise way to calculate CA, leading to a more salient fea-
ture representation by performing information exchanges in
channel dimension. In addition, CA generated by normalizing
covariance requires only O(N ) complexity in memory which
is a much less memory request.

Similar to multi-head attention in SA, split attention in CA
tries tomine cross-channel interactions among features [137],
[138]. Split attention typically employs different sizes of
convolutional kernels to partition a feature map into multiple
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FIGURE 10. Illustration of network architecture of split attention.

branches and then utilizes CA to capture cross-channel infor-
mation. While for the networks used in mismatch removal,
every operation in the networks must be permutation invari-
ant, making convolutional kernels with sizes greater than
one unsuitable. To apply split attention in mismatch removal,
the feature map is firstly divided into equal parts along the
channels and then CA is used to extract information among
channels. Splitting the feature map along channels reduces
the dimensions of the feature vectors, thereby mitigating the
problem of MLE in covariance estimation [133]. Figure 10
illustrates the schematic diagram of split attention.

The network architecture of split attention is divided into
three parts (as exampled in Figure 10): splitting, extraction,
and union. The process of splitting involves dividing the
feature map F into r equal sub-maps along channels. In the
extraction, each sub-map is used to form a branch in which
CA is extracted and used to recalibrate the feature channels.
In union, the outputs of CA branches are concatenated along
channels to form a comprehensive feature map. Since split-
ting and union is permutation invariant, and CA branches are
also permutation invariant, thus the split attention is permu-
tation invariant.

PESA-Net [90] applies the same network architecture as
presented in Figure 10, it divides the feature map into four
parts that form four CA branches in attempt to model the
interdependencies among the feature channels; Similarly, the
network architecture of splitting operation is also adopted by

PGFNet [91], while PGFNet employs a hierarchical residual-
like manner to union the outputs of CA branches.

D. GRAPH NEURAL NETWORK
Graph Neural Networks (GNNs) are well-suited for process-
ing putative matches for two main reasons. Firstly, matches
can naturally be deemed as graph nodes, and relationships
between matches can be encoded in edge weights. This
allows for obtaining features of the matches by leveraging the
node representations in the graph, which is the fundamental
concept of GNNs. Secondly, GNNs are designed to process
unorder data points though structed data, such images, can
also be processed by GNNs. Furthermore, the sub-layers in
GNNs are invariant to permutations of data points [139], mak-
ing them applicable for remove mismatches without needing
to explicitly account for permutation invariance. A GNN
is operating on a graph G that gradually aggregates node
features from neighboring nodes using stacked GNN layers
(the example of feature updating through layers is illustrated
in Figure 11). After obtaining the node features, the nodes
corresponding to matches can be classified by a binary clas-
sifier and ultimately fulfill the mismatch removal.

The commonly used GNN structures in mismatch removal,
such as graph convolution network, graph attention network,
and graph pooling network, are the specialized forms of
GNNs, which will be detailly described in the following.
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FIGURE 11. Example illustration of feature updating through GNN layers. As example showing by graph node 0, at the shallow layers,
it accumulates information from neighboring nodes, as the layers going deeper, it can aggravate information from global graph nodes.

FIGURE 12. Schematic illustration of the GAT. (a) multiple head GAT, graph G is constructed by the putative correspondences, (b) multiple
head cross GAT, GL and GR are respectively constructed by matched points in the left and right images.

1) GRAPH CONVOLUTION NETWORK
Graph convolution utilizes polynomial filters over node
neighbors [140] to construct node features, which is much
like the way that localized convolutional filters are computed
over neighboring pixels of images. An effective approach
to implement graph convolution is through spectral graph
convolution [141] which is introduced in Graph Convolution
Network (GCN) [142]. GCN considers spectral convolu-
tions on graphs defined as the multiplication a graph signal
F ∈ RN×C (where N is the number of graph nodes, i.e., every
node is assigned a C dimensional vector) and a filter gw with
w is the learnable parameter

gw ∗ F = UgwUTF (21)

where the operator ‘‘∗’’ represents convolution, U is the
matrix of eigenvectors of the normalized graph Laplacian L̃.
Graph Laplacian L̃ has many useful properties of its own
and can be directly used to mine geometrical information
of matches. For example, Laplacian Motion Coherence Net-
work (LMCNet) [105] firstly deduces smooth motions of
matches from graph Laplacian, and the smooth motions are
subsequently used as training signals under the consider-
ation that coherence residuals of inliers are much smaller
than those of outliers; ANA-Net [132] considers the high
computational consumption of graph Laplacian and uses an
attention-consistent context to exploit themotion consistency,

the complexity is therefore decreased since the attention-
consistent context can be approximated to a linear form.

In Equation (21), since the multiplication of U and
the eigen decomposition of L̃ is time consuming, GCN
approximates it by truncating the Chebyshev polynomial to
first-order [143], [144], [145] and uses a renormalization trick
to increase the numerical stabilities, the final output of GCN
goes to

f ′
i = δ(

∑
j∈Ni

√
D̃i,iD̃j,j

Ãi,j
× fjW ) (22)

where Ã = A + IN is the adjacency matrix of graph G with
self-connections, D̃ is a diagonal matrix with D̃i,i =

∑
j Ãi,j

and W ∈ RC×C ′

is a learnable matrix; δ(·) is an activation
function, fj ∈ R1×C is the feature of node j (i.e., the j-th row
of F), f ′

i ∈ R1×C
′

is the updated feature of node i.
Since GCN is essentially an operation of aggregating

information from neighboring nodes in the graph, it is fre-
quently used to mine the global information of matches.
CLNet [83] introduces a two-step process involving KNN
searching to construct local graphs and annular convolution
to exploit local information, the local graphs are subsequently
connected to form a global graph and GCN is applied to
mine the global information, both local and global infor-
mation are combined to separate inliers from outliers; the
annular convolution proposed in CLNet is also applied by
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FIGURE 13. Conceptual diagram of graph pooling.

GCA-Net [123], but in this case, global information is cap-
tured by CA.

2) GRAPH ATTENTION NETWORK
In contrast to GCN, which performs graph convolutions in
the spectral domain, Graph Attention Networks (GATs) [64]
are spatial-based that operate convolutions on spatially close
neighbors, the schematic illustration of the GAT is presented
in Figure 12.
The input to a GAT layer is a set of node features F =

{f1, f2, . . . , fN } where N is the number of graph nodes,
fi ∈ R1×C is the feature vector of node i and C is number
of feature vector channels. An attention between node i and j
can be formulated as:

ei,j = ATN(fi ×W , fj ×W ) (23)

where ei,j ∈ R is the attention, W is a learnable matrix,
ATN(·, ·) is an attentional function (generally, an activation
function) that maps two C-dimensional vectors to a scalar.
To make the attentions comparable across nodes, the

attentions between node i and its neighbors are generally
normalized by Softmax function

αi,j = Softmaxj(ei,j) =
exp(ei,j)∑

k∈Ni
exp(ei,k )

(24)

where αi,j is the normalized attention between node i and j,
Ni is the set of neighboring nodes of node i. Finally, the output
feature of node i can be expressed as

f ′
i = δ(

∑
j∈Ni

αi,j × fjW ) (25)

where f ′
i is the output feature of node i by a GAT. And analo-

gous to traditional multi-head attentionmechanism [62], [63],
GATs can also bemultiple heads which are used to learnmore
expressive features (the schematic illustration of the multiple
head attention is presented in Figure 11(a)). For the mismatch
removal problem, the matched points in the left and right
images can form two graphs, each graph’s nodes have their
own features, which can then be used to form an inter-graph
attention known as cross GAT (its schematic illustration is
presented in Figure 12(b)) [70], [104]. The motivation for

using cross GAT is that attention essentially expresses the
compatibility of features, since true matched points in the left
and right image have similar geometrical layouts, allowing
GAT to grasp the compatibility cross images.
Comparing Equation (22) and (25) makes the differences

between GCN and GAT become evident. In GCN, the aggre-
gation weight between a node and one of its neighbors is
determined nonparametrically once the graph structure is

established (the weight is a normalized const
√
D̃i,iD̃j,j/Ãi,j).

On the other hand, in GAT, as demonstrated in Equation
(25), the weights are learnable and measure the compatibility
of node features. Consequently, GAT can be generalized to
unseen graphs with different structures, making it more suit-
able for tackling mismatch removal problems.

Coordinate Embedding Network (CE-Net) [104] takes into
account the layout similarities of matching inliers, and it
simultaneously incorporatesmulti-head cross and self GAT to
extract geometrical information from intra and inter graphs;
Graph Attention Network (GANet) [146] also employs the
multiple head GAT to capture fine-grained geometric infor-
mation from inliers while suppressing that from outliers,
it meanwhile recognizes that only a small number of graph
node features play a vital role in mismatch removal and
proposes a sparse GANet to reduce computational complex-
ity; Multiple Sparse Semantics Dynamic Graph Network
(MS2DG-Net) [147] considers the local topology among
matches and proposes dynamically building sparse semantic
graphs to predicate matching probabilities, the core compo-
nent of MS2DG-Net is a self GAT layer that consolidates
geometrical information.

3) GRAPH POOLING NETWORK
In contrast to GCN and GAT, which focus on node repre-
sentations of graphs, graph pooling networks are designed to
learn hierarchical representations of graphs. They gradually
condense graph nodes and eventually predicates the entire
label of a graph. DiffPool [65] is the notable example, and
its conceptual diagram is depicted in Figure 13.
Given F (l)

∈ RN×C the graph node feature map inputting
to layer l (i.e., the graph has N nodes and every node fea-
ture is a C-dimension vector), a DiffPool layer learns a soft
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assignment matrix Spool ∈ RN×M (M < N ) to coarsen the
graph

F (l+1)
= STpoolF

(l)

Spool = Softmax(gω(F (l))) (26)

where F (l+1)
∈ RM×C is the feature map of the coarsened

graph, gω(·) is a GNN layer with a learnable parameter ω,
which takes a feature map as the input. As demonstrated
in Figure 13, through stacked multiple DiffPool layers, the
global characteristic of the graph is progressively obtained
and can be used to predict the label of the entire graph.

For mismatch removal problem, DiffPool layers can be
useful to mine the global information of matches. However,
relying solely on global information is inadequate for dis-
tinguishing inliers from outliers. To address this limitation,
a DiffUnpool [82] layer is proposed to upsample and simul-
taneously refine the coarse representation. An intuitive way to
implement a DiffUnpool layer is to learn a projection matrix
from F (l+1) and using the matrix to unpool F (l+1) back to
RC×N . While this operation is not optimal since F (l+1) is
obtained by a permutation-invariant operation, which makes
F (l+1) lose the original order of F (l). OANet [82] proposes
an Order-Aware (OA) DiffUnpool to address the order dis-
turbed problem by learning a soft assignment matrix directly
from F (l)

F ′(l)
= Sunpool × F ′(l+1)

Sunpool = Softmax(g′
w(F

(l))) (27)

where g′
w(·) is a GNN layer, Sunpool ∈ RN×M is a learned

projection matrix, F ′(l+1)
∈ RM×C is a feature map computed

from F (l+1), and F ′(l)
∈ RN×C is the corrected feature map.

From Equation (27) we can see that F ′(l) can be viewed as a
weighted average result of the features. F ′(l) eventually can
be concatenated with F (l) to fuse a new feature map.
The DiffPool and DiffUnpool layers serve as the foun-

dational structure of OA-Net [82], and they act as basic
functional layers to extract local and global geometrical
information by various learning-based methods, including
T-Net [88], RA-Net [121], GANet [146], and et. al.

E. COMPARSION OF MINING METHODS
Point-wise MLP is theoretically a feature dimension trans-
former, and therefore it is frequently used before a mining
block to project old features and compose new features; Nor-
malizations are almost an indispensable operation since they
function as denoisers, which will increase the separability
of features; SA aims at giving higher weights for features
that originate from correct matches, and CA assign lower
weights on the classification-irrelative channels to recalibrate
the features, these two methods are sometimes alternately
used to compensate for each other; GNN aims to mine global
information from features of matches, GCN is a spectral
domain based method and GAT is a spatial domain based
method, and for GCN, the weights for integrating features
are normalized const, while for GAT, the weights are learned,

thus GAT are more suitable for scalable graphs; Unlike GCN
and GATwhich focus on node representations, graph pooling
learns to coarsen graphs or extract generality from subgraphs,
thus it is generally used to mine local information of matches.

V. TRAINING MODE
If we consider the mismatch removal problem as a classifica-
tion problem, it can be addressed by a supervised learning
with a sufficient number of labeled data. While the prob-
lem can also be viewed as a clustering problem, therefore
unsupervised methods can also be employed. In the case of
the supervised methods, the loss functions involve match-
ing labels or/and geometrical constraints; while unsupervised
methods try to explore inherent relationships amongmatches,
thus prior labels are unnecessary.

A. SUPERVISED LEARNING
Supervised methods are widely utilized due to their straight-
forward nature. Designing a supervised method should firstly
consider the training signals, then supervise the signals by
loss functions involving with labels, and finally minimize the
loss to get the optimal network. In the following, we will
provide detailed descriptions about the training signals as
well as various types of losses.

1) TRAINING SIGNALS
The straightforward training signal is matching probabili-
ties. Bides, there are optional training signals, such as EG
constraints and motion coherence residuals. If two images
are stereo images and they are both captured by pin-hole
cameras, then the true matched points from the two images
are constraint by an EG [14]. If only Gaussian noises are
present in the matches, the constraint matrix [148], [149] can
be directly estimated; and if outliers are contained, IRLS [40]
should be utilized to improve the accuracy. The predicted EGs
can be supervised by ground truth EGs, such that the optimal
DNNs can produce smaller residuals which are constrained
by the estimated EGs.

EGs are limited to image pairs captured by pinhole cam-
eras, while motion coherence residuals are universal. Correct
matches will exhibit coherence residuals, since neighboring
correct matches are physically constrained and cannot change
freely in a small region [11]. The soft motion coherence
residuals can be estimated from graph Laplacian [101]:

S = U × DIAG(1
/
(1 + ηλi)) × UTFT − FT

Fi = fi − f ′
i (28)

where Fi is the i-th row of F which represents graph node
features, U is the matrix of eigenvectors of the normalized
graph Laplacian, λi is the eigenvalue of the eigenvector which
is the i-th column of U (the meaning of U is presented in
Equation (21)), and η a hyperparameter.

The motion coherence residuals cannot be directly super-
vised in training since displacements of features of matches
cannot be accurately obtained. The residuals generally treated
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as an intermediate training signal which input to a DNN to
output the probabilities of the corresponding matches, and
then supervise the probabilities in training.

2) LOSS FUNCTION
In supervised learning, the loss functions measure the errors
between predictions and labels. For mismatch removal, the
main errors are cross entropy (i.e., the classification loss)
that measures the probability distribution difference between
the predicated probabilities and matching labels. Apart from
cross entropy, geometrical residual errors (i.e., the regression
loss) measure the difference between predicated and ground
truth geometrical models. Both these two errors compose the
general form of a loss function:

L = Lcls + α × Lreg (29)

where Lcls and Lreg are respectively the classification loss and
regression loss, and α is the balance factor between the two
losses and generally set as a const. Classification loss Lcls
usually is the binary cross entropy of labels and predications.

Directly using the binary cross entropy as the training loss
will lead to the network being biased towards negative class
since the number of outliers is generally much more than that
of outliers [84]. Considering the bias problem, BACN [84]
proposes to minimize Instance Balance Cross Entropy Loss
(IB-CE-Loss)

Lcls = −

λ
1

Npos

Npos∑
i=1

log(yi) + µ
1

Nneg

Nneg∑
j=1

log(1 − yj)

 ,

s.t. λ + µ = 1, Npos + Nneg = N (30)

where Npos and Nneg are number of inliers and outliers,
respectively, and λ and µ are the weights for inliers and
outliers. By dynamically adjusting the two weights, BACN
negatively correlates IB-CE-Loss with Fn-measure [150],
i.e., IB-CE-Loss is decreasing with the increasing of Fn-
measure, and ultimately the bias problem is alleviated.

The objective of minimizing Lcls is to increasing the recall
and precision (i.e., increase the Fn-measure). While for the
regression loss Lreg, it is sometimes combined with Lcls to
improve the model regression accuracy simultaneously. Lreg
has many different forms, here we review the most common
EG models. If the fundamental/essential matrices of image
pairs are given (note, if camera poses are given, the matrices
can also be decomposed from the poses), Lreg has the follow-
ing two forms

Lreg_se =

√√√√ N∑
i=1

y′Ti Eyi

∥S × Eyi∥22 +
∥∥S × ET y′i

∥∥2
2

,

S =

 1 0 0
0 1 0
0 0 0

 (31)

where Lreg_se is Sampson error [14], ∥·∥2 represents L2 norm,
E is the predicated EG constraint matrices, yi = (ui, vi, 1)

and y′i = (u′
i, v

′
i, 1) are the virtual matched point pair which

are simulated by the ground truth EGs. And Lreg can also be

Lreg_L2 =

∥∥∥E ± Ê
∥∥∥2
2

(32)

where Lreg_L2 is the L2 norm error, Ê and E are respectively
the ground truth and predicated EG constraint matrices. Both
Equation (30) and (32) have the same objective, that is, pro-
ducing a precise EG constraint, while each approach adopts a
different strategy. The former imposes the simulated correct
matches with smaller Sampson errors under the predicated
EG constraint; the latter adjusts the predicated matrix to make
it numerically close to the ground truth.

B. UNSUPERVISED LEARNING
The mismatch removal problem can also be viewed as a clus-
tering problem, utilizing the intrinsic geometric constraint
to cluster the correct matches. Consequently, DNNs can be
trained in an unsupervised mode. Based on the principles
of RANSAC [41], the cluster with the greatest number of
matches is the correct cluster, i.e., the maximal consensus
set of the geometrical constraint is the outlier free match-
ing set. By the way of clustering the maximal consensus,
the unsupervised learning framework can be categorized
into RESampling-based Methods (RESMs) and REGression-
based Methods (REGMs).

1) RESAMPLING-BASED METHODS
RESMs follow the paradigm of RANSAC, i.e., sampling-
hypothesis-verification, while the objective functions of the
RESMs are slightly different from those of RANSAC.
For RANSAC, the objective is to maximize the following
equation

rM(C) = |C| (33)

where C is a consensus set which is determined by the
sampled minimal set M (the minimal set consists of min-
imal number of matches that can estimate a geometrical
model), and |·| represents the element number of a set.
Generally, Equation (33) is maximized by an iteratively
sampling process. Whereas, using backpropagation to com-
pute the gradient of Equation (33) is not feasible due to its
non-differentiability with regards to the network parameters
[151], thus Equation (33) cannot serve as a training objective
function.

Alternatively, we can view the consensus set C as a
random variable, and turn to maximize the expectation of
Equation (33)

L = EM∼Pr(M|µ )(rM(C)) (34)

where Pr(M |µ ) is the likelihood of a minimal set M, and
M ∼ Pr(M |µ ) means sampling a minimal set from the
likelihood. Maximizing Equation (34) means maximizing the
consensus set in probability. Though this slightly differs from
directly maximizing Equation (33), both approaches yield
similar results in statistics. Additionally, Equation (34) is
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differentiable, enabling estimation of the gradients using the
policy gradient [152], As a result, the optimal DNN, which
predicts a maximal consensus set, can be obtained through a
gradient ascent algorithm.

Neural-Guided RANSAC (NG-RANSAC) [153] models
the matching probabilities of putative matches by a categori-
cal distribution and samplesminimal sets from it. The optimal
DNNs can be obtained by directly maximizing Equation (34).
Unsupervised Learning forMismatch Removal (ULMR) [68]
analogizes the mismatch removal problem to playing games
and applies reinforcement learning (RL) [154], [155] to solve
it. From the perspective of RL, the putative matches can
be seen as states and the sampling processes are actions.
As a result, a reward can be assigned to every state-action
pair, and maximizing the expected reward is equivalent to
maximizing Equation (34). Therefore, the mismatch removal
can be solved within the framework of deep RL, eliminating
the need for matching labels or ground truth geometrical
constraints.

2) REGRESSION-BASED METHODS
REGMs learn to regress a model of matching inliers, and
the model has the maximal consensus set and simultaneously
can minimize the proposed model fitting cost. Unsupervised
Learning of Consensus Maximization (ULCM) [69] is a
representative REGM, it formulates the mismatch removal
problem as finding the maximal consensus set S that can be
explained by a parametric model 8

�,S = argmax
8,C∈X

|C| , s.t. d(8(yi), y′i) ≤ ε (35)

where C is the consensus set of 8 and X is the putative
matches, yi and y′i is a matched point pair in the consensus
set C, d(·, ·) is the distance of two elements.
By using ring theory [156], it can be certified that the

model 8 is encoded in a weighted Vandermonde matrix
A ∈ RN×9 (N is the number of putative matches), and A can
be constructed by the putative matches X .
Given some reasonable approximations, Equation (34)

equals to minimize the following loss

L = Det(E) + η × λmin

SVD(A) = U × S × V (36)

where SVD(A) represents the singular value decomposition
of A, U and V are the left and right singular matrices, S is
a diagonal matrix and the singular values are arranged on
its main diagonal in a descending order, E ∈ R3×3 is a
matrix representation of the last column of U and Det(E)
is the determinant of E , λmin is the minimum singular
value of A (i.e. the last diagonal element of S), and η is a
hyper-parameter.

Byminimizing Equation (36), a model�with the maximal
consensus set can be obtained, and the maximal consensus set
is an outlier free set. As the loss function (i.e. Equation (36))
does not involve of matching labels or ground truth geomet-
rical constraints, the DNNs can be trained in an unsupervised

manner, and finally outputs matching probabilities to separate
inliers from outliers.

C. COMPARISON OF LEARNING MODES
Most existing mismatch removal methods are supervised,
since a supervised learningmode is straightforward, and addi-
tional constraints can be easily embedded in loss functions.
While supervised learning methods are sometimes con-
fronted with issues of labeling, which will reduce detection
potentials of the mismatch removal methods. Unsupervised
learning methods can refrain from effects of wrong labels,
while because of the lack of labeling information, unsu-
pervised learning generally needs more training data and
consume more training time.

VI. CONCLUSION AND FUTURE TRENDS
Imagematching is a critical component in remote sensing and
computer vision tasks; however, mismatches are inevitable
due to the complex image contents, which can have nega-
tive effects on downstream applications. Researchers have
made impressive progresses inmismatch removal using hand-
craftedmethods. The recent advancements in DL have further
facilitated the development of mismatch removal methods;
however, a comprehensive survey of DL-based mismatch
removal methods is still lacking. Therefore, we provide a
comprehensive review of these methods (please refer to
Table 1 in Appendix A to see the representative methods and
their used technologies).

The essence of DL-based methods is designing a PIN
(i.e., a DNN invariant to permutation of inputted matches) to
mine geometrical information among matches. A DNN with
a linear or ‘‘T’’ structure can be formed by the combination
of permutation-invariant operations, and the commonly used
operations in the DL-based methods are point-wise MPL,
normalization, attention, and graph-based operations. While
current methods offer various improvements and advan-
tages, the issue of mismatch removal remains an unresolved
challenge that requires further attention in the following
directions.

1) Multiple representations. Despite numerous proposed
operations to extract geometrical information from
matches, a majority of these operations operate under
the assumption that true matches possess similar geo-
metrical layouts. This assumption yields good results
in narrow baseline stereo images, while it becomes less
accurate for wide baseline stereo images and images
with sudden depth changes, and DL-based methods
will only preserve matches that exhibit geometrical
similarity. Despite these matches are correct, they are
poorly conditioned and result in an inaccurate model
(an example can be found in Figure 1(b) of [157]).
Therefore, it is crucial to consider multiple represen-
tations of matches. DL-based methods should provide
both the matching probability of individual pairs and
the overall quality of the matching set to distinguish
inliers from outliers.
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TABLE 1. Representative DL-based mismatch removal methods and their used technologies.

2) Unsupervised learning. Labeling data is time-
consuming and cumbersome; meanwhile, inevitable
erroneous labels will decrease the performance of
DNNs, and in turn, more data is needed to compensate
for the performance degradation of DNNs. Unsuper-
vised learning takes a way out of the labeling problem,
and makes the DNNs have a better generalization
to unseen data. While current unsupervised methods
are generally implemented within the framework of
classical RANSAC, i.e., they learn to find the maximal
consensus set and partly inherit the flaws of RANSAC
(e.g., more models may exist in training data). Thus,
multiple-model-based methods should be proposed
to increase the stability and accuracy of mismatch
removal.

3) Few-shot learning. As mentioned previously, label-
ing data between stereo images is a costly endeavor,
and training DNNs with a large number of images
is time-consuming. Additionally, numerous DNNs for
mismatch removal have been proposed and trained
using publicly available datasets. However, it remains
unclear how few-shot learning is applied to generalize
the DNNs to new scenarios and to speed up training.
Therefore, few-shot learning-based methods should
be studied to alleviate the problems of the expensive
endeavor and time-consuming training.

APPENDIX A
See Table 1.
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