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ABSTRACT Extracting roads from high spatial resolution imagery (HSRI) has been a hot research topic
in recent years. Particularly, the fully convolutional network (FCN)-based methods have shown promising
performance in accurately extracting roads from HSRI. However, most existing FCN-based approaches
suffer from such deficiencies of convolution in spatial detail loss, inadequate fusion of multi-scale features,
and lack of consideration for long-range dependencies, making road extraction from HSRI remain a
challenging task. To address the above challenges, based on LinkNet architecture, this paper provided a novel
neural network named RFE-LinkNet, which employs a U-shaped framework and integrates several receptive
field enhancement modules and dual attention modules. In the RFE-LinkNet, in order to enhance the spatial
information perception and capture long-range dependencies, the multiple receptive field enhancement
module is devised to expand the receptive field while preserving the spatial details of feature maps. And dual
attention module is provided to capture accurate features for road extraction by refining multi-scale features
from the different-level feature maps in the view of their relative importance. Experiments on Massachusetts
road dataset and DeepGlobe road dataset are conducted to evaluate the performance of RFE-LinkNet,
respectively. Experimental results show that the proposed method achieves superior performance compared
to previous road extraction, establishing its state-of-the-art effectiveness. The code of RFE-LinkNet is
available at https://github.com/zhengxc97/RFE_LINKNET.

INDEX TERMS Road extraction, high spatial resolution imagery (HSRI), receptive field.

I. INTRODUCTION
Timely and complete road information plays an important
role in urban planning, traffic navigation, digital map updates,
and autonomous driving, etc [1], [2]. In the last few years,
the field of remote sensing has experienced a rapid evolu-
tion, leading to significant improvements in the spatial and
spectral resolution of remote sensing images. Especially, high
spatial resolution imagery (HSRI) can provide rich semantic
and spatial details information for ground objects and has
gradually become one of the main data sources for road
extraction [3]. Although manual interpretation can capture
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accurate road from HSRI, it is time-consuming and inef-
ficient. Compared with medium to low resolution remote
sensing images, HSRI contains more complex background
information, and road extraction is easily disturbed by back-
ground information such as shadows, buildings, and railways,
which makes this task challenging. Therefore, how to achieve
efficient and accurate road extraction under the interference
of complex background information has become a research
focus [4], [5], [6].

Fortunately, numerous methods have been introduced in
the past few decades to extract roads automatically from
images [5], [6]. These methods can be broadly categorized
into two main types: traditional handcrafted feature-based
approaches and deep learning-based approaches.
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The former primarily aims to develop a proficient classifier
that can extract roads from images by utilizing manually
extracted features including geometry, texture, spectrum, and
shadow, etc. [7], [8], [9], [10], [11], [12], [13]. Although these
methods have achieved certain progress in road extraction
from images, most of them were designed based on low-level
road features, and had complex extraction processes, poor
stability and weak generalization ability, etc. Thus, these
methods are difficult to meet the accuracy and time require-
ments of road extraction tasks, and are not suitable for
application on large-scale datasets.

Recently, convolutional neural network (CNN), espe-
cially fully-convolutional network (FCN) architecture, had
achieved great success in image semantic segmentation [14],
[15], [16], [17], [18], [19]. Compared with traditional algo-
rithms, based on low-level road feature design, CNN has
powerful learning and feature expression abilities, and can
extract information layer by layer from pixel level, showing
greater advantages in the accuracy and automation of road
extraction from images. Several research efforts in the past
have utilized CNN to tackle the road segmentation task [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34]. For example, Mnih and Hinton [20] utilized
restricted Boltzmann machines to extract road from images.
Cheng et al. [21] designed a cascaded end-to-end CNN
(CasNet) to simultaneously perform the road area and cen-
terline extraction tasks from remote sensing images. A road
extraction network with fewer parameters, however, better
performance, which combines the strengths of U-Net and
residual learning, was proposed [5]. Cheng et al. [22] pro-
posed a novel framework for segmentation of the general road
region from one single image based on the road vanishing
point estimation by using the Locally Adaptive Soft-Voting
(LASV) algorithm. To achieve road centerline and smooth
and complete segmentation, the MSMT-RE algorithm was
provided by Lu et al. [23]. To solve such problems as
occupied proportion of road area in UAV images and con-
stant size of convolutional kernel, Li et al. [24] presented a
method for road extraction from UAV images by combing
the GANs and multiscale context aggregation. To solve the
problem of road connectivity exists in road vectorization,
a road vectorization mapping network (RVMNet) framework
was proposed, in which a node proposal network (NPN)
module and a node connectivity-based road refinement mod-
ule were designed [25]. Ding and Bruzzone [26] designed
a direction-aware residual network (DiResNet) to enhance
the road topology and local directions feature. Tan et al. [27]
designed a point-based iterative aerial image exploration
method characterized by usage of flexible step and seg-
mentation cues, experimental results showed the proposed
method can achieve a significant improvement on the road
graph alignment and connectivity compared to state-of-
the-art methods. Wei and Ji [28] proposed the ScRoadEx-
tractor for road surface extraction, in which a road label
propagation algorithm was designed to propagate seman-
tic information from sparse scribbles to unlabeled pixels.

A BT-RoadNet was proposed to improve the learning ability
of boundary and topological structure using a composi-
tion of two U-Net-like networks [29]. In summary, despite
these CNN-based approaches had achieved good perfor-
mance on road extraction, most of them simply focused
on multi-scale encoder architectures or multiple branches
in neural networks, but ignored some inherent characteris-
tics of road surface, and they failed to capture long-range
dependencies of roads, resulting in insufficient contextual
information and spatial details loss during the process of road
extraction.

Indeed, roads in HSRI are characterized by their long
distances and natural interconnections. Consequently, road
extraction networks need to incorporate a large receptive
field that covers the entirety of image. Furthermore, roads
within the HSRI dataset commonly display attributes of
being slim, intricate, and occupying a limited portion of
the overall image. Given the characteristics of narrow and
complex roads in HSRI, preserving detailed spatial infor-
mation becomes a crucial aspect. To address this problem,
network designs have been tailored to enhance perfor-
mance in road extraction tasks [30], [31], [32], [33], [34].
D-LinkNet was specifically proposed to tackle the task of
road extraction from HSRI by addressing the intricacies,
interconnections, narrowness, and extensive span of roads in
a particular scenario [30]. Wang et al. [31] designed a nonlo-
cal LinkNet (NL-LinkNet) containing differentiable nonlocal
operations to capture long-range dependencies. By introduc-
ing the GCA block, Zhu et al. [32] designed the GCB-Net
to improve the accuracy and robustness of road extraction
task. Xie et al. [33] presented HsgNet for road extraction
by capturing long-distance information and global-context
semantic information. A dual attention dilated-LinkNet
(DAD-LinkNet) was designed to extract road by integrat-
ing local features with global dependencies using image
and floating vehicle trajectory data [34]. An attention-
based hybrid multiple attention network (HMANet) was
proposed to achieve spatial context long-range dependen-
cies [35]. Although the above methods done well in achieving
long-distance dependencies, global information and local
information were not being well considered at the same
time. Especially, these methods acquired local features by
learning part of the spatial information, while the detailed
spatial information is lost, which is not conducive to the road
extraction with complex background, long span, and natural
connectivity, etc.

In summary, despite the significant advancements made by
the aforementioned methods, accurately extracting complete
and uninterrupted roads from images remains a challenge.
In this paper, a novel RFE-LinkNet was designed to further
improve completeness and smoothness of road extraction
from HSRI. The contributions of this work can be summa-
rized as

1) An innovative semantic segmentation network, named
RFE-LinkNet, was designed for the automated extrac-
tion of roads from HSRI.
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FIGURE 1. The architecture of the proposed RFE-LinkNet which is composed of four modules. (a) Multi-scale feature extraction module.
(b) Multiple receptive field enhancement module. (c) Feature optimization module, and (d) Multi-scale features fusion module.

2) In order to enhance the extracted multi-scale
feature representation ability of long-range dependen-
cies and detailed spatial information, the receptive
field enhancement modules with different struc-
tures were embedded in the output parts of the
feature maps at different levels in the proposed
network.

3) To capture representative features and effectively
aggregate feature maps from multiple hierarchical lay-
ers, a dual attention block was developed. This block
aims to optimize the featuremaps based on their respec-
tive degrees of importance.

4) The proposedRFE-LinkNet achieved 2.21% and 4.85%
F1 and 3.03% and 6.78% intersection over union (IoU)
improvements compared with DlinkNet on the Mas-
sachusetts road dataset [36] and DeepGlobe road
dataset [37]. and outperforms other three SOTA meth-
ods on the two datasets.

II. METHODOLOGY
The object of this study is to explore a method for road
extraction from HSRI, especially to improve completeness
and smoothness of the extracted roads. By embedding the
proposed multiple receptive field enhancement modules and
dual attention modules into the traditional LinkNet, a novel
U-shape network is designed to automatically extract roads
from HSRI. As shown in Fig. 1, the proposed approach
comprises four key components: multi-scale feature extrac-
tion module, multiple receptive field enhancement module,
feature optimization module and multi-scale features fusion
module. Firstly, the images are fed into themulti-scale feature
extraction module to obtain multi-scale feature map of the
road. Then, in order to enhance the extracted multi-scale

feature representation ability, the receptive field enhancement
modules with different structures are embedded in the output
parts of the feature maps at different levels. Secondly, the dual
attention block is formulated to refine the feature maps from
various hierarchical levels based on their individual degrees
of importance. Finally, the optimized multi-scale features are
aggregated and are used to produce the final roadmap through
upsampling method.

A. MULTI-SCALE FEATURE EXTRACTION MODULE
Variations of the encoder-decoder architecture, such as
U-Net, have gained significant popularity for their ability
of extracting multi-scale features from images. This is pri-
marily due to the utilization of skip connections, which
facilitates the fusion of deep, semantic, coarse-grained fea-
ture maps from the decoder sub-network with shallow,
low-level, fine-grained feature maps from the encoder sub-
network. In particular, LinkNet is a highly efficient neural
network designed for semantic segmentation tasks. It lever-
ages the benefits of skip connections, residual blocks, and
the encoder-decoder architecture [17]. In this research, the
proposed RFE-LinkNet model utilizes LinkNet as the back-
bone with a pretrained encoder. As shown in Fig. 1, the
multi-scale feature extraction module includes a convolu-
tional block with kernel size of 7 × 7, stride=2 and four
residual blocks used in ResNet34 [38]. Indeed, ResNet34 was
initially designed for image classification tasks on images of
size 256 × 256. However, in this study, the objective is to
extract roads from HSRI with a larger size of 1024 × 1024.
Therefore, it is necessary to adapt the encoder layers of the
network to accommodate this new input domain. Firstly, the
Conv [(7 × 7), stride=2] is used to down-sample the features
and extract feature maps with 64 channels and decrease the

106414 VOLUME 11, 2023



H. Zhao et al.: RFE-LinkNet: LinkNet with RFE for Road Extraction from HSRI

spatial resolution of the input image to 1/2, and subsequently
to 1/4 by using a 2 × 2 maximum pooling layer, then the
size of output feature map is 256 × 256 and can be fed
into the ResNet34 network to achieve multi-scale features
by cascaded convolutions and pooling operations. Lastly, the
feature maps are downscaled to 1/4, 1/8, 1/16, and 1/32 of
the original input image’s resolution, respectively. The corre-
sponding channels in each level are 64, 128, 256, and 256.

B. RECEPTIVE FIELD ENHANCEMENT MODULE
As described in section II-A, multi-scale features for road
extraction are captured through themulti-scale feature extrac-
tion module, and the highest scaling rate of the feature map
reaches 1/32, which can ensure a large receptive field for
the network to some extent. However, firstly, to address the
issue of large road span in the images, it is important for
the road extraction network to have a large receptive field
that can cover the entire image. Secondly, preserving detailed
spatial information is crucial for accurately extracting narrow
and complex roads that cover only a small part of the whole
image. Thirdly, considering the natural connectivity and char-
acteristics of roads, it is important to design a network that
addresses the need for enlarging the receptive field, extracting
multi-scale features, and preserving detailed information.

FIGURE 2. Receptive field enhancement module which is composed of
four multi-scale features branches and a residual branch similar to
residual mapping. The values of d1, d2, d3 and d4 represent different
dilation rates, which are determined by the values designed in the Fig. 1,
for example, ‘d=1, 2, 3, 4’ denotes d1=1, d2=2, d3=4, and d4=8,
respectively.

Indeed, Atrous convolution is a powerful technique for
enlarging the receptive field of a network without reducing
the image resolution or increasing the number of net-
work parameters. Generally, convolution with large receptive
field can capture more abstract features for large objects,
while convolution with small receptive field are better for
small objects. By combining atrous convolutions with dif-
ferent dilation rates, multi-scale features can be extracted
for road extraction. In the paper, inspired by the atrous

convolution and inception structure [39], the receptive field
enhancement (RFE) module is designed to accomplish pre-
serving spatial details of the road, larger receptive field and
multi-scale features aggregation. As shown in Fig. 2, the
atrous convolutions are stacked in a cascaded manner. The
proposed RFE module contains five cascaded branches, four
branches are designed to extract multi-scale features map,
in which, atrous convolution with different dilation rates and
numbers are stacked to obtain four different branches of
receptive fields, respectively. To mitigate the gradient disap-
pearance issue in multiple convolution stacks during network
training and address the grid effect caused by cascaded
dilated convolutions, incorporating ideas from residual net-
works [38], we designed a residual mapping branch. Finally,
by fusing the multi-scale features obtained from the five
branches, the RFE module can enhance multi-scale features
discriminability and robustness, also enlarge the receptive
field of RFE-LinkNet in a certain.

C. FEATURE OPTIMIZATION MODULE
As shown in Fig. 2, multi-scale features can be captured
from five branches of the RFE module, it is essential to
aggregate them to get multi-scale context information for
precise road extraction. In typical encoder-decoder archi-
tectures, multi-scale features are fused by simple sum or
concatenation operations, leading to importance of features
at different scales is ignored. The reasons are as follows:
for the obtained feature maps, the low-level feature maps
have small receptive fields and thus contain rich spatial loca-
tion information but poor semantic understanding. On the
other hand, the high-level feature maps have larger receptive
fields and capture more semantic information but less precise
or weak spatial location information. By combining both
low-level and high-level feature maps, networks achieve a
balance between capturing semantic information and preserv-
ing spatial location information. In addition, as the extracted
features are often influenced by similar patterns and noisy
backgrounds, it is necessary to emphasize important parts and
suppress unimportant parts. In this article, to obtain represen-
tative features by aggregating feature maps of different levels,
we will assign different weights to feature maps of different
levels as their relative importance in the channel dimension
and as sub features in the spatial dimension.

Considering the characteristics of road, inspired by refer-
ence [40], we designed feature optimization module shown
as Fig. 3, the output features from the RFE module are
taken as input features Fin, and then S is produced through
channel attention module (CAM) and spatial attention mod-
ule (SAM). In addition, the residual connection is added to
enhance the fitting ability of the module.

1) CHANNEL ATTENTION MODULE
The CAM explores ‘which channel’ is important in
the feature map by exploiting the inter-channel relation-
ship of features using squeeze-and-excitation operations.
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FIGURE 3. Feature optimization module, which consists of two modules: channel attention module (CAM) and spatial attention module (SAM).

Firstly, to reduce the interference of spatial location informa-
tion and the computational complexity, the maximum pooling
and average pooling are applied simultaneously, then the
generated features are concatenated and normalized using the
sigmoid function. Next, the channel attention weight vector
CAM (F) can be obtained. lastly, the output feature map
FCAM is achieved through aggregating CAM (F) and F by
the element-wise product. Here, the size of hidden activation
layer is Rc/r×1×1, and r is 16. The definition of CAM is
described as follows:

FCAM = σ (MLP(MaxPool(Fin))

+ MLP(AvgPool(Fin))) ⊗ Fin (1)

where Fin ∈ RC×H×W is the input features, C and H denote
the size of image, and C is the dimension of feature map,
σ represents the sigmoid function, MLP is a multi-layer
perceptron network, AvgPool(Fin) andMaxPool(Fin) are the
generated features by the average pooling and maximum
pooling, respectively, ⊗ denotes the element-wise product
operation, and FCAM is the intermediate output features
through the CAM.

2) SPATIAL ATTENTION MODULE
The SAM explores ‘where’ is a useful part, which focuses
on informative regions and suppresses the ineffective
regions. First, based on the CAM, average-pooling and
max-pooling operations are utilized to obtain refined feature
FCAM, AP(FCAM) and MP(FCAM), respectively. AP(FCAM)
and MP(FCAM) are concatenated and then processed by
a 7 × 7 convolution layer, SAM(F) is obtained by normaliz-
ing them. At last, feature map S is obtained by aggregating
SAM(F) and FCAM by element-wise product. The SAM is
defined as

S = σ (Conv7×7(Concat(AP(FCAM),MP(FCAM))) ⊗ FCAM
(2)

where S denotes the output feature map produced by the
SAM, Conv7×7 is a convolution operation with a kernel
of 7 × 7, Concat denotes the element-wise sum operation.

Inspired by the residual networks, the final output feature
map Fout is achieved by aggregating S and Fin using element-
wise sum.

Fout = S + Fin (3)

D. MULTI-SCALE FEATURES FUSION MODULE
As illustrated in the right part of Fig. 1, multi-scale feature
maps are achieved through different levels through different
residual block, RFE module and DA module. It is essential
to aggregate them to achieve multi-scale context information
and restore the spatial information lost in the encoder parts.
Inspired by the U-Net architecture, the obtained multi-scale
feature maps are progressively fused from neighbor branches
in a bottom-up manner to shrink the semantic and resolu-
tion gaps. As shown in Fig. 4, the high-level feature FH is
upsampled to the same resolution as the low-level feature FL,
and concatenated with FHL. Finally, the fused feature FHL is
achieved by using a residual block.

FIGURE 4. Multi-scale features fusion module.

E. LOSS FUNCTION OF RFE-LINKNET
The role of loss function is designed to determine the incon-
sistency between the predicted value by the model and the
true value. Generally, the smaller the loss function, the bet-
ter the performance of the model. Usually, in the field of
image segmentation, Binary Cross Entropy Loss (BCE) and
Dice Coefficient Loss (DICE) are often used to construct the
loss function. BCE can satisfy the optimization to reduce
the error, while DICE can be used to compare the similar-
ity between two samples. Considering the particularity of
the road extraction task and the characteristics of the two
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functions, a hyperparametric loss function is constructed as
follows:

LTotal = λ1LBCE + λ2LDICE (4)

where LTotal is the hyperparametric loss, LBCE is the BCE
loss, and LDICE is the DICE loss, they are weighted by λ1
and λ2, respectively. Usually, the weight terms λi are set to
be equal or found through expensive grid searches. Here, both
λ1 and λ2 are set to 1.

III. EXPERIMENTS AND RESULTS
A. DATASETS
To evaluate the performance of RFE-Link, we applied two
different datasets in the experiment, i.e., Massachusetts road
dataset [36] and DeepGlobe road dataset [37].

1) MASSACHUSETTS ROAD DATASET
The Massachusetts roads dataset covers an area of approxi-
mately 2600 square kilometers, encompassing a wide range
of urban, suburban, and rural areas. It consists of 1171 aerial
images with a size of 1500× 1500 and a resolution of 1 meter
per pixel. The images were split into 1108 for training, 14 for
validation, and 49 for testing. In which 342 images were
severely flawed or mislabeled (333 for training set, 3 for
validation set and 6 for test set). Finally, 827 images were
selected as the experimental data after cleaning the dataset,
and then the images were cropped into 512 × 512 tiles. The
ground truth of images are binary images that contain two
classes: roads and non-roads.

2) DEEPGLOBE ROAD DATASET
The DeepGlobe Road dataset contains images collected from
three different areas: Thailand, Indonesia and India, which
covers a variety of scenes such as cities, villages, wilderness,
seashores, and tropical rainforests. It consists of 6,226 images
with a spatial size of 1024 ×1024 pixels and resolution
of 0.5m per pixel. We further divided the images into
512 × 512 pixels and randomly split the entire dataset into
training set, validation set, and test set with a ratio of 8:1:1,
respectively.

B. NETWORK CONFIGURATIONS AND TRAINING
In the two experiments, configurations of each network
were samely set as follows: the adaptive moment estima-
tion (Adam) optimizer was utilized with an initial learning
rate of 0.0001, batch-size was 4, and decreased the learn-
ing rate by 0.5 times every 30 epochs. 100 epochs were
conducted for all models on the two datasets. Besides,
the segmentation loss function adopted the hyperparamet-
ric loss function constructed by BCE loss and the DICE
loss. Networks used in two experiments were carried out
with python 3.7.9 and Pytorch 1.2.0, and were implemented
with a single GPU NVIDIA Quadro RTX 6000 24 GB
and 128 GB memory. To assess the proposed RFE-LinkNet,
taking the architecture of RFE-LinkNet into account, some

state-of-the-art (SOTA) methods, including U-Net [15],
DeeplabV3+ [18], HRNet [41] and DlinkNet [30], were
adopted for comparations on the two datasets. Among them,
U-Net belongs to typical encoder-decoder architecture with
skip connection, in which, low-level features and high-level
features are aggregated progressively to achieve high reso-
lution. The Deeplabv3+ combines dilated convolution with
spatial pyramid pooling to aggregate multi-scale features in
a parallel manner. HRNet learned semantically strong and
spatially precise representations by a high-resolution con-
volution stream. The DlinkNet embed atrous convolution
layers to enhance receptive fields andmulti-scale features and
reserved the detailed information simultaneously.

C. EVALUATION METRICS
To quantitatively evaluate the performance of the proposed
RFE-LinkNet, recall, precision, F1 score and IoU are applied.
They can be described as follows:

recall =
TP

TP + FN
(5)

precision =
TP

TP + FP
(6)

F1 =
2 × precision × recall
precision + recall

(7)

IoU =
TP

TP + FP + FN
(8)

where, TP is true positives (pixels correctly extracted as road),
FP is false positives (pixels misclassified as road), TN is true
negatives (correctly labeled as non-road pixels), FN is false
negatives (pixels mislabeled as non-road or can be classified
as missed road pixels).

D. EXPERIMENTAL RESULTS
1) RESULTS ON MASSACHUSETTS ROAD DATASET
Fig. 5 illustrates the road extraction results of the Mas-
sachusetts road dataset produced by the U-Net, DeeplabV3+,
HRNet, DlinkNet and RFE-Link, respectively. Most roads
can be extracted correctly by the comparison of methods. The
proposedRFE-Link achieves the best results, it shows the best
completeness and connectivity of extracted roads. The reason
may be that the RFE and DU feature optimization mod-
ules are introduced into the RFE-Link, which can not only
capture rich multi-scale features information and long-range
dependencies, but also retain local details. Moreover, the con-
tinuity of the road can be guaranteed by the extracted context
information. It can be observed from the areas A-E indi-
cated by red circles, U-Net achieved the worst performance
compared with the other methods, whose results contained
a lot of break roads and omission roads. Although U-Net
can aggregate the low-level features and high-level features
using the skip connection, while the maximum downsam-
pling rate is only 1/16 of the original input image, leading
to an insufficient receptive field for the long span roads.
Compared with U-Net, DeeplabV3+ and DlinkNet produce
better results due to the embed atrous convolution layers
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which enhances receptive fields and multi-scale features,
while retains many bread roads for that many noise fea-
tures are extracted when fusing feature maps from different
layers without considering importance of features at dif-
ferent scales. In comparison with U-Net, DeeplabV3+ and
DlinkNet, we can find the HRNet produces a more complete
roads by learning semantically strong and spatially precise
representations by a high-resolution convolution streamwith-
out dilated convolution which may lead to the loss of precise
spatial information. However, the integrity and connectivity
of the road still need to be further improved.

TABLE 1. Quantitative comparison of Precision, Recall, F1 and IoU of the
massachusetts road dataset.

The quantitative evaluation results of the Massachusetts
road dataset are reported in Table 1. DeeplabV3+ and HRNet
yield higher extraction accuracies than that of U-Net and
DlinkNet. RFE-Link obtains the best accuracy. Compared
to DlinkNet, by introducing the RFE and DU modules, the
segmentation accuracy is significantly improved, RFE-Link
obtains 80.8%, 79.29%, 80.07%, and 66.77% with respect
to Precision, Recall, F1 and IoU index, respectively, the
accuracy gains of RFE-Link over DlinkNet are 4.99%, 2.21%
and 3.03% with respect to Precision, F1 and IoU index,
respectively, and achieved approximately 4.85%, 0.82%,
1.06% and 3.03% IoU improvement compared with the other
four models.

2) RESULTS ON DEEPGLOBE ROAD DATASET
Fig. 6 presents the results based on the DeepGlobe road
dataset using U-Net, DeeplabV3+, HRNet, DlinkNet and
RFE-Link, respectively. With the improvement resolution of
the image, the interference factors of complex background
are greatly increased. Visually, DeeplabV3+ and HRNet gen-
erate more uniform segmentation maps compared to U-Net
and DlinkNet, and perform better in road accuracy, while
RFE-Link has the best performance. However, there are still
a large number of disconnections and leaks in the results of
U-Net, DeeplabV3, HRNet and DeeplabV3+. This can also
be illustrated in areas A-E. While RFE-Link shows better
performance. The main reason may be that using only plain
skip connections of U-Net may lead to underutilization of
feature maps of different layers.

Though DeeplabV3+ and DlinkNet applied atrous con-
volution to enhance receptive fields and multi-scale fea-
tures, HRNet proposes a parallel multipath architecture with
high-resolution representation to extract multi-scale features,
many noisy features can be extracted without considering
the importance of features at different scales when aggre-
gating these multi-scale features. Compared with U-Net,

DeeplabV3+, HRNet and DlinkNet, RFE-Link introduces
RFE module to enhance the receptive field and multi-scale
features for the long span road, and DU feature optimiza-
tion modules are designed to adaptively refine feature maps
extracted by RFE modules according to their contributions.
Thus, RFE-Link can handle roads’ properties such as nar-
rowness, connectivity, complexity and long span to some
extent.

As shown in Table 2, RFE-Link obtains the greatest
accuracy with 82.60%, 82.85% and 70.72% with respect
to Recall, F1 and IoU index, respectively. Especially, com-
pared with DlinkNet, the Precision, Recall, F1 and IoU and
increased by 4.55%, 5.15%, 4.85%, 6.78%, respectively, and
obtains approximately 11.65%, 5.67%, 5.43% and 6.78 IoU
improvement compared with U-Net, DeeplabV3+, HRNet
and DlinkNet, respectively.

TABLE 2. Quantitative comparison of precision, Recall, F1 and IoU of the
DeepGlobe road dataset.

3) ABLATION STUDY
In order to evaluate the contributions of different modules
contained in RFE-LinkNet, the ablation experiments were
performed on the Massachusetts road dataset and the Deep-
Globe road dataset, respectively. As shown in Table 3, we take
the DlinkNet as the baseline. The baseline was improved with
the receptive field enhancement module, which is denoted
as baseline + RFE. Samely, Baseline + DU denotes the
DU feature optimization modules were introduced into the
baseline, and Baseline + RFE + DU denotes both RFE and
DU are imbed in the baseline.

TABLE 3. Ablation comparison of OA, Precision, Recall, F1, IoU and mIoU
of massachusetts road dataset.

Table 3 lists the ablation results on the Massachusetts road
dataset, we can find that the baseline achieved a 63.74%
in IoU and 77.86% in F1-score. When the RFE module
is introduced, the segmentation achieves a 0.51% improve-
ment in IoU and a 0.44% improvement in F1-score, this
indicates that more rich semantic information and accurate
spatial information can be captured by the RFE module
rather than that by original encoder-decoder network with
hollow convolution layer in the central area. Embedding the
DU module to the network can achieved 0.52% and 0.71%
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FIGURE 5. Segmented patches from U-Net, DeeplabV3+, HRNet, DlinkNet and RFE-LinkNet based on the Massachusetts road dataset. The white color in
the segmented patches represents pixels belonging to roads.

improvements on F1-score and IoU, respectively. This proves
that the DU can enhance feature fusion by reducing the
sematic and resolution gaps between features learned differ-
ent level and considering different importance of different
level features. At last, baseline + RFE + DU, namely RFE-
LinkNet, achieves the best accuracies, and improvements on
IoU and F1-score over baseline are 3.03% and 2.21%, respec-
tively.Which indicatesMFEmodule can enlarge the receptive
field of the network and capture more multi-scale features
simultaneously.

As list in Table 4, after adding each module one by one,
compared with the baseline, it has increased by 6.78%, 4.27%
and 4.24% on IOU, respectively. The combination of base-
line + RFE + DU achieves the highest scores on IoU and
F1-score on the DeepGlobe road dataset. The results show
the effectiveness of our proposed methods.

4) COMPLEXITY ANALYSIS
To evaluate the tradeoff between the performance and com-
plexity of RFE-LinkNet, we also compared FLOPs, trainable

TABLE 4. Ablation comparison of OA, Precision, Recall, F1, IoU and mIoU
of deepglobe road dataset.

parameter, and IoU score of related methods on the Deep-
Globe road dataset.

As shown in Table 5, the U-Net has the lowest com-
plexity but with poor performance. HRNet is the most
complicated model due to the most numbers of convolu-
tional layers and the highest numbers of channels among
the related models. By introducing RFE modules which
contain more number and depth of convolution layers,
compared with the basic network, the number of model
parameters and FLOPs of ‘‘Baseline + RFE’’ have increased
by 3.1 M and 28.97, respectively, but achieved a 2.41%
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FIGURE 6. Segmented patches from U-Net, DeeplabV3+, HRNet, DlinkNet and RFE-LinkNet based on the DeepGlobe road dataset. The white color in the
segmented patches represents pixels belonging to roads.

TABLE 5. Comparison of related methods on FLOGs, Trainable
parameters, and IoU on the DeepGlobe road dataset.

improvement in IoU. ‘‘Baseline + DU’’ can achieve 2.54%
improvement in IoU with computation decreases of 9.34 M
and 9.65 on FLOPs since the representative features refined
by DU module. The RFE-LinkNet has slightly more param-
eters and FLOPs than the baseline, but it yields an 6.78%
improvement on IoU. From above, we can draw the con-
clusion that our proposed methods maintain higher accu-
racy and lower complexity compared with other related
methods.

IV. CONCLUSION
This paper proposes a novel network based on receptive
field enhanced LinkNet, named as RFE-LinkNet, to improve
completeness and connectivity of road extraction fromHSRI.
RFE-LinkNet takes advantage of the prominent ability of
feature encoding based on RFE enhanced residual blocks
and refined spatial context information to predict the precise
roads.

This method can overcome the drawbacks of road extrac-
tion interruptions, omissions, and incorrect labels to some
extent. This can be attributed to the introduction of the
DU feature optimization module, which is used to fuse and
refine multi-scale features based on the relative importance
in different levels of feature maps, and imbedding the RFE
module to obtain richer multi-scale feature information while
preserving local spatial details. To evaluate the performance
of RFE-LinkNet, experiments on Massachusetts road dataset
and DeepGlobe road dataset were conducted, compared with
existing state-of-the-art networks according to the metrics
of F1-score and IoU, RFE-LinkNet is more accurate by
visual and quantitative evaluation. Therefore, RFE-LinkNet
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can provide an effective method for road extraction
from HSRI.

However, RFE-LinkNet still has issues with error recogni-
tion and road connectivity, we will perform more researches
on these issues in the future, such as introducing prior
knowledges, multi-task learning, etc. Besides, the proposed
RFE-LinkNet architecture was originally proposed for road
extraction tasks, it could also be useful in other segmentation
tasks, and we will investigate this in future research.
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