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ABSTRACT The electric vehicle (EV) industry is currently afflicted with inefficient charging systems.
Considering the growing adoption of EVs, optimization strategies for efficient charging, and overcoming
constraints such as a limited power supply and extended waiting times, are required. The knapsack algorithm,
a classical technique that maximizes value and capacity, enables efficient utilization of the limited available
power supply while minimizing waiting times in EV charging scenarios. However, the knapsack problem
is notoriously NP-hard, making it difficult to find efficient solutions classically. In this paper, we propose
an approach that leverages the quantum approximation optimization algorithm (QAOA) to resolve the EV
charging problem using a knapsack-based formulation. By incorporating a knapsack problem constraint into
the QAOA, we overcome the limitations of the original QAOAmethod and provide a potential solution to the
knapsack problem. We extensively evaluate and analyze the effectiveness of our approach in finding optimal
EV charging solutions in both noise-free simulations and noisy real quantum devices. The proposed method
achieves impressive approximation ratios of up to 100% and 50% in noise-free and noisy environments,
respectively. Even with a small circuit size, we confirm that our approach can find optimal solutions
effectively.

INDEX TERMS Charging problem, electric vehicle, knapsack problem, limited power supply, QAOA,
quantum computing.

I. INTRODUCTION
With the increasing global push for environmental sustain-
ability and the urgent need to reduce greenhouse gas emis-
sions, the adoption of electric vehicles (EVs) has increased
remarkably [1]. This shift toward eco-friendly transportation
has resulted in a surge in the number of EVs on the roads,
presenting new challenges regarding the efficient manage-
ment of electric power supply [2]. The limited power supply
infrastructure poses a critical obstacle to the widespread
integration of EVs, necessitating the implementation of effec-
tive optimization techniques to ensure a smooth transition
to electrified transportation systems [3]. One of the pri-
mary challenges arising from the proliferation of EVs is the
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effective management of the energy demand at electric charg-
ing stations [4]. The existing power grid frequently faces
difficulties in handling the simultaneous charging require-
ments of numerous EVs, leading to congestion and potential
power shortages. In response to this issue, many studies
have been conducted to develop optimization techniques for
the efficient allocation of limited power resources among
charging stations and vehicles. Among the techniques pro-
posed, the knapsack problem has emerged as a compelling
method [5].

The knapsack problem is a classical combinatorial opti-
mization problem in computer science and operations
research. In the context of the EV charging problem,
it involves allocating an available power supply among charg-
ing stations and vehicles to maximize energy utilization while
minimizing charging time delays. Each EV is represented
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as a knapsack ‘‘item’’ with associated power requirements
and time requirements for achieving a full charge. The term
‘‘capacity’’ refers to the available power or energy at a
charging station [6]. The knapsack-based approach for EV
charging aims to provide a simple solution that efficiently
utilizes the limited power supply while maximizing the
number of charged EVs. This optimization technique holds
significant potential for addressing the challenges associated
with charging multiple EVs simultaneously. However, the
knapsack problem is notorious for its computational com-
plexity, particularly in real-world large-scale scenarios. For
instance, 0/1 knapsack problem, each item can either be
selected (0) or rejected (1), meaning that we cannot take a
fraction of an item value. The complexity of solving the 0/1
knapsack problem is known to be NP-hard, which means
that as the number of items increases, the time required to
find the optimal solution can grow exponentially [7]. Thus,
classical algorithms frequently struggle to find optimal solu-
tions within a reasonable timeframe, hindering the efficient
implementation of the knapsack approach for optimizing EV
charging [8].
Therefore, quantum computing has emerged as a powerful

solution for tackling problems that are inherently challenging
to solve efficiently using classical methods. One promising
technique for addressing complex optimization problems,
including the knapsack problem, is the quantum approximate
optimization algorithm (QAOA). This approach combines the
strengths of both quantum computing and classical optimiza-
tion to achieve impressive performance and scalability [9].
QAOA has proven to be effective in handling a wide range of
combinatorial optimization problems, and researchers have
explored its application to the challenging knapsack prob-
lem in various studies [10], [11]. These investigations have
demonstrated the potential of QAOA for finding near-optimal
solutions to the knapsack problem efficiently. Despite the
promising applications of QAOA, there is still a gap in
research concerning its application to EV charging problems
in the context of the knapsack problem. Moreover, the initial
research on QAOA does not address constrained optimiza-
tion problems, such as the traveling salesman and knapsack
problem.

In this paper, we present an approach that harnesses the
power of QAOA to tackle the challenging of 0/1 knapsack
problem, specifically for the EV charging optimization prob-
lem. Our contributions to this study are as follows:

• We utilize a QAOA for the EV charging optimization
problem to improve the effectiveness of finding optimal
charging solutions within a limited power supply.

• We present efficient quantum circuits capable of encod-
ing knapsack problem-based EV charging into a format
optimized for quantum computation.

• We rigorously evaluate our approach across numerous
configurations, conducting a comprehensive analysis
that showcases the superiority of our approach and
highlights its potential for optimizing the EV charging
problem.

The remainder of this paper is structured as follows. In
Section II, we explore the background knowledge relevant
to this study. Section III presents the existing research on
EV charging optimization and QAOA regarding the knap-
sack problem. Our proposed approach and the application
of the QAOA to the 0/1 knapsack problem are presented
in Section IV. In Section V, we describe and discuss the
experimental results of the proposed method. Section VI
presents experimental findings, and the paper is concluded
in Section VII.

II. BACKGROUND
A. EV CHARGING PROBLEM
Regarding EV charging issues, three main classifications are
considered: smart-grid-, aggregator-, and customer-oriented
approaches. In the smart-grid-oriented type, researchers pri-
oritize optimization algorithms for flattening the load and
ensuring efficient electricity usage. The aggregator-oriented
charging method uses control strategies to improve overall
EV customer satisfaction. Conversely, the customer-oriented
charging approach employs probabilistic methods to mini-
mize charging costs for individual EV users [12]. Similarly,
the considerable electricity demand of EVs can surpass the
capacity of local power grids, resulting in voltage fluc-
tuations and potential power-supply disruptions. To tackle
these challenges, modeling these decisions as optimization
problems becomes crucial. The objective is to strike an opti-
mal balance, considering various objectives and constraints.
For instance, ‘‘first come, first served’’ algorithms priori-
tize EVs based on their arrival time; however, this approach
can result in prolonged waiting times for EV owners who
arrive later [13]. The ‘‘shortest time charge first’’ is another
scheduling approach commonly employed to minimize the
total waiting time for EVs at charging stations [14]. However,
this approach falls short in considering crucial factors, such as
the charging station power capacity and prioritizing vehicles
with urgent charging needs. To address this pressing issue,
the knapsack-based algorithm has emerged as a promising
solution [15].

B. KNAPSACK PROBLEM
The knapsack problem indeed stands as a classic optimization
challenge in computer science and mathematics. It involves
selecting items with different weights and values to fit in a
container with a limited capacity, aiming to maximize the
total value without exceeding the weight limit [16]. Notably,
the knapsack problem exemplifies a classic example of an
NP-hard problem, signifying the absence of an efficient
algorithm capable of finding the optimal solution within
polynomial time [17]. The non-linearity knapsack problem
(NLK) is a generalized variant of the knapsack problem
that has an additional nonlinear cost term in the objective
function [18]. The non-linearity problem size scales because
adding just one more item to the set of available items can
significantly increase the number of possible combinations
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that must be considered when solving the problem. As a solu-
tion, a groundbreaking paradigm called quantum computing,
which leverages the unique properties of quantummechanics,
has been explored to execute operations and address NP-hard
problems that present significant challenges for classical
computers, including the knapsack problem [8]. Remarkably,
quantum algorithms, such as the QAOA, have exhibited an
impressive capability to handle the knapsack problem and
various other NP-hard challenges [9].

C. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM
(QAOA)
QAOA is a hybrid quantum–classical algorithm employed to
solve combinatorial problemswith approximate solutions [9].
To prepare the state of QAOA, a parameterized circuit with
p levels is employed, driven by 2p variational parameters.
Notably, even at the lowest circuit depth (p = 1), QAOA
has demonstrated remarkable performances, which cannot be
effectively reproduced using classical computers [19]. Theo-
retical analysis reveals that the solution quality represented
by an approximation ratio, denoted as r , reaches 100% when
p approaches ∞. In the context of combinatorial optimiza-
tion problems [20], we can define problems on N -bit binary
strings, denoted as x, where x = x0, x1, . . . , xN−1, and the
goal is to determine a string that maximizes a given objective
function (f ). Function f is expressed as follows:

f (x) : {0, 1}N −→ R. (1)

We define the phase Hamiltonian (HC ) tomap to the objective
function f . The form of HC is denoted as follows:

HC |x⟩ = f (x)|x⟩. (2)

HC encodes f and acts on the computational basis states of 2N

dimensional Hilbert space. Thus, phase operator, U (C, γ ),
is introduced with γ as a parameter, as follows:

U (C, γ ) = e−iγHC (3)

However, HC does not change the probability of obtaining
a certain basis state. Thus, the mixing operator, U (B, β),
serves to transfer probability amplitudes between states. It is
mathematically defined by the sum of Pauli-X operators σ xj
over N qubits, where σ xj acts as a NOT operator σ xj |1⟩ = |0⟩
and σ xj |0⟩ = |1⟩. The mixing operator is expressed as:

U (B, β) = e−iβHB , (4)

where the mixing Hamiltonian (HB) is defined as follows:

HB =

N−1∑
j=0

σ xj . (5)

We define the state of the p-level QAOA by applying
the phase operator U (C, γ ) and mixing operator U (B, β),
as follows:

|γ, β⟩ = U (B, βp)U (C, γp) . . . U (B, β1)U (C, γ1)|0⟩, (6)

where p ≥ 1 and 2p angle parameters γ1 . . . γp and β1 . . . βp.
We can perform the measurement repeatedly to obtain the
expectation value of HC determined as:

⟨HC ⟩ := ⟨γ, β|HC |γ, β⟩ = ⟨f ⟩(γ,β) (7)

where ⟨f ⟩ represents the expectation value of the objective
function which can be obtained by using classical optimiza-
tion algorithms [21], [22], [23].

For combinatorial optimization problems, finding opti-
mal solutions in polynomial time is difficult. Approximation
algorithms offer a fast alternative, providing approximate
solutions with an approximation ratio defined as:

r =
⟨f ⟩(γop,βop)

fmax
(8)

where γop and βop are optimal parameters.

III. RELATED WORKS
We reviewed several relevant research works that explore
the EV charging problem and its connection to the QAOA
knapsack problem. In [24], the authors discuss the optimiza-
tion of EV charging and discharging scheduling to minimize
the total cost of charging EVs using both global and local
optimal scheduling schemes. However, as the number of
EVs and charging stations increases, the computation times
become impractical for large-scale EV charging networks.
Zhu et al. [25] applied mean-field game theory to optimize
EV charging by treating all EVs as a collective unit, leading
to consistent charging speeds and uniform charge distri-
bution. However, practical implementation requires further
improvements as this approach assumes simultaneous charg-
ing and incomplete battery charging. Conversely, a compet-
itive algorithm is proposed for the online multiple knapsack
problem, with particular emphasis on EV charging [15]. This
algorithm aims to minimize the overall cost of charging
EVs while ensuring that each EV has an adequate charge
to complete its assigned tasks. The study focuses on mod-
eling the problem as a fractional multiple knapsack problem,
which may require more computational resources compared
to solving the original model. To overcome this challenge,
the QAOA has been proposed specifically for addressing
the knapsack problem [26]. In this particular study, two
techniques are discussed. The first technique enables the
quantum optimization algorithm to explore possible solu-
tions around the initial greedy solution. The second tech-
nique aims to guide the quantum exploration and avoid local
minima around the greedy solutions. The results indicate
that the adjusted quantum optimization heuristics typically
outperform various classical heuristics. In [27], the authors
employed the QAOA to tackle the knapsack problem, specif-
ically for the battery revenue optimization problem. To the
best of our knowledge, this was the first investigation regard-
ing the application of QAOA to a non-Ising objective func-
tion, which is the knapsack problem. The authors created
two variants of the QAOA to tackle the knapsack problem
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by adding constraints to the problems. However, the solu-
tion quality of QAOA is characterized by a high degree of
parameters chosen by the classical optimizer. To address this
challenge, Roch et al. [28] applied the cross-entropy method,
effectively shaping the parameter landscape. This adaptation
enables the classical optimizer to discover better parame-
ters, leading to a significantly improved performance of the
QAOA. However, the authors did not explore larger problem
instances involving more than just two knapsack items.

IV. QAOA FOR THE KNAPSACK PROBLEM
A. KNAPSACK EV FORMULATION
Here, we present a comprehensive description of the knap-
sack approach for the EV charging problem using mathe-
matical notation. In this problem, N EVs are given, with
each EV requires a certain amount of power by a given time
slot, pj, and a charging time for a full charge, tj, where j =

0, . . . ,N−1. The EVs to be chargedmust be chosen such that
the total power required for the charging is less than or equal
to the maximum power P provided by the station, represented
by a binary variable, xj ∈ {0, 1}. The objective is to find a
feasible choice x that enables the prioritization of EVs with
the shortest charging-time requirements to charge as many
EVs as possible. The problem is defined as follows:

maximize
N−1∑
j=0

(1/tj)xj (9)

subject to
N−1∑
j=0

pjxj ≤ P (10)

The knapsack algorithm primarily aims to maximize cer-
tain parameters; however, when considering the EV charg-
ing time, our objective shifts to minimization. To achieve
this, we adopt a unique approach, where the charging time
required for EVj is represented as (1/tj), implying that a
shorter charging time holds a greater value than a longer
one. Consequently, this approach provides an optimization
method that prioritizes EVs with the shortest charging-time
requirement and EVs that can maximize the amount of power
available at the charging station.

B. DESIGN OF QAOA FOR THE KNAPSACK EV CHARGING
PROBLEM
Inspired by [27], we present an approach based on the con-
straint p(x) ≤ P of the knapsack problem by introducing
a penalty scaling linearly with the amount by which the
maximum power required P is exceeded.

1) QUBITS REQUIREMENT
We utilize the register R to store the choices within the EV
charging problem, while the register A stores the EV power
requirement calculation. A flag qubit F indicates whether
the constraint is satisfied or not. We denote NR, NA, and NF
represent the number of qubits in R, A, and F , respectively.
Thus, the number of qubits required is NR + NA + NF .

2) OBJECTIVE FUNCTION
Each possible choice of any of the total N number of EVs is
represented by a bitstring x ∈ Z (N ), where Z (N ) = {0, 1}N .
The objective function can be formulated as follows:

f : Z (N ) → {0, 1}, x 7→ t(x) =

N−1∑
j=0

(1/tj)xj (11)

Thus, the optimal solution (S) of the choices is given by:

S =

{
x ∈ Z (N ) : p(x) =

N−1∑
j=0

pjxj ≤ P
}
. (12)

where x ∈ Z (N ) represents a feasible choice of EVs to be
charged. A choice is made feasible, x ∈ S, if and only if
p(x) ≤ P. The EV power required p(x) can be calculated
using an ancilla register A and variable x is set to 1 if the
EV is selected to charge and 0 otherwise.

3) CONSTRAINT ENFORCEMENT
Here, we utilize an approach that enables the incorporation
of the constraints directly into the objective function f . The
central idea is to introduce a linearly scaling soft constraint
that effectively enforces p(x) ≤ P. We define the total time
required function T (x) and a penalty(x) as follows:

T (x) =

N−1∑
j=0

(1/tj(x)). (13)

The objective function, f (x), can be defined as

f (x) = T (x) + penalty(x), (14)

with

penalty(x) =

{
0, if p(x) ≤ P
−α(p(x) − P), if p(x) > P

(15)

where α > 0 is a constant parameter for scaling the penalty
factor. When choosing an EV to charge, any EV whose
power requirement exceeds the available power or violates
the constraint must be subject to a penalty.

4) EV TIME COMPUTATION
Here, we detail the realization of the circuit to calculate the
EV time requirements. We define the unitaryUC correspond-
ing to f (x) as follows:

U (C, γ )|x⟩ = e−iγ f (x)|x⟩. (16)

Incorporating Equation 14:

U (C, γ )|x⟩ = e−iγT (x)e−iγ penalty(x)|x⟩ (17)

The amount of time required for an EV to reach full charge
can be directly applied using phase gate P:

P(θ ) =

(
1 0
0 eiθ

)
(18)

We denote the PR[j] a phase gate P applied to R[j] for register
R to store each EV time requirements. Therefore, we can
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compute the total time required T (x) using the following
equation:

e−iγT (x)|x⟩ =

N−1∏
j=0

PR[j](−γ (1/t(x))j)|x⟩. (19)

The circuit corresponding to the implementation of time com-
putation is depicted in Figure 1.

FIGURE 1. Phase gates based on the EV time required value on the
register R to calculate the total time requirements.

5) PENALTY COMPUTATION
Here, we present the penalty computation implementation.
Given the tight coupling of the penalty with the EV power
requirement, we decomposed its computation into four sub-
routines: EV power calculation, constraint testing, penalty
dephasing, and reinitialization.

1) EV power calculation. We need to perform compu-
tations on the entangled states |x⟩ ⊗ |p(x)⟩. The total
power required |p(x)⟩ is encoded and stored in the
register A, where the EV power required addition is
calculated using an algorithm based on the quantum
Fourier transform (QFT) [29]. Figure 2 illustrates the
implemented circuit for the addition of each EV power
required using the QFT algorithm. The block Add
scales linearly with the size of register A, which can
be expressed as: p(x) =

∑N−1
j=0 A[j].

FIGURE 2. Addition of EV power required is done using the QFT algorithm
on the register A controlled by register R.

2) Constraint testing. We study the constraint of p(x) ≤

P and toggle F to 0 if the condition is satified, 1 other-
wise. First, we assume themax power availableP = 2c,
where c is an integer. Then, multiple condition can be
defined as p(x) ≤ P ⇐⇒ ∩

N−1
j=c (A[j] = 0). The

circuit presented in Figure 3 sets F to 1 if and only if
∩
N−1
j=c (A[j] = 0) ⇐⇒ ∩

N−1
j=c (¬A[j] = 1). The multiple

condition constraints can be tested by using a series of
multiple C-NOT gates.

FIGURE 3. The multiple conditional C-NOT for implementing the multiple
constraint testing.

3) Penalty dephasing. In case the condition constraints
are violated, in which F = 1, it is necessary to
apply a penalty phase e−iγ penalty(x) corresponding to the
penalty value. Otherwise, penalty(x) = 0, and no phase
is applied. The implementation is done using phase
gates controlled by a flag qubit F . Consider a general
case where max power P can be any integer, not just
limited to the power of 2. We introduce a constant P0,
which adds toA after calculating p(x), thenP+P0 = 2c,
which can be defined as follows:

p(x) ≤ P ⇐⇒ p(x) + P0 ≤ P+ P0 = 2c (20)

Given the penalty for p(x) > P in Equation 15:

penalty(x) = −α(p(x) − P). (21)

With Equation 20, we have:

−α(p(x) − P) = −α((p(x) + P0) − (P+ P0)) (22)

The phase −α(p(x)+P0) stored in register A is defined
as follows:

−α(p(x) + P0) ⇐⇒

N−1∑
j=0

ei2
jγαA[j] (23)
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and the phase α(P + P0) applied using phase gate to
flag qubit F is defined as:

α(P+ P0) ⇐⇒ e−iγα(P+P0) = e−iγα2c (24)

The penalty value can be directly applied using phase
gate P, which is controlled by flag qubit F . Therefore,
the circuit for the penalty dephasing implementation is
presented in Figure 4.

FIGURE 4. A circuit implementing for applying a phase gate
corresponding to the penalty value.

4) Reinitialization. After the penalty computation,
we restore the ancilla qubits by returning them to
their original state, where all of them are set to |0⟩.
The EV power calculation and Constraint testing sub-
routines use only reversible gates such as NOT and
C-NOT gates. Consequently, to reset the ancilla qubits,
we compute the circuit in a reverse direction.

C. CIRCUIT IMPLEMENTATION AND COMPLEXITY
Here, we utilize the following notations: Pt represents the
time required computation for the phase gates, as depicted
in Figure 1. Pc stands for the EV power computation and
Constraint testing subroutines, as illustrated in both Figure 2
and Figure 3. Pp corresponds to the penalty dephasing shown
in Figure 4. Finally, (Pc)† denotes the reinitialization sub-
routines, responsible for resetting the register A to the state
|0⟩. Figure 5 presents the complete circuit implementation,
illustrating the main steps of designing QAOA for knapsack-
based EV charging problem at circuit depth p = 1.

FIGURE 5. A complete overview circuit for QAOA knapsack in EV charging
problem.

The Pt is constantly computed in timeO(1), and it does not
require any ancilla qubits. The Pp operates with a time com-
plexity ofO(log2 n) and requiresNA number of ancilla qubits.
The complexity of the entire algorithm is highly dependent
on the depth of Pc. The Add function is computed in time
log2(d) ∗ NA = O(log2(n)), as d is a constant [27]. We can
obtain the NA by computing all possible EV power required

TABLE 1. EV charging knapsack problem instances.

in register A; it is defined as:

NA =

log2

N−1∑
j=0

pj

 + 1 (25)

As discussed previously, we define the number of qubits
requirement by:

NR + NA + NF ⇐⇒ NR +

log2

N−1∑
j=0

pj

 + 1 + 1 (26)

where NR is the number of qubits corresponding to the total
number of EVs in the knapsack problem andNF is the number
of flag qubits, i.e., one.

V. SIMULATION AND RESULT
In this section, we present the implementation details of our
proposed approach for the EV charging problem. Addition-
ally, we explore its effectiveness across different problem
instances and parameters.

A. IMPLEMENTATION SETUP
We implemented our proposed approach using the IBM
Qiskit library and conducted experiments with the QASM
simulator and IBM Nairobi real quantum computer [30].
Since quantum computing hardware is costly, simulating
quantum algorithms on classical computers has proven effec-
tive for exploring and analyzing the quality of quantum
algorithms. However, this approach has computational over-
head, limiting it to a few qubits within a reasonable com-
puting time. For this reason, we reduced the number of
EVs per knapsack problem to manage the qubit resources.
Nevertheless, our approach remains theoretically applicable
to larger problems. For optimizing the 2p angle parame-
ters (β, γ ) in our approach, we choose the classical opti-
mization algorithm SHGO [31]. To evaluate the algorithm
performance, we employed a set of pre-defined knapsack
problems listed in Table 1. Each entry represents an EV
charging scenario, where the time-required indexes corre-
spond to the power-required indexes. Our main objective was
carefully selecting EVs with the lowest time requirements
while maximizing the maximum power supply. In Table 1,
the Best Known Solution (BKS) is the result using a classical
algorithm [32] and representing the selected index of the EVs.
A value of 1 indicates that the corresponding EV is selected,
while 0 indicates that it is not selected.
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FIGURE 6. Probability distributions of our proposed approach on Problem C and E . In Problem C scenario, experiment with three EVs and have a choice
(1, 1, 0) distributed up to 100%. In Problem E , the situation involves four EVs with choice preferences (1, 0, 1, 1) distributed up to 85%. To achieve higher
probabilities, a larger circuit depth p is needed.

B. PERFORMANCE EVALUATION
The solution quality of the QAOA is profoundly influenced
by the circuit depth p and its 2p angle parameters. In our
approach, we also consider the penalty parameter α, which
significantly impacts the solution quality. First, we optimize
the circuit depth p parameter and examine the corresponding
probability distributions. Next, we introduce the approxima-
tion ratio achieved by our approach and compare these results
to those obtained using the QAOA cross entropy (QAOA-CE)
method [28]. In their proposed, the cross entropy method
is used for the classical optimizer to find optimal 2p angle
parameters shortly. Additionally, we conduct an analysis
highlighting the outcomes of noise-free simulation with those
of a noisy quantum computer. Finally, we conduct an ablation
study by systematically varying both p and α parameters,
exploring a wide range of results.

1) PROBABILITY DISTRIBUTION
We present the probability distributions generated by our
approach for Problems C and E from Table 1. For our exper-
iments, we thoughtfully select a circuit depth of p = 3 and a
penalty of α = 10 to obtain the optimized 2p angle parame-
ters. The results are depicted in Figure 6, where each subplot
showcases the corresponding probability distributions for
the parameter configuration. In Figure 6a, the probability
distribution prominently peaks at the choice of (1, 1, 0),
indicating that the EVs with the time required at indexes
0 and 1 and power required at indexes 0 and 1 are the pre-
ferred choices. Similarly, in Figure 6b, the outcomes reveal
a strong preference for the (1, 0, 1, 1) choice, signifying the
selection of EVs time and power requirements at indexes 0,
2, and 3. However, the outcome of Problem E indicates a
probability associated with a non-optimal choice (0, 0, 1, 1).
This observation suggests that a higher p value is required
to achieve a more optimal distribution. By comparing the
distribution generated by our approach to the BKS value,

we ensure that ourmethod behaves as expected. Our approach
prioritizes EVs with shorter charging time requirements
and maximizes power supply, thus optimizing the charging
strategy.

2) APPROXIMATION RATIO
We conducted a comprehensive evaluation of our approach,
focusing on the approximation ratio. In this evaluation,
we varied the QAOA depth p = 1, 2, 3 and explored the
impact of the variation. The outcomes obtained from our
approach are illustrated in Figure 7, allowing us to com-
pare the results across different circuit depth p values. To
establish a benchmark for comparison with other approaches,
we defined the problem instances based on the specifications
provided in the QAOA-CE paper [28]. The results of our
study clearly demonstrate the superiority of our approach
over the QAOA-CE method at all p values. As p increased,
our proposed approach consistently approaches an approxi-
mation ratio of 100%, showcasing its exceptional ability to
optimize overall solution qualities more effectively than the
classical knapsack problem, particularly as quantum comput-
ing continues to advance [26].

Furthermore, we performed experiments on the problemsA
toD under both noise-free and noisy conditions. The problem
E was omitted because it demands a number of qubits that
exceed the capacity supported by IBMNairobi. The results in
Figure 8 reveal that a 100% approximation ratio was achieved
in the noise-free simulation, whereas in the noisy quantum
device, the approximation ratio dropped to 50%. That is
because the current real quantum devices are susceptible
to noise interference, leading to errors in circuit outcomes.
The level of errors depends on factors such as the number
of qubits, circuit depth, and the specific quantum device
used [33]. Current quantum devices are impacted by various
errors, including gate errors and readout errors. Address-
ing those noise issues would require the implementation
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FIGURE 7. Approximation ratio of our approach with comparison for
different p = 1, 2, 3 to QAOA-CE method on all problems.

of various error-mitigation techniques [34], [35], which is
beyond the scope of this study.

FIGURE 8. Comparing the approximation ratios of our approach on both
a noise-free simulator and a noisy quantum device for problems A to D.
While our method demonstrates high performance on a noise-free
simulator, we also observe the impact of noise in the current quantum
computer, which affects the overall solution quality of our approach.

3) ABLATION STUDY
We conducted experiments to analyze the importance of
parameter values in our approach. We varied the p values and
studied their impact on the approximation ratio. Additionally,
we compared scenarios with different α values with those
without penalties to understand their influence on solutions.

• Circuit depth. Theoretically, as the value of p increases,
the obtained approximation ratios should also increase.
Figure 9 illustrates that our approach achieves an
approximation ratio of 100% for all problems when the
depth p ≥ 4. This finding demonstrates the remarkable
reliability of our method in identifying optimal solu-
tions, even at low circuit depths.

FIGURE 9. The approximation ratio of the circuit depth p ranges from 1 to
5 across all problems. Notably, when the depth p ≥ 3, the approximation
ratio reaches up to 100%. This finding suggests that achieving
higher-quality solutions necessitates a greater circuit depth.

• Penalty scaling factor. To investigate the influence of
penalties, we conducted experiments with a circuit depth
p = 3 to optimize the β, γ parameters. Moreover,
we varied the α value over a range of 0 to 10 in
increments of 2. Subsequently, we computed the cor-
responding approximation ratios. The results are pre-
sented in Table 2. For all problems, the approximation
ratio reaches 100% when the α value reaches its max-
imum value of 10. Conversely, when the α value is 0,
the approximation ratio drops to 0%, highlighting the
impact of the penalty value on the solution qualities.

TABLE 2. Approximation ratio of penalty factor α from 0 to 10. The choice
of penalty value influences the approximation ratio, showing the
importance of careful selection.

4) EXECUTION TIME
The quantum circuit execution time in quantum devices
varies with device technology. However, queuing can lead to
hours-long waits for circuits that execute in mere seconds.
The execution time corresponds to the duration required for
generating the probability distribution of the quantum cir-
cuit [36]. Table 3 illustrates the execution time to generate
probability distribution with circuit depth p = 3, which run
on the real quantum device.

VI. DISCUSSION
On examining the problems in Table 1 and the results from
the previous section, there are a few notable findings. First,
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TABLE 3. Execution time of problems A to D.

the limited number of available qubits in this study restricts
the scale of the EV charging problem that can be considered.
This limitation emphasizes the need for an increased number
of qubits to handle relatively large problem sizes effectively.
Second, in Figure 6b, we observe that for Problem E , non-
optimal solutions are chosen because of the low circuit depth
p = 3. This indicates a strong dependence of the optimal
solution on a larger circuit depth. However, as the size of
the gate parameters increases polynomially with the circuit
depth p, classical optimization methods face challenges in
efficiently finding optimal 2p angle parameters within a short
timeframe. Third, as depicted in Figure 8, a 100% approxi-
mation ratio is achieved in the noise-free simulation. While
it is likely that complicated classical algorithms may surpass
our quantum algorithms in performance, quantum computing
holds promising potential for solving complex problemsmore
efficiently in the future. However, when running on a noisy
quantum computer, the results are significantly affected, with
the approximation ratio reaching only 50%. This observa-
tion strongly indicates that the presence of noise in current
quantum computers has a substantial impact on the overall
solution quality. Fourth, Table 2 demonstrates the variation
of the approximation ratio with the α value from 0 to 10 for
different problems. The optimization of the α value should be
performed individually for each problem instance rather than
applying a specific penalty value universally across all prob-
lems. Finally, our quantum circuit executes within seconds as
shown in Table 3, whereas the queuing time can range from
minutes to hours, or even days.

VII. CONCLUSION
The existing EV charging systems are characterized by
extended waiting times and constrained power supply, neces-
sitating optimization. Therefore, we introduced a promising
solution in the form of the knapsack algorithm, which effec-
tively minimizes waiting times while optimizing the utiliza-
tion of available power supply. In this research, we proposed
an extended QAOA approach by introducing constraints,
which solved the limitation of the original QAOA. By exploit-
ing quantum computing, we applied the QAOA to the knap-
sack problem, enabling the efficient identification of optimal
solutions. We thoroughly evaluated the performance of our
approach using five different EV charging problem scenar-
ios. This evaluation encompassed various aspects, including
the QAOA circuit depth, comparisons with the QAOA-CE
method, and the variation in the penalty values. Metrics such
as the probability distribution and approximation ratio were

employed to measure the effectiveness of the approach. The
results demonstrated the high efficiency of our proposed
approach, which outperformed the QAOA-CE method in all
the test scenarios. Remarkably, even with small circuit sizes,
our approach achieved impressive approximation ratios of up
to 100% in noise-free simulations, underscoring its superi-
ority. However, it is important to acknowledge that in noisy
quantum devices, the approximation ratio was reduced to
50%. Overall, these findings highlight the potential of our
approach in enhancing solution qualities. In future works,
we will focus on scaling our approach to handle larger prob-
lem scenarios. Moreover, we intend to employ advanced
error-mitigation techniques to enhance the reliability and
robustness of our approach.

CODE AVAILABILITY
The code that supports the findings of this study is openly
available in the Github repository, https://github.com/QCL-
PKNU/QAOA-Knapsack-EV-Charging.
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