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ABSTRACT Monitoring construction site safety through physical observations is inherently flawed due to
the complex and dynamic nature of construction sites. To overcome these challenges and enhance worker
safety management, decentralizedmodel training-assisted edge intelligence emerges as a promising solution.
However, despite the potential benefits, our investigation reveals that no research for worker safety prediction
has been grounded in the Federated Learning (FL) approach. In this context, we present a novel approach to
worker safety prediction, leveraging FL in outdoor construction environments while preserving the privacy
and security of sensitive data. Our methodology involves deploying sensor-based IoT devices at construction
sites to collect highly granular spatial and temporal weather, building, and worker data. This data is then
collaboratively utilized for training Deep Neural Network (DNN) models on the edge nodes in a cross-silos
manner. To implement our approach, we establish a test-bed utilizing the EdgeX framework and constrained
devices such as Raspberry Pi 4Bs, acting as edge nodes. Following the collaborative training, the resultant
global model is deployed on participating nodes for edge inference, ensuring optimal network resource
utilization and data privacy. The experimental results demonstrate the efficacy of the proposed approach in
improving the utilization of construction safety management systems and reducing the risk of accidents and
fatalities in the future. The outcome is a system that exhibits enhanced speed and responsiveness, a crucial
aspect for time-sensitive applications such as the prediction of worker safety.

INDEX TERMS Worker safety, outdoor construction site, federated learning, edge computing, EdgeX,
Internet of Things.

I. INTRODUCTION
The world has undergone rapid change in recent decades,
and the construction industry has been at the forefront of
this transformation. With an urban population that grows
by 200,000 people every day, it is clear that the global
construction industry has been greatly influenced by these

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

demographic shifts [1]. However, due to its dynamic, con-
stantly shifting, and heterogeneous spatiotemporal environ-
ment, construction is considered one of the most dangerous
industries for workers. Worker safety is an ongoing issue that
requires continued attention and effort. A recent study sug-
gests [2] that workers frequently encounter potential safety
and health threats during the building process as a result of the
hazardous working conditions at construction sites. Accord-
ing to the information presented in [3], it is estimated that
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a significant number, possibly exceeding 6,500, of migrant
workers have tragically lost their lives on construction sites
in Qatar, as the country prepares for the 2022 World Cup
through major projects. Therefore, an intelligent solution
based on predictive analytics is required to analyze the data
of the construction industry to cope with the challenges faced
by the construction industry and enhance the safety paradigm
for workers.

The Internet of Things (IoT) is a next-generation tech-
nology that aims to bridge the physical and digital worlds.
It allows for the interconnection of computing devices that
are embedded in everyday objects, enabling them to transmit
data via the Internet [4]. It is a network system that utilizes
both wired and wireless technologies to connect physical
devices and the sensors embedded within or attached to them
to the Internet. The IoT encompasses a wide range of elec-
tronic devices that serve as signal converters, transforming
real-world data into digital or analog formats that can be
understood by both humans and machines. These devices
can take input from various sources and include nodes such
as Bluetooth, Wi-Fi, and ZigBee, which can be installed in
vehicles or homes [5]. With its flexibility, IoT technology can
be used for a variety of applications and use cases. Current
research efforts are focused on reducing construction site
accidents by integrating safety measures and information and
communication technology. For instance, the study in [6]
devised an IoT-based system for monitoring indoor safety in
the context of COVID-19. Additionally, the authors of the
paper [7] prominently utilized IoT by integrating IoT sensors
into a real-time surveillance helmet. These sensors assess
the immediate surroundings of the individual, monitor their
health in real-time, and initiate appropriate actions when the
working conditions become unfavorable for the miner.

Due to the availability of the massive amount of data
generated by IoT devices, it is quite possible to employ
data-driven assisted predictive analytic techniques to facil-
itate safety management for formulating efficient decisions
to improve safety at the workplace. Predictive analytics [8]
is a field of data analysis that employs statistical models,
machine learning algorithms, and data mining techniques to
recognize patterns and anticipate future events and trends.
This approach leverages historical data to inform predictions
and is widely adopted in forecasting [9], risk assessment [10],
fraud detection [11], marketing optimization [12], etc. The
ultimate objective is to harness the power of data to unlock
valuable insights and make data-driven decisions that drive
business growth and success. In this study, this technique is
employed to infer worker safety by leveraging data from IoT
devices deployed in the construction environment.

Integrating predictive analytics techniques with data gen-
erated from IoT devices presents a challenge in handling
vast amounts of data. Therefore, machine learning is neces-
sary to extract and process useful knowledge and underlying
patterns from the immense data and construct an effec-
tive predictive model. Machine learning has proven to be

a valuable tool, especially in handling massive amounts
of data, providing significant time savings, and maximiz-
ing computing resources. Predictive modeling techniques
are integral components of machine learning-based systems
that enable organizations to anticipate future demands using
inferred knowledge, leading to better-informed decision-
making. Thanks to advancements in machine learning mod-
els, it has become increasingly feasible to create reliable and
efficient prediction models that leverage discovered knowl-
edge to accurately forecast future outcomes. There exist
various machine learning algorithms that can be employed
to analyze the identified insights from past data. Some of
the commonly used algorithms are Linear Regression [13],
Logistic Regression [14], Decision Trees [15], Support Vec-
tor Machines (SVM) [16], Random Forests [17], and so on.
Moreover, an updated machine learning technique, such as
Automated Machine Learning (AutoML), has enhanced its
workflow by automating and optimizing substantial exper-
tise in various areas, including data preprocessing, feature
engineering, model selection, and hyperparameter tuning.
In a related study [18], the authors leveraged this advanced
machine-learning technique to predict carpark price indices.
Yet, our study has chosen to adopt a manual approach utiliz-
ing DNN, a deep learning model.

DNN has become a prominent algorithm in the field of
deep learning research, enabling the development of intel-
ligent applications in diverse domains [19]. DNN is a form
of Artificial Neural Network (ANN) that consists of multiple
layers of interlinked nodes or neurons, which process input
data and progressively extract increasingly abstract features
from the input. The deep structure of DNN allows them to
learn hierarchical representations of complex patterns and
relationships in the data, making them well-suited for tasks
such as image and speech recognition [20], natural language
processing [21], and predictive modeling [22]. DNN employs
backpropagation for weight adjustment between neurons,
minimizing the difference between predicted outputs and
target values. This supervised learning technique automates
the feature representation process, eliminating the need for
manual feature engineering traditionally used in other mod-
els. DNN is renowned for its effectiveness in the realm of
deep learning [23].
However, traditional machine learning often uses a cen-

tralized learning approach where data from various sources
is collected at one location, and the model is trained on that
data before being sent back to the sources. Therefore, this
approach has several drawbacks, including high communica-
tion and computation costs, limited adaptability, and privacy
concerns.

On the other hand, FL, introduced by McMahan et al.
[24] in 2017, is a decentralized approach where data remains
on individual devices, and the model is trained locally on
each device. To enable collaborative learning on a large scale
within FL, the Federated Averaging (FedAVG) technique
comes into play. FedAVG leverages the collective knowledge
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FIGURE 1. Federated learning process [24].

of distributed devices while ensuring data privacy. In this
process, the model updates generated on each device are sent
to a central server. The server then aggregates these updates,
as illustrated in Figure 1, to create a global model that benefits
from the combined intelligence of all participating devices.

Worker safety prediction is a crucial concern in outdoor
construction environments, given the numerous challenges
posed by factors like fluctuating weather conditions, building
conditions, and worker well-being. Surprisingly, previous
research has not specifically explored the use of FL to
tackle this issue. Moreover, the study in [25] emphasized
the significance of deep learning as an emerging field within
construction safety, underscoring the ongoing need to max-
imize the potential of AI technology. Consequently, our
research aims to bridge this gap by employing FL to train
a machine-learning model capable of effectively predicting
worker safety in the outdoor construction environment. The
main contributions of this paper are as follows:

• Development of an intelligent worker safety edge infer-
ence system based on the FL for effective construction
safety management to proactively prevent potential acci-
dents and fatalities.

• Deployment of collaboratively trained model on edge
nodes to infer worker safety in real-time under dynam-
ically changing data collected from various sensors
including weather conditions, building circumstances,
and worker status data.

• Development of an intelligent edge analytic framework
using EdgeX to provide multiple service scenarios such
as device and data management as well as interoperabil-
ity between IoT devices and safety service applications
at the network edge.

• Design and development of a user-friendly web appli-
cation that enables users to interact with the system
through a user interface (UI) for easymanagement, oper-
ation, and assessment of worker safety.

• Provide extensive experimental results to evaluate the
effectiveness of the proposed FL-based technique for
ensuring the reliability of this study to enhance construc-
tion safety management.

The following structure is adopted in the remainder of this
paper: Section II will discuss the related works, followed
by Section III which presents the proposed approach. The
implementation environment and corresponding results will
be presented in Section IV, while Section V will provide
an in-depth explanation of the performance analysis. Finally,
section VI concludes the paper and presents our future works.

II. LITERATURE REVIEW
The construction industry is plagued by a pressing issue of
safety, which poses a significant threat to the well-being of
its workers. Inappropriate working conditions and frequent
workplace accidents are unfortunately common, causing con-
struction employees to miss work and impacting their health
and livelihood. Hence, worker safety prediction is essen-
tial in construction sites because it enables us to anticipate
and mitigate potential hazards or threats before they occur.
By predicting possible risks or safety issues, we can take
proactive measures to prevent or minimize their impact, ulti-
mately preventing injuries, damages, or even fatalities.

A. OUTDOOR CONSTRUCTION ENVIRONMENT BASED ON
IOT
Adopting innovative technologies in construction has the
potential to bring numerous benefits, with enhanced safety
being of paramount importance. By ensuring the well-being
of workers and the smooth operation of construction sites,
these advancements can play a key role in securing the suc-
cess of projects and the overall growth of the industry [26],
[27]. The rapid adoption of IoT and other cutting-edge tech-
nologies has brought about heightened concerns for safety on
construction sites, as their integration into the industry has
uncovered new risks and challenges [28]. According to the
findings in [29], IoT is utilized as a tool for sharing construc-
tion safety knowledge. Also, the authors of [30], introduced
a system that employs IoT sensors to monitor safety hooks,
designed to prevent falls from heights. This system effectively
automates real-time safety monitoring for numerous workers
at complex construction sites, providing valuable support
to safety managers. Integrating sensors with construction
workers can be highly advantageous in implementing IoT
for safety objectives. Numerous models and prospective
approaches are available for the integration of IoT sensors
with protective gear such as helmets and clothing, offering a
more comprehensive and effective solution for safeguarding
workers on construction sites [31]. To effectively identify var-
ious hazards present on construction sites, different types of
sensors are utilized, including infrared, accelerometer, RFID,
and gyroscope sensors, which are among the most widely
used. The application of these tools is vital in enhancing
safety and reducing the risks inherent in construction work
[32]. Additionally, monitoring the surrounding site condi-
tions is possible using GPS to identify potentially hazardous
areas on the building site [33] and prevent collisions through
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the use of ultrasound sensors [34]. This helps ensure a safe
working environment and reduces the risk of accidents.

B. CENTRALIZED TRAINING APPROACHES FOR WORKER
SAFETY PREDICTION
Predicting safety or risk is crucial as it enables us to anticipate
and mitigate potential hazards or threats before they happen.
Machine learning and AI-based approaches are extensively
being applied to safety prediction. For instance, the authors
in [35] developed a model using Random Forest (RF) to
utilize feature importance analysis to identify the key factors
that contribute to occupational accidents at construction sites
and develop a model for classifying and predicting such
accidents. They also examined the correlation between these
factors and types of occupational accidents. However, their
research needs to be further improved in the future, such
as collecting real-time data and developing models that can
accurately predict occupational accident types. In [36], the
authors present a hybrid method that combines an Adaptive
Neural Network-based Fuzzy Inference System (ANFIS) and
a safety inspection checklist to detect risk factors and forecast
the likelihood of scaffold falls at construction sites. Their
approach facilitates the identification and evaluation of crit-
ical conditions and scenarios that have a substantial impact
on the risk of falling. However, further research is needed
to investigate the variables that influence the safety of other
types of scaffolding. Choi et al. [37] has developed a highly
effective prediction model that can pinpoint the probable
danger of fatal accidents in construction sites. The machine
learning algorithms used in the model rely on the industrial
accident data collected between 2011 and 2016 by the Min-
istry of Employment and Labor (MOEL) in the Republic
of Korea. Their model’s performance evaluation showed an
exceptional predictive rate for accurately classifying workers
who might be facing a fatality risk. Yet, they stated the use of
historical data is limited because of the privacy information
law in the country. For observing and assessing how workers
and equipment interact, [38] proposed a methodology that
employs computer vision and deep learning techniques. This
methodology detects the locations and trajectories of workers
and equipment and identifies danger zones. However, they
also mentioned that the detection accuracy can be further
improved by enriching the dataset as the training dataset
is limited. To resolve the problems and challenges associ-
ated with centralized training schemes, FL, [24] a promising
approach is utilized.

C. FEDERATED LEARNING FOR HEALTH AND SAFETY
FL has emerged as an effective solution to address user
privacy concerns, thereby enabling the collection of larger
datasets to train machine learning models and enhance their
accuracy and efficiency. With its demonstrated potential
across a range of industries and engineering disciplines,
it’s no surprise that FL has become a rapidly growing area
of research, with numerous successful outcomes. Recently,

many researchers have focused on developing decentralized
solutions for ensuring human health and safety. The authors
of [39] leveraged the power of FL, a privacy-preserving
machine learning method, to predict 7-day mortality rates
among hospitalized COVID-19 patients. Their use of FL
allowed them to build robust predictive models without the
need to centrally collect raw clinical data from multiple insti-
tutions. The results of their study demonstrate the potential of
FL in healthcare. Borger et al. [40] conducted research on the
application of FL in clinical Natural Language Processing.
Their study focused on using this approach to assess the
risk of violence in a cross-institutional psychiatric setting.
The results of their investigation demonstrated that FL can
be effectively employed in such a setting and could lead
to the development of novel applications for this approach
based on clinical notes. Li et al. [41] proposed a framework
called FedSWP, which employs federated transfer learning
to enable Smart Work Packaging (SWP) and safeguard the
private image data of construction workers in Occupational
Health and Safety (OHS) management. Their research serves
as a stepping stone towards expanding and adapting FedSWP
for various OHS applications in the construction industry.
Qi et al. [42] have introduced a powerful deep learning
framework, named FedAGCN, that utilizes both FL and
asynchronous graph convolutional networks to accurately
predict real-time traffic flow. Additionally, they have pro-
posed a new graph FL strategy, called GraphFed, which
effectively reduces the time required to train the deep learning
model. Therefore, FL has demonstrated its ability to over-
come the limitations of centralizedmachine learning, not only
in addressing privacy concerns but also in enhancing model
efficiency through the training of models using data from
diverse entities that are usually isolated in data silos, and
by integrating the knowledge gained into a globally trained
model. However, till now, FL has not been used for worker
safety prediction in the outdoor construction environment.
To the best of our knowledge, the proposed study is the first
attempt to develop an intelligent edge inference system estab-
lished upon FL for proactive worker safety that is accurate
even under dynamic changing conditions.

III. PROPOSED METHODOLOGY
The proposed mechanism for collaborative worker safety
prediction is deployed at the Edge node network, har-
nessing the capabilities of a renowned distributed machine
learning technique called federated learning. Specifically,
we employ the FedAVG technique, which facilitates the
averaging of weight updates from all participating clients.
Moreover, this approach involves leveraging data generated
by IoT devices. Multiple edge nodes simulate the contri-
bution of their sensors, representing various construction
workers. By incorporating data from diverse sources such as
weather information, building conditions, and worker status,
this study aims to enhance worker safety prediction in out-
door construction environments. To achieve this objective,
the DNN model serves as the foundational learner, featuring
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8 input dimensions, two densely connected hidden layers,
and utilizing the ReLU activation function. Normalization
is performed individually on each node’s data to handle the
varying magnitudes of readings from sensors.

Figure 2 presents the conceptual diagram of this study,
which predicts worker safety in the outdoor construction
environment. The mechanism involves multiple components,
including an edge server, edge nodes, IoT devices, and clients.
To implement this, three phases of operation are conducted,
including the initialization phase, the operation phase, and
the inference phase. Particularly, multiple clients (also known
as edge nodes) are registered. Subsequently, a task, which
is setting experimental configurations of FL, is generated
during the mechanism’s initialization phase. The edge server
then interacts with the edge nodes through FL to acquire the
optimal global model for predicting worker safety during the
training phase. FL allows for the collaborative training of
a single DNN model across multiple edge nodes, without
requiring these nodes to send their own data to a central
aggregation server. To accomplish this goal, FedAVG which
enables the edge devices to perform multiple iterations of
weight updates to refine their local models before transmit-
ting the updated weights to the central server is utilized.
This involves independent training of the DNN model across
the clients on their local data, with the parameters being
averaged periodically on the server. Detailed information on
the process of FL and the FedAVG algorithm utilized in our
approach, is provided in subsections III-A and III-B. Once
the optimal global model is developed as a result of collabo-
rative training, it is deployed to registered nodes for inferring
worker safety. IoT devices that collect data from the outdoor
construction environment are connected to the micro-service
module of EdgeX. Based on the inference results the devel-
oped system later provides the desired actuation by triggering
the control commands. EdgeX microservices help achieve
better device management, and connectivity, thus allowing
IoT devices to be easily controlled and monitored. During
the inference phase, IoT devices’ data are derived from
the EdgeX repository and preprocessed on the edge nodes.
Then preprocessed data is fed into the prediction model and
inference results are achieved. Furthermore, users as well as
clients can provision,manage, and operate the system through
the web service provided by the edge server, which can be
accessed via the internet.

Figure 3 shows the layered architecture of our mecha-
nism which consists of three layers: the client layer, the
edge layer, and the device layer. For gathering information
from the outdoor construction setting, the device layer of
our mechanism includes sensors that are mounted to the IoT
devices. These WiFi-enabled devices continuously collect
data from their sensors and transmit it to the internet over
HTTP. In our mechanism, devices are represented by their
resources and are registered and managed on the edge node,
where data is collected through edge computing services,
which are microservices of EdgeX. The network’s available
resources enable sensing and actuating functionalities, which

in turn provide IoT services to the edge node. IoT frameworks
and libraries are utilized to create these resources, which
empower IoT devices to provide services by transmitting
data. Event management is employed to publish sensing data
upon request from the edge node.

The edge layer of the mechanism consists of the edge
server and edge nodes, which work together to derive the
optimal global model through FL using historical data at
the edge of the network. Once the optimal global model is
determined, it is first deployed on the node and is used to
predict the worker safety of new data. When a client requests
to predict worker safety, data is first collected from the IoT
devices and transferred to the repository of EdgeX. The safety
inference result provided by the edge node is then sent back
to the edge server to display to the client through UI. Besides
this, the client service provider facilitates access to virtual
objects for users within the system and connects with physical
devices over the Internet.

The client layer of our mechanism comprises the web
client, which serves as the interface for users to access content
and issue commands to the system. By interacting with both
users and the edge server, the web client facilitates communi-
cation and data transfer within the system. Theweb client also
provides UI for control, management, data visualization, and
service operations in the system, from deriving the optimal
global model through FL to predicting worker safety in the
outdoor construction environment.

Changes in data distribution among cross-silo edge nodes
trigger the FL process. When there is a significant shift in
data patterns or context within the monitored environments,
such as a worker transitioning between different edge node
environments, these modifications typically manifest. In such
scenarios, the global model is periodically updated through
an FL process. When nodes located in distinct silos observe
and respond to changes in data distribution, they notify it to
a central coordinating entity. When a significant change is
identified, it serves as the impetus for initiating FL updates.
The primary purpose of these FL updates is to accommo-
date the evolving data distribution by modifying the global
model. In response to the trigger, edge nodes collaborate
to refine the global model by incorporating their respective
localized insights. This collaborative model training process
guarantees the continued representativeness of the global
model by assimilating the collective knowledge of all edge
nodes, despite the possibility of time-varying data distribution
fluctuations. For instance, data belonging to worker 1 is
synchronized between Edge Nodes 1 and 2 as a result of their
relocation in response to changes in data distribution. This
synchronization mechanism ensures that local models are
always up-to-date and that safety is continuously monitored.
This method addresses the dynamic nature of monitored
environments and ensures the continued relevance and effec-
tiveness of the global model by periodically initiating FL
updates in response to changes in data distribution. There-
fore, the system retains its capacity to provide accurate and
context-aware edge inference.
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FIGURE 2. Proposed architecture for worker safety prediction mechanism.

FIGURE 3. Layered architecture of the proposed worker safety prediction.

A. COLLABORATIVE TRAINING OF WORKER SAFETY
PREDICTION MECHANISM
FL is a machine learning technique that allows for algorithm
training utilizing local data samples dispersed over several
decentralized edge devices or servers without the need to
interact with the actual data. In our system, we utilize this

technique to obtain the most optimal global model that effi-
ciently predicts worker safety in the outdoor construction
environment with high performance. During the FL process,
the steps in each training round are as follows:

1) To begin the training process, the server initializes the
global weights as the starting point during the first
round. For subsequent rounds, the average weights of
all nodes are used. The edge server sends global model
weights to use for local training to the registered edge
nodes it has chosen for the current round.

2) Participant nodes after receiving the global model
adopt it and use their local data to train it. To facil-
itate training with DNN, the local data undergoes
preprocessing and transformation to become a suitable
format.

3) Nodes that took part in local training send the server
their updated model parameters. Since each node uses
diverse local data to train its model, the updated param-
eters will vary between nodes.

4) The server builds an improved global model by aggre-
gating the parameters of the local model sent by each
node. FedAVG is considered the main aggregation
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approach. Up to convergence, the process is repeated
from step 1.

5) Once the model has converged, the trained global
model is distributed by the server to all participating
edge nodes.

6) The optimal global model is deployed on all partici-
pating edge nodes to perform worker safety prediction.
When using the global model for prediction, it is signif-
icant to remember that as in Step 2 of themodel training
process, the same preprocessing technique is still used
to prepare the local data.

B. MODEL CONSOLIDATION FOR PROPOSED WORKER
SAFETY PREDICTION MECHANISM
Typically, we can express the objective of FL as an optimiza-
tion problem as follows:

min l(w) =
J∑
j=1

nj
n
Lj(w)

where Lj(w) =
1
nj

J∑
i∈Dj

li(w) (1)

Minimizing the loss, l(w), over the data that are distributed,
D, is the goal of the optimization problem, where the loss
function of the global model is l(w), the loss of jth device is
Lj(w) and the loss for sample, i, is li(w). The distribution of
device’s data points, j, is denoted byDj, j ∈ {1, . . . , J}, where
nj = |Dj| is the size ofDj, and n = 6J

j=1nj is the total volume
of data across all edge nodes. FedAVG is considered the main
method of solving this optimization problem. FedAVG solves
the optimization problem defined in FL by allowing devices
to update their local models with multiple weight updates
w ←− w − η∇l(w) prior to submitting the server with the
updated model weights. The details of model consolidation
based on FedAVG algorithm for the proposed worker safety
prediction mechanism [24] is presented in Algorithm 1.

Algorithm 1 Federated Averaging (FedAVG)
1: EDGE_SERVER_UPDATE (J ,B,E, η) :
2: Initialize w0
3: for each round t = 1, 2, . . . do
4: m← max(C .J , 1)
5: St ← (random set of m edge nodes)
6: Broadcast global model weight to St edge nodes
7: for each edge node j ∈ St in parallel do
8: wjt+1← EDGE_NODE_UPDATE (j,wt)
9: Aggregate wt+1←

∑J
j=1

nj
n w

j
t+1

10: EDGE_NODE_UPDATE (j,w) : ▷ Run on client j
11: B← (split Dj into batches B of size sb)
12: for each local epoch i from 1 to E do
13: for batch b ∈ B do
14: w←− w− η∇l(w)
15: return w to server

Based on the fraction of edge nodes to perform compu-
tation on each round C , a random subset of edge nodes
St is selected, and the global model weight is broadcasted
to them at each round of FedAVG (lines 5 and 6). The
selected edge nodes (line 8) then train their local models in
parallel using their local data throughout several epochs. The
EDGE_NODE_UPDATE procedure (line 10) presents the
update process of the local model.Dj, denoted the local data is
separated into batches B of size sb (line 11), and the received
global model is trained by the edge nodes with the created
batches for multiple epochs (lines 12, 13, and 14). After each
device in St computes its new local weights (line 15), these
weights are transmitted to the edge server. The global model
is updated by the edge server by computing the weighted
average of the local weights received from the edge nodes
(line 9). This process is repeated until the model converges
(line 3), and the optimal model is finally deployed to all
participants.

FedAVG is an alternative to Federated Stochastic Gradient
Descent (FedSGD) that has shown significant improvements
in time efficiency and communication [43]. Its fundamental
concept is that averaging the weights is the same as averaging
the gradients if all client nodes start from the same initializa-
tion parameters. As a result, the performance of the averaged
model is not necessarily impacted. Furthermore, Adam opti-
mizer is utilized in FedAVG in order to decrease the number
of communication rounds and latency. The optimizer utilized
in this context employs adaptive learning rates to hasten
convergence and enhance learning efficacy when dealing
with non-independent and identically distributed (non-IID)
data [44].

C. OPERATIONAL OVERVIEW OF DEVELOPED WORKER
SAFETY PREDICTION SYSTEM
Figure 4 shows the inclusive functional block diagram of
the proposed mechanism. The system comprises four main
functional blocks namely client, edge server, edge node, and
IoT device. In the client block, UI is developed to enable users
to control, manage, and operate the system via a web service.
This interface facilitates interaction between the user and
the system, ensuring a smooth user experience. In the edge
server block, the client application service enables four major
functions: node virtualization, FL task generation, FL oper-
ation, and inference operation. For each functional process,
metadata is stored in the repository to ensure the efficient and
effective operation of the system.

In the edge node block, four components are included:
• EdgeX core services, a framework that enables devices
to securely and efficiently collect and transmit data.

• Device service for interconnecting IoT devices.
• FL operation handler for managing FL processes with
the edge server.

• Inference handler for processing inference requests from
the edge server.

The device block includes three blocks representing weather
devices, worker devices, and building devices that are
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FIGURE 4. Functional block diagram of the proposed worker safety prediction approach.

registered in the EdgeX on the node through device
service.

Figure 5 illustrates the general sequence diagram of the
proposed worker safety prediction approach, which consists
of several phases including system initialization, FL opera-
tion, and inference for predicting worker safety. In the system
initialization phase, the user (web client) registers the edge
node by providing its information such as name, IP address,
and port number. After the node registration is complete, the
user can generate a task for an FL operation by providing
attributes such as name, communication round, model, and
dataset. Once the system initialization phase is complete, the
user can start the previously generated FL operation. Upon
completion of the communication round and deployment
of the final global model to the edge nodes, the FL phase
concludes. In the inference phase, when the user requests
to operate the inference, the edge server communicates with
the edge node for inference. The edge node then retrieves
data from IoT devices and performs data pre-processing and
inference. The results of the inference are then transferred
back to the server.

IV. IMPLEMENTATION AND TESTING ENVIRONMENT
RESULTS
A. IMPLEMENTATION SETUP
The following Figure 6 depicts our experimental environment
architecture. For the edge server environment, the Ubuntu

FIGURE 5. General sequence diagram of the proposed worker safety
prediction approach.

20.04 desktop operating system is installed on a PC featuring
an Intel® Core™ i9-11900F 2.5GHz CPU, 8 GB of memory,
and 100 GB of storage, configured as a virtual machine.
Each of the edge node environments is equipped with the
Ubuntu 20.04 server operating system, installed on a Rasp-
berry Pi 4B that features a quad-core 1.5GHz 64-bit CPU,
4GB of memory, and a 32GBMicroSD card. Each of the IoT
device application environments is set up with the Ubuntu
20.04 desktop operating system on a PC that features an
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FIGURE 6. Experimental test-bed of federated learning-based worker
safety prediction mechanism.

FIGURE 7. Experimental entities for worker safety prediction.

Intel® Core™ i9-11900F 2.5GHz CPU, 8 GB of memory,
and 100 GB of storage, configured as a virtual machine.
In our experimental environment, all devices are connected
to a private HTTP network through a router. Virtual machines
configured on the PC are connected via an Ethernet cable,
which is bridged through an adapter in the Ubuntu operating
system. Meanwhile, Raspberry Pi devices are connected via
Wi-Fi.

The experimental entities of the proposed worker safety
prediction mechanism are implemented on the respective
platform to deliver the intended functionalities as depicted
in the following Figure 7. Clients refer to the web-based
interface that allows users to input and receive information,
which is then delivered to the edge server. In our experiment,
to allow access to the edge server via the internet, we utilize
the Chrome Web Browser as the edge client on the PC.
Client service application from the edge server provides UI.
The contents of the UI are implemented using HTML, Boot-
strap, and jQuery libraries with the Flask web framework.

FIGURE 8. Initialization phase of the proposed worker safety prediction
on UI.

Table 1 presents a detailed overview of the experimental
environments for the IoT device, edge node, and edge server,
including information on programming language, application
(IDE), frameworks, libraries, and database.

B. INITIALIZATION PHASE OF THE PROPOSED WORKER
SAFETY PREDICTION MECHANISM
Figure 8 depicts the initialization phase of the worker safety
prediction mechanism based on FL on the Web Interface.
In the domain of human-computer interaction in industrial
design, UI refers to the area where interactions between
humans and machines take place. Before the operation phase,
the system needs to be initialized by registering the required
number of client nodes to participate in training and gen-
erating desirable tasks to operate the FL. Hence, it can be
seen that UI provides these two kinds of registration and it
is showing that currently there are no registered nodes and
no generated task with a sky blue highlighted square inside
Figure 8. The purple highlighted rectangle inside Figure 8
shows the registration interface of an edge node (client node)
on the edge server by providing its information. The desired
number of the edge node can be registered by the unique
name and its address (IP address and port number). In this
image, it can be observed that edge node 1 (name with
Node01) is being registered with its IP address information
(192.168.0.24:9011). In our system, three edge nodes are
used to conduct the experiment as we implemented three
Raspberry Pi 4Bs as client nodes to be involved in FL. So,
we register our three nodes by providing their names and
addresses.

The black highlighted rectangle inside Figure 8 depicts the
user interface for generating FL tasks during the initialization
phase of worker safety prediction in the outdoor construction
environment. To generate a task for the FL operation, the user
can configure the attributes of the task such as task name,
number of federated rounds, the type of model, and dataset
as shown in the image. The sky blue highlighted rectangle
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TABLE 1. Experimental environment of the proposed worker safety prediction approach.

shows the result of the initialization phase of the proposed
mechanism. The result depicts the information displayed on
the user interface of three nodes registered and two FL tasks
generated on the system.

C. OPERATION PHASE OF THE PROPOSED WORKER
SAFETY PREDICTION MECHANISM
Figure 9 presents the operation phase of the proposed worker
safety prediction mechanism. Users can operate one task at
a time among the tasks generated on the system. It also
shows the state of task 1 operating the FL with its attributes
on the user interface. Task 1 comprises the attributes with
10 communication rounds of FL using the DNN model and
local dataset name with worker safety for the outdoor con-
struction environment dataset. To initiate the FL operation,
users simply need to click the ‘‘RUN’’ button, which will
update the button’s color and text to indicate the operation
has started on the system. Once the operation is complete, the
button will return to its original state, and the user can review
the FL task’s history by clicking the ‘‘History’’ button.

The red dotted rectangle highlighted within Figure 9
depicts the history of the FL task displayed on UI. This task
history encompasses metrics such as Mean Absolute Error
(MAE), LOSS, Mean Absolute Percentage Error (MAPE),
and training time for each node, and is organized by task
name.

D. INFERENCE PHASE OF THE PROPOSED WORKER
SAFETY PREDICTION MECHANISM
The following Figure 10 shows the inference environment on
the user interface during the inference phase of the proposed
worker safety prediction mechanism. Once the operation
phase is done and after the trained global model is auto-
matically distributed to the participant edge nodes, users can
initiate the inference process. To begin the inference process,
the user can easily click the ‘‘Operate’’ button. Once the
button is clicked, the system will indicate that the operation
has started by updating the button’s text and color. After the
completion of the inference operation, the button returns to
its initial state. The user can click on the ‘‘History’’ button
to view the history of the inference task. The highlighted red
dotted rectangle shown in Figure 10 represents the history of
the three times inference operation using the trained model
by task 1 as displayed on UI. This task history records the
predicted worker safety index and training time for each node
and is arranged by task name.

V. PERFORMANCE ANALYSIS
A. DATASET AND EVALUATION METRICS
In this research study, safety data of construction work-
ers is provided by a Research Institute, in the Republic of
Korea. Table 2 presents a summary of the sensing devices
used for data collection with their output descriptions. The
dataset consists of 30,000 instances with 8 features. The study
focuses on the outdoor construction environment and consid-
ers the following characteristics. (1)Weather conditions; The
climate in the construction area plays a vital role. Extreme
temperatures, precipitation, and wind speed are factors that
can have an impact on construction materials, equipment, and
the safety of workers [35], [45]. (2)Building conditions; In an
outdoor construction environment, it is important to consider
load, strain, [46] and inclinometer [47] measurements to
ensure the structural integrity and stability of the building.
(3)Worker conditions; Ensuring the well-being of work-
ers and preventing accidents or health issues is paramount.
Monitoring the heart rate of workers can provide insights
into their physiological response to the work environment
[48]. Additionally, their location information, particularly
proximity to the danger zone, is crucial for ensuring their
safety [49].

In order to devise amethod for predictingworker safety, the
data is simulated for three workers, each representing an edge
node, and is validated on a server in an outdoor construction
setting. Each row contains temperature, wind, precipitation,
strain, inclinometer, load, heart rate, location, and safety
information. Since worker safety is inferred from the knowl-
edge of weather, building, and worker status, weather data is
categorized into temperature, wind, and precipitation, build-
ing data into strain, inclinometer, and load, and worker status
data into heart rate and location coordinates, encompassing
latitude and longitude values.

The evaluation is performed on three edge nodes, two of
which contained 9,000 rows of data and one containing 7,000
rows of data. Validation data consisting of 5,000 rows is used
on the edge server. The significant diversity among the edge
nodes in terms of features posed a challenge for capturing
all the patterns among them with costly centralized training.
To address this, we explored the use of FL to develop a unified
global model for all edge nodes.

In this paper, we employed several statistical evaluation
metrics to assess the effectiveness of our model, including
MAE, Root Mean Square Error (RMSE), and Coefficient of
Determination (R2) [50].
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FIGURE 9. Operation phase of the proposed worker safety prediction on UI.

FIGURE 10. Inference phase of the proposed worker safety prediction on UI.

TABLE 2. Detailed descriptions of experimental sensors utilized for the proposed mechanism.

• MAE: A commonly used evaluation metric that quan-
tifies the deviation between the actual and predicted
values of a variable. The range of MAE varies from
0 to ∞. A value of 0 indicates the best possible per-
formance, with predictions perfectly matching actual
values. Increasing MAE signifies higher discrepancies
between the model’s predictions and the actual data.
It is calculated as the absolute difference between the

predicted and target values. It is given by equation 2 [51]:

MAE =

∑n
i=1

∣∣∣Yi − Ŷi∣∣∣
n

(2)

• RMSE: The objective of employing this metric is to
assess the regression model’s error rate and confirm that
the error magnitudes are comparable to those of the
targets. RMSE range spans from 0 to∞. A value of ‘0’
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FIGURE 11. MAE comparison between FL and CL.

indicates the regression model’s accurate performance
on unseen data, while a higher RMSE value suggests a
significant error in the prediction process. It is computed
as the square root of the Mean Square Error (MSE),
which is defined by the following equation 3 [51]:

RMSE =

√√√√ ∑n
i=1

(
Yi − Ŷi

)∣∣∣2
n

(3)

• Coefficient of Determination (R2): A statistical metric
that indicates the percentage of variability in the depen-
dent variable that can be explained by one or more
independent variables. The R2 score ranges from 0 to 1,
where a value of 0 indicates the regression model’s
weakest performance and a value of 1 signifies its
optimal performance over unseen data samples. The
equation for R2 is 4 [52]:

R2 = 1−
SSres
SStot

(4)

Although our primary focus is on distributed machine
learning at the edge, we also conduct analysis regarding the
error, training time, and inference time of our work compared
to centralized machine learning. In Figure 11, we present
a comparison of error, measured by the MAE, between FL
and centralized learning (CL). The findings indicate that
CL is better than FL in every training epoch. However, the
error gap between FL and CL diminishes at 600 training
epochs, suggesting the potential for improving FL’s perfor-
mance by increasing the number of training epochs. Besides,
FL stands out for its strong emphasis on security, ensur-
ing data privacy is safeguarded by eliminating the need to
transmit local data to a central server during the training
process.

Additionally, in Figure 12, we present a comparison of
the training time between FL and CL, measured in seconds
(s). This experiment is conducted on the constrained device,
Raspberry Pi 4B. Overall, FL demonstrates significantly
lower training time compared to CL, owing to its distributed
training approach.

FIGURE 12. Training delay comparison between FL and CL.

FIGURE 13. Inference delay comparison between FL and CL.

TABLE 3. Statistical Performance Evaluation of the worker safety
prediction model.

Moreover, Figure 13 presents a comparison of the infer-
ence time between FL and CL, measured in millisec-
onds (ms). In general, FL demonstrates shorter inference
times as the model is deployed at the edge following
the communication rounds, resulting in faster inference
performance.

Furthermore, Table 3 provides a summary of the statisti-
cal performance evaluation for the predicted model, based
on the number of federated rounds. All evaluation results
were obtained from the DNN learning model trained with
20 epochs on the clients. The table reveals that the learn-
ing model’s performance improves as the federated round
and training epoch number increase, as demonstrated by
the evaluation metrics of 0.015 MAE, 0.025 RMSE, and
0.969 R2.

Figure 14 is used to illustrate the evaluation of the DNN
learning model using the MAE metric. By comparing the
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FIGURE 14. MAE evaluation of the learning model.

FIGURE 15. RMSE evaluation of the learning model.

results obtained from different numbers of FL rounds and
training epochs on the node, it is apparent from the results
that as the federated round and training epoch number
increase, the error rate or loss value decreases. The optimal
performance was attained using 30 federated rounds and
20 training epochs.

Additionally, the evaluation of the DNN learning model
based on the RMSE metric is presented in Figure 15. The
results obtained from various numbers of FL rounds and
training epochs on the edge node reveal a decreasing error
rate (loss value) as the federated round and training epoch
number increase. Optimal performance was achieved with
30 federated rounds and 20 training epochs.

Also, the following Figure 16 depicts the evaluation of
the DNN learning model using the R2 metric. Analysis of
the results obtained from different numbers of FL rounds
and training epochs on the node indicates a reduction in the
error rate (loss value) as the number of federated rounds and
training epochs increases. The best performance is observed
with 30 federated rounds and 20 training epochs.

In addition, the round-trip time (RTT) measured in mil-
liseconds (ms) is shown in Figure 17, which serves as
an indicator of the latency in each communication round,
with respect to the number of federated rounds and train-
ing epochs. The figure illustrates that RTT experiences an

FIGURE 16. R2 evaluation of the learning model.

FIGURE 17. RTT based on the federated round and training epoch
number.

increase as the number of federated rounds and the epochs of
the training increase. However, during the first three rounds
of FL, all training epochs had a lower latency with values of
less than 100k ms.

Also, the succeeding Figure 18(a)(b)(c) illustrates the rela-
tionship between the actual and predicted worker safety
index predicted on each node using the optimal predicted
model obtained from the DNN learning model, which was
trained with 30 federated rounds and 20 training epochs.
For simulating one-hour-ahead predictions of the safety of
a worker in an outdoor construction environment, the data
points for prediction were collected every 15 seconds, with
240 data observations, which is reasonable in fatal environ-
ments like construction sites, although shorter time intervals
for prediction should be considered to improve the worker’s
safety. From the segment depicted in the figure, it is notice-
able that the predicted values align closely with the actual
values.

Moreover, Figure 19 displays the time delay, measured
in milliseconds (ms), in predicting worker safety on three
nodes. The figure compares the results of 20 prediction
delays collected from each node. Initially, an average delay
of approximately 700 ms is observed for inference on each
node, whereas the subsequent prediction times took around
400 ms on average.
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FIGURE 18. Comparison of actual and predicted worker safety index for one-hour ahead prediction on three edge nodes.
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FIGURE 19. Time delay of predicting worker safety on three nodes.

VI. CONCLUSION
Construction industry has been remarked as one of the
most hazardous industries accounting for more work-related
injuries and deaths than any other industry in the world.
Therefore, an effective construction safety management sys-
tem is required to reduce damage caused by construction
site accidents. To create a safe construction environment
by reducing potential damage and hazardous situations,
we proposed the worker safety prediction mechanism based
on the FL technique-assisted edge intelligence in the out-
door construction environment. To achieve an efficient and
adaptive predictive model, this paper integrates FL, which
offers benefits such as preserving data privacy and lever-
aging rich resources by aggregating the model’s parameters
through training local data distributed among the edge nodes.
To enhance the use of IoT devices in the construction envi-
ronment, we also utilized the EdgeX framework that offers
capabilities such as conveniently managing devices and data
and interoperability between devices and applications at the
IoT Edge. Additionally, we provide a web service that inter-
acts with the system through UI to easily manage, operate,
and assess for the sake of worker safety in the outdoor
construction environment. As far as we know, no active
research is still done for predicting worker safety in the
outdoor construction environment while integrating with the
FL technique to achieve the efficient and effective predicting
model in Edge. It is expected that the proposed worker safety
prediction mechanism can effectively seek worker safety in
the outdoor construction environment while unleashing the
capacity of cutting-edge technologies.

In the future, we intend to expand our research to exper-
iment with real-world data, while considering additional
features to ensure worker safety in outdoor construction
environments. Furthermore, we will conduct comparative
research with other models to enhance performance.
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