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ABSTRACT Click-Through Rate (CTR) prediction is important in many industrial applications, such as E-
commerce, news, and information. Understanding sophisticated feature interactions behind users’ behaviors
is essential for CTR prediction. Although existing methods have made significant improvements, there exist
some problems: (1) only concentrate on modeling implicit information from the user side, while ignoring
the interest hidden in the historical interactive behaviors; (2) insufficient feature extraction, only focusing on
high-order feature interactions or low-order feature interactions. To overcome these limitations, we propose
a Deep Adaptive Interest Network (DAIN) for CTR Prediction in the local and global views, respectively.
Specifically, to extract user’s interest, we first develop a local attention mechanism applied to the user
behaviors and candidate ads, which can adaptively calculate users’ interest representation given a candidate
ad in the local views. To capture feature interactions, we propose a feature interaction extractor containing
Multi-layer Perceptrons (MLP) and FactorizationMachines (FM) components to capture high-order and low-
order feature interactions. To adaptively learn the influences of high-order and low-order feature interactions
on the target item, we finally employ a linear-based global attention mechanism in the feature interaction
extractor. The effectiveness of DAIN is verified by comprehensive experiments on three datasets.

INDEX TERMS Click-through rate prediction, recommendation system, machine learning, attention
mechanism.

I. INTRODUCTION
With the development of Internet services andmobile devices
[1], Internet users can conveniently access a large number of
online products and services, such as online news [2], online
shopping, e-education, and so on. However, While enjoying
the convenience of the Internet, people are also facing the
problem of information overload. To reduce information
overload and meet users’ needs, a recommendation system
has been developed and plays an increasingly important
role in modern life. It aims to help users to select the
appropriate information [3] from the massive information
(products, services) of Internet platforms and has been
successfully applied to various online Internet platforms
personalized recommendations. According to the report data
[4], the recommendation system has brought huge sales
revenue to some companies such as Amazon and Taobao.
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Therefore, establishing an effective recommendation system
is significant in improving user experience and company
revenue.

One of the key tasks in the recommendation system [5], [6]
is to predict the click-through rate. In many recommendation
systems, the target is to maximize the number of clicks,
so that recommended items can be ranked based on estimated
click-through rates [7], [8]. In addition, ad click-through rate
prediction in online advertising systems is also essential to
increase system revenue, because the ranking strategy of ads
can be adjusted through click-through rates and bids. For
example, in the advertising industry, a common way is that
advertisers pay publishers only when the ads are clicked. So,
no matter what happens, correctly estimating CTR is critical.
As its importance, more and more researchers are working on
click-through rate prediction.

At present, CTR prediction methods can be broadly
divided into two kinds. One is the traditional CTR prediction,
and the other is the CTR prediction based on deep learning.
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Traditional CTR prediction [9], [10], such as the classical
linear models [11], [12], are simple but exist limitations
in learning feature interactions, such as: 1) lack of the
ability of learning feature interactions and 2) over-reliance on
manually extracted feature interactions. Therefore traditional
methods are not feasible in large-scale systems. With the
wide application of deep learning [13], [14] in many fields
[15], [16], [17], Many CTR models have changed from
traditional methods to deep CTR models. Deep learning
models systematically extract higher-level and more abstract
feature representations from the input data through a series
of successive layers of nonlinear activation functions, which
enable complex transformations and feature combinations.
For example, Product based Neural Networks (PNN) [18],
Deep Crossing Networks [19], Wide&Deep Models [20],
and Deep Interest Networks (DIN), etc., these methods
enhance the performance of the models by employing multi-
layer non-linear neural networks to automatically extract
high-order feature interactions [21], [22]. Similar models,
Deep&Cross Networks [23], and Deep Neural Networks
(DNN) [24] have improved CTR prediction to some extent.
However, this type of approach has two limitations. First,
these models only capture high-order feature interactions.
According to the view of the Wide&Deep [20], considering
both high-order and low-order feature interactions lead to
additional improvements than considering either case alone.
In other words, extracting low-order feature interactions is
also very important for the recommendation. Second, these
models do not take into account the user’s representation
of interest. So they lack a good explanation of which
combinations of features make sense. However, the expla-
nation of the CTR model allows advertisers to answer why
users see specific advertisements and help users make wise
decisions. In addition, the transparency and effectiveness of
the prediction process should be established among users on
the advertising platform. Therefore, we are looking for an
approach that can extract the users’ interests and capture both
high-order and low-order feature interactions.

In this paper, we propose such an approach with a Deep
Adaptive Interest Network(DAIN) motivated by the above
limitations of existing methods. Specifically, the proposed
method can automatically extract user’s interests through
historical behaviors and candidate ids. To capture feature
interactions, we design a feature interaction extractor con-
taining three parts: MLP, FM component, and linear-based
global attention mechanism. Among them, MLP is to capture
high-order feature interactions and FM component is to
capture low-order feature interactions. Moreover, Consid-
ering high-order and low-order feature interactions play
different roles in CTR prediction, from the global point of
view, we propose a linear-based global attention mechanism
to monitor. The main contributions of this paper are as
follows:

• To extract the user’s interest hidden in the histori-
cal interactive behaviors and to monitor the impor-
tance of high-order and low-order feature interactions,

FIGURE 1. Description of running process of the advertising system. In the
advertising system, related candidate ad lists are generated for users via
methods such as collaborative filtering, and the top recommendations
are selected according to the click-through rate to the user.

we propose a hierarchical attention mechanism. This
mechanism is used to mine the auxiliary information
contained in the features (including composite features)
of the user and item, and explore their different
contributions to recommendation results from both local
and global views. First, this mechanism adaptively
calculates the user’s interest representation according
to historical behaviors and candidate ads from a local
perspective. Second, this mechanism makes high-order
and low-order feature interactions play different val-
ues. The proposed hierarchical attention mechanism
increases the explanation of the model and substantially
improves the efficiency of CTR prediction.

• Since high-order and low-order feature interactions can
play important roles in CTR prediction, we propose
a feature interaction extractor module. In this module,
MLP captures high-order feature interactions and the
FM component captures low-order feature interactions.
In addition, this module does not require feature
engineering. Thus, this module eases the problem of
insufficient feature extraction.

• We conduct a large number of experiments on Amazon
datasets of Electronics, Beauty, and Office_Products.
Experimental results show that DAIN outperforms
existing models.

II. RELATED WORK
A. CLICK-THROUGH RATE PREDICTION
CTR prediction is significant in recommendation systems
and online advertising systems. Many Internet companies
have proposed different models to improve CTR prediction.
Shan et al. [19] propose a Deep Crossing method which
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automatically combines features to predict the click-through
rate. However, the Deep Crossing model only considers
high-order feature interactions. Cheng et al. [20] propose
a Wide&Deep system that combines the linear and deep
model to improve expression ability. Wang et al. [23] propose
a Deep&Cross Network (DCN) to learn the high-order
representation of features by applying a multi-layer resid-
ual structure. But DCN only considers high-order feature
interactions, low-order feature interactions are important for
CTR prediction either. At the same time, more and more
researchers are paying attention to this issue in academics.
For example, Zhang et al. [25] propose an FNN model that
uses a deep neural network to learn validmodes automatically
from feature interactions and predict users’ ad clicks, but
they ignore the low-order feature interactions. Qu et al.
[18] propose the PNN model which introduces the product
layer to capture high-order feature interactions. However,
PNN captures little low-order feature interactions. These
CTR prediction models improve the performance of CTR
prediction to some extent.

B. LEARNING FEATURE INTERACTIONS
The key to CTR prediction is Learning feature interactions
which is mainly divided into low-order and high-order feature
interactions. For low-order feature interactions, FM [26] is
a well-known example, which is proposed to capture the
low-order feature interactions. It has been proved to be
efficient for many tasks. Afterward, various variations of FM
have been proposed. For example, Juan et al. [27] propose
Field-aware Factorization Machines (FFM) to simulate the
fine-grained interactions between features from different
fields. Xiao et al. [28] propose Attentional Factorization
Machines (AFM) which which takes into account the impor-
tance of interaction between different second-order features.
However, these methods only consider low-order feature
interactions. Recently, with the application of deep learning
in CTR prediction, people have researched high-order feature
interactions, such as PNN [18], Wide&Deep [20], and
DIN [4] have achieved good performance in modeling
high-order feature interactions using feed-forward neural
networks. These CTR prediction models [29], [30] follow
a similar model structure that combine the embedding layer
and the MLP for learning the feature combination relation
of different levels. This kind of CTR prediction model
greatly reduces feature engineering. However, this kind of
CTR prediction model ignores low-order feature interactions.
Thus, our model follows this model structure to capture
high-order feature interactions. In the mean time, we believe
that low-order feature interactions are important in CTR
prediction and employ FM components to capture low-order
feature interactions.

C. ATTENTION MECHANISMS
With the widespread application of attention mechanisms
in many fields [31], [32], [33]. Recently, some researchers

TABLE 1. Symbols and descriptions.

use the attention mechanism to improve CTR prediction
performance [34]. For example, Xiao et al. [28] propose
AFM, which adds an attention net based on FM to generate
a weight of cross-features to distinguish the importance
of crossover terms. Zhai et al. [35] propose DeepIntent,
learning to assign attention points to different word locations
according to the importance of intent. Zhou et al. [4]
propose DIN, which introduces the attention mechanism for
learning the relevant parts of historical behaviors. However,
these models exit defects in feature extraction and they
only consider high-order or low-order feature interactions.
According to DIN from Alibaba, we introduce the local
attention mechanism to adaptively calculate the user interest
representation vector. In this paper, we also introduce the
linear-based global attention mechanism to make low-order
and high-order feature interactions play different roles in
CTR prediction.

III. THE PROPOSED DAIN APPROACH
A. PROBLEM FORMULATION
In the advertising system [36], the ads recommended to
users refer to relevant ads that users have previously browsed
before. Figure.1 briefly illustrates the advertising system
process, which consists of three steps: firstly, when users
come into the advertising system, related candidate ad lists
are generated for users via methods such as collaborative
filtering. Secondly, the CTR of each ad in the candidate
ad list is predicted. Finally, the top recommendations are
selected according to the click-through rate of the user. Unlike
many recommendation systems, users do not search directly
and have no clear intention. Therefore, when building the
CTR prediction model, learning feature interactions from
different fields and paying attention to the user’s interest
representation are both important. The question we need to
solve is how do we use the the features of users and ads for
CTR prediction. Some important symbols and descriptions
are listed in Table 1.

1) DEFINITION
In our CTR prediction model, we employ four types of
features: User Feature, User Behavior, Ad and Context.
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FIGURE 2. The architecture of DAIN which contains feature vectorization, attention mechanism,
feature interaction extractor, and Prediction layer. Feature vectorization module is to transform the
original data into low-dimensional dense representations. Local attention mechanism is to extract
interest. For Feature interaction extractor, MLP and FM capture high-order and low-order feature
interactions, linear-based global attention mechanism is to monitor high-order feature interactions
and low-order feature interactions. The prediction layer outputs the prediction result.

In general, User Feature’s fields are gender, age, and so on;
User Behavior’s fields contains the list of advertising ids that
the user visits; The fields of Ad conclude ad id, shop id, and
so on; Context’s fields are made up of type id, time, and so
on. The features of each field can be encoded into a one-
hot [20] vector. Different feature’s one-hot vectors fromUser
Feature, User Behavior, Ad, and Context form zF , zH , zI , zC ,
respectively. In the sequential CTR model, it’s clear that each
field includes a list of behaviors, for example, each historical
behavior of the user corresponds to an one-hot vector, which
can be expressed as:

zH = [H1,H2,H3, . . . ,HN ] ∈ RS×N (1)

where HN ∈ {0, 1}S indicates N -th behavior, N represents
the number of users’ historical behaviors, and S represents
the total count of ads that users can click.

2) PROBLEM
How do we utilize the features for CTR prediction?
According to the above definitions, the problem can be
formally turned into:

Input : x

Output : ŷ

Constraints :



ŷ = f (x)

L = −
1
N

N∑
(x,y)∈D

[y log f (x)

+(1 − y) log(1 − f (x))]
argmin(L)

(2)

Therefore our goal is to find a model that takes feature
combinations x = {zF , zH , zI , zC } as input, under the
constraints, it can output the click-through rate ŷ. y ∈ {0, 1}
as the label. f (.) is the prediction function.

B. MODEL OVERVIEW
To settle the problem defined by Eq. (2), we propose a DAIN
approach. Figure 2 shows the whole framework of DAIN,
including a feature vectorization module for transforming
the original data into low-dimensional dense representations,
a local attention mechanism to extract interest, a feature
interaction extractor to capture better feature extraction, and
a prediction layer to output the prediction result. And we will
introduce each module in detail.

1) FEATURE VECTORIZATION
Informative features play important roles in CTR prediction.
It is essential to transform the original data into numerical
data that can be processed by the neural network. Therefore,
we employ one-hot [20] code to vectorize the original data.
User feature zF , User Behavior zH , Ad zI , Context zC are
inputted into the Feature vectorization layer, these features
are transformed into numerical data and low-dimensional
dense features. For example, for user historical behaviors
zH = [H1,H2,H3, . . . ,HN ] ∈ RS×N , if the i-th ad is clicked
in the N -th behavior, then HN can be represented as:

HN = [0 . . . 0︸ ︷︷ ︸
i−1

10 . . . 0] (3)

where HN ∈ R1×S represents a one-hot vector with the
dimension of S. Then, a mapping function is established to
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reduce high-dimensional binary vectors into low-dimensional
dense representations. The mapping relationship in the
feature vectorization layer is expressed as:

eNH = HNWN
H (4)

where WN
H ∈ RS×d represents the corresponding weight

matrix for HN . d represents the feature dimension of
the embedded vectors. eNH denotes the feature vector of
the N -th value of eH after the mapping in the feature
vectorization layer. We obtain the feature vector of User
Behavior rH = [e1H , e2H , e3H , . . . , eNH ]. Similarly, according to
Eq. (3), the one-hot vector of User feature, Ad , Context are
zF , zI , zC , respectively, and according to Eq. (4), zF , zI , zC
are all mapped to low-dimensional dense vectors rF , rI , rC
by feature vectorization layer respectively. After the above
processing, we obtain the feature vector of User feature rF ,
User Behavior rH , Ad rI and Context rC .

2) LOCAL ATTENTION MECHANISM TO EXTRACT INTEREST
In most non-search advertising systems, users do not express
their purchase intention directly. Designing models that
capture users’ interest from users’ historical behaviors and
candidate ad is important for improving CTR prediction.
For example, a young girl visits the e-commerce website
and sees the displayed mobile phone shell, and clicks it.
It’s obvious that the displayed ad hits the related interest of
her historical behavior when she browses the mobile phone.
However, different historical behaviors of the user will play
different roles in expressing the user’s interest. The attention
mechanism originates from Neural Machine Translation
(NMT) [31] which only pay attention on information relevant
to the generation of the target word. In this layer, the local
attention mechanism is proposed to learn about user interest
representations after the feature vectorization layer. As is
shown in Figure 2, it is applied to the user behaviors and
candidate ads, which can adaptively calculate the user’s
interest representation rU (I ):

rU (I ) = g(rI , e1H , e2H , . . . , eNH ) =

N∑
i=1

a(rI , eiH )e
i
H

=

N∑
i=1

aieiH (5)

where g(.) represents local attention mechanism function,
{e1H , e2H , . . . eNH } represents the embedding vectors of the
user’s historical behaviors of length N . ai is the weight of
each user’s historical behavior. a(.) is a MLP with one hidden
layer and outputs the weight. It can be represented as:

a(rI , eiH ) = σ (relu([rI , eiH ]Wat1)Wat2) (6)

where σ represents the sigmoid function [4], sigmoid and relu
[20] are the activate functions, respectively. Wat1 ∈ R2d×f1

is the weight matrix of the activate unit relu and Wat2 ∈

Rf1×d denotes the weight matrix of the activate unit sigmoid ,
respectively. f1 is the number of neural units in the hidden

layer. d represents the dimension of the embedded vectors.
In this way, the different historical behaviors are weighted
according to the candidate ad. And then the user’s interest
representation rU can be extracted.

3) FEATURE INTERACTION EXTRACTOR
There is much valuable information behind implicit feature
interactions for CTR prediction. The feature interaction
extractor aims to extract feature interactions to better mine
helpful information. This paper utilizes a three-layer fully
connected network to capture high-order feature interactions.
FM component is used to capture low-order feature inter-
actions. And a linear-based global attention mechanism is
to give different value to high-order and low-order feature
interactions.

a: HIGH-ORDER FEATURE INTERACTIONS EXTRACTOR
High-order feature interactions are essential for CTR pre-
diction model. In order to capture non-linear high-order
feature interactions, this paper introduces a three-layer fully
connected network, which contains an input layer, a hidden
layer, and an output layer.

Formally, the definition of fully connected layers are as
follows:

o1 = σ (tW1 + b1)

o2 = σ (o1W2 + b2)

o3 = o2W3 + b3 (7)

where t = [rF , rU , rI , rC ] represents the connection of
the embedding vector of the user’s feature, user’s inter-
est representation, candidate ad and content. o1 ∈ R1×l1 ,
o2 ∈ R1×l2 , o3 ∈ R1×l3 represent the output of the input layer,
hidden layer, and output layer, respectively. W1 ∈ R4d×l1 ,
W2 ∈ Rl1×l2 , W3 ∈ Rl2×l3 represent the weight matrix of
the input layer, hidden layer, and output layer, respectively.
b1 ∈ R1×l1 , b2 ∈ R1×l2 , b3 ∈ R1×l3 are the vector of the bias.
l1, l2, l3 denote the number of neural units in the input
layer, hidden layer, and output layer, respectively. This paper
introduces the sigmoid as the activation function for each
layer.
After the above processing, the high-order feature

interactions o3 are obtained.

b: LOW-ORDER FEATURE INTERACTIONS EXTRACTOR
Extracting Low-order feature interactions is also important
for CTR prediction. The FMcomponent [26] is a factorization
machine used in the collaborative recommendation. It can not
only capture linear feature interactions among features but
also model pairwise feature interactions. In this paper, FM is
to learn low-order feature interactions, sharing the same input
with the MLP. The output of FM can be expressed as:

yFM =

4∑
i=1

Witi +
4∑
i=1

4∑
j=i+1

Wijtitj (8)
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whereWi ∈ R4 is the weight matrix reflects the importance of
linear features, t1 = rF , t2 = rU , t3 = rI , t4 = rC . Wij is the
weight matrix reflecting the importance of pairwise features
which is factorized as: Wij = vTi vj, where vi ∈ Rd , vi ∈ Rd

represents the embedding vector of feature i, and d is the size
of the embedding vector.

c: LINEAR-BASED GLOBAL ATTENTION MECHANISM
This paper learns both high-order and low-order feature
interactions by MLP and FM component. Considering
high-order and low-order feature interactions might play
different roles in CTR prediction, from the global point of
view, this paper proposes a linear-based global attention
mechanism to monitor. The linear-based global attention
mechanism is a linear module, which is simple and can save
computation time cost. Meanwhile, it achieves good results.
The output of the linear-based global attention mechanism
can be represented as:

v = (wFMyFM + wMLPo3) (9)

where wMLP ∈ R, wFM ∈ R represent the weight of the
high-order and low-order feature interactions respectively.

4) PREDICTION LAYER
After the linear-based global attention mechanism is the
prediction layer. The output of the prediction layer is as
follows:

ŷ = σ (v) (10)

where ŷ ∈ {0, 1}.
Ultimately, DAIN outputs the result of the prediction. The

objective function is a negative log-likelihood function [37],
denoted as:

L = −
1
N

N∑
(x,y)∈D

[y log ŷ+ (1 − y) log(1 − ŷ)] (11)

where D denotes the training set of size N and y ∈ {0, 1}
represents whether the user clicks the target item. f (x)
denotes the output of the network ŷ. The learning algorithm
of DAIN is presented in Algorithm1. The main func-
tion of DAIN algorithm is to input feature combinations
x = {zF , zH , zI , zC }, and then output the click-through rate ŷ.

IV. EXPERIMENTS
In this section, we describe our experiment settings and
results in detail. We compare our proposed model with other
advanced models on the Amazon dataset.

1) EXPERIMENT SETUP
The experiments are achieved on the framework of
TensorFlow 2.10.0 with Python v3.9. We adopt the NVIDIA
GTX 3090 TiGPU as the hardware environment.

Algorithm 1 AMLP-FM Algorithm
Require: User feature zF , User UserBehavior zH , Ad zI ,

Context zC ;
Parameters: S, lr , N , L (the value of negative log-
likelihood function);

Ensure: Initialize: lr=0.1, Random wi, bi;
1: repeat
2: for number of training iteration do
3: Feature vectorization for zF , zH , zI , zC to get rF , rH ,

rI , rC ;
4: Calculate user’s interest representation rU (I )

according to Eq. (5)and Eq. (6);
5: Capture High-order feature interactions according

to Eq. (7);
6: Capture low-order feature interactions according to

Eq. (8);
7: the linear-based global attention mechanism output

the final feature according to Eq. (9);
8: Prediction value ŷ by putting v and w to Eq. (10);
9: Calculate value l of negative log-likelihood function

based on ŷ and y;
10: end for
11: until The rate of change of L tends to be stable

TABLE 2. Statistics of datasets used in the paper.

2) DATASETS
Amazon Dataset: Amazon dataset is the baseline dataset
for CTR predictions [38], [39], [40], [41]. We use three
subsets of the Amazon dataset: Electronics, Beauty, and
Office_Products. Among them, the dataset of Electronics
includes 192,403 users, 63,001 items, 801 categories, and
1,689,188 click-through behavior records, the dataset of
Beauty includes 22,363 users, 12,101 items, 226 cate-
gories, and 198,502 samples, the dataset of Office_Products
includes 4905 users, 2420 items, 279 categories, and
53258 samples. Table 2 shows the statistics of all the
datasets. Features include items_id, cate_id, user reviewed
items_id_list and cate_id_list. In the data sets, each user
or item has more than 5 clicks. Let all behaviors of a
user be (H1,H2, . . . ,HK , . . . ,HN ), the task is to predict the
(k + 1) -th reviewed items.

3) PARAMETER SETTINGS
We use repeated tests to determine the optimal super
parameter of each algorithm. We apply Stochastic Gradient
Descent (SGD) as an optimizer in all models. We also
establish an automatic decay mechanism for learning rates.
By iterative training, the learning rate gradually decreases
from 1 and the decay rate is set to 0.1. The batch size is 32.
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The embedded size of the model is 128, which is consistent
with other comparison methods. The number of layers of the
MLP neural network is 3, and the number of units per layer
is set to 80, 40, 1.

A. EVALUATION METRICS AND BASELINES
1) EVALUATION METRICS
Weemploy two evaluationmetrics, AUC (TheAreaUnder the
ROC Curve) and RelaImpr (Relative Importance) to evaluate
the performance of different models. AUC is the total area
under the ROC curve [42]. It measures the order of the
ads by sorting the predicted click-through rates of all ads.
We defined it as:

AUC =
1

m+ m−

∑
x+∈D+

∑
x−∈D−

(g(f (x+) > f (x−))) (12)

where D+ represents the set of all positive examples, D−

represents the set of all negative examples, respectively.
m+ and m− represent the numbers of positive samples
and negative samples, respectively. f (.) is the result of the
model’s prediction and g(.) is the indicator function. Besides,
we employ the RelaImprmetric [7, 21] tomeasure the relative
improvement over models. For random guesses, AUC is 0.5.
Therefore, RelaImpr is defined as:

RelaImpr = (
AUCmodel1 − 0.5
AUCmodel2 − 0.5

− 1) × 100% (13)

2) BASELINES
We compare the proposed model with the existing ten CTR
prediction models, as follows:

LR [11]: Logistic regression (LR) is a weak baseline on the
TensorFlow framework.

BaseModel [4]: Basemodel follows the embedding&MLP
architecture for predicting click-through rates.

PNN [18]: PNN can be regarded as an improved version of
Basemodel. After the embedded layer, a production layer is
introduced to capture high-order feature interactions.

Wide&Deep [20]: Wide&Deep model concludes two
parts, one is the wide part, handling the cross-product
of manual design, and the other is the deep part,
automatically extracting the nonlinear relationship of
features.

DIN [4]: DIN uses the attention mechanism combined
with the DNN algorithm to delicately activate related user
behaviors and obtains the adaptive representative vector that
changes in different advertisements.

GIN [43]: GIN introduces the diagram learning into the
user’s intention to dig at the user’s intention, and proposes
the end-to-end joint training of the sponsorship search and
CTR prediction tasks.

DIEN [41]: DIEN learns user interest by learning
sequence-based dependencies based on GRU, and pro-
poses AUGRU to learn the trend of changes in user’s
interest.

FIGURE 3. Performance of different weight of high-order and low-order
feature interactions.

MIMN [44]: MIMN is a multi-channel memory network
that processes user interest modeling with an infinite length
of sequential behavior data.

DMIN [45]: DMIN models users’ latent multiple interests
for click-through rate prediction tasks.

TGIN [46]: TGIN introduces triangles in the neighborhood
of the commodity-commodity diagram and views these
triangles as basic units of user interest.

B. PERFORMANCE EVALUATION
1) PERFORMANCE OF DIFFERENT WEIGHT IN
LINEAR-BASED GLOBAL ATTENTION MECHANISM
We conduct multiple experiments to explore the effect of
the different weights of wFM and wMLP in a linear-based
global attention mechanism which makes the high-order and
low-order feature interactions play different values in CTR
prediction. In the experiment, we make the sum of wFM and
wMLP equal to 1, for example, when wMLP=1, wFM=0, and
when wMLP=0.5,wFM=0.5. So in Figure 3, we just show
the value of wMLP for convenience. As shown in Figure 3,
wMLP goes from 0 to 1, so wFM goes from 1 to 0. The
DAIN model equals DIN when wMLP is 1. We conduct five
experiments on each value of wFM for DAIN and obtain the
average value of AUCs. As shown in Figure 3, whenwMLP
equals to 1, it represents we only capture high-order feature
interactions, and whenwMLP equals to 0, it represents we only
capture low-order feature interactions. When wMLP equals
to 0 and 1, we can conclude that compared with low-order
feature interactions, high-order feature interactions play a
higher role in predicting click-through rate. When wMLP
equals to 0.9 andwFM equals to 0.1, AUC takes the maximum
value on both datasets, this is because when the weight of
the high-order feature is 0.9 and the weight of the low-order
feature is 0.1, the fused feature is more consistent with the
real feature. At the same time, when wMLP equals to 0.8 and
wMLP equals to 1.0, they have the same result, because
the distance between the features and the real features is
consistent. We can draw a conclusion from the experimental
result that in the small range of the best feature, the change
of the feature has a large impact on the result, but in the large
range, the change of the influence is small, such as the value
of wMLP goes from 0.1 to 0.7.
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TABLE 3. Comparison on prediction performance. The results of these methods annotated by the ’†’ symbol are directly cited from the original papers or
reference. And All the lines calculate RelaImpr by comparing with BaseModel on each dataset respectively.

TABLE 4. Effect of FM component and hierarchical attention, all the other lines calculate RelaImpr by comparing with BaseModel.

2) THE EFFECT ON RECOMMENDATION DIVERSITY
This paper considers the application of recommendation
system in different scenarios. For Electronics dataset, Beauty
dataset, and Office_Products dataset, we use all the data in
the dataset. All experiments are repeated 5 times and report
the averaged results. For DIN, GIN, MIMN, DIEN, DMIN,
and TGIN, we reproduce its code and obtain similar results
to the published paper. We have the following observations:
Table 3 illustrates all deep networks are significantly better
than LR,which shows the power of deep learning.We observe
that on the Electronics dataset, DAINmodel outperforms LR,
BaseModel, Wide&Deep model, PNN, DIN, GIN, MIMN,
DIEN, DMIN, and TGIN by 11.89%, 10%, 7.48%, 8.35%,
6.88%, 6.07%, 7.28%, 4.99%, 5.13%, 3.47%, respectively,
on AUC, and by 56.56%, 43.64%, 29.41%, 33.99%, 26.43%,
22.61%, 28.4%, 17.87%, 18.46%, 11.78% on RelaImpr,
respectively. And we observe that on the Beauty dataset, the
proposed DAIN outperforms LR, BaseModel, Wide&Deep
model, PNN, and DIN by 6.10%, 1.02%, 0.99%, 1.01%,
0.98%, respectively, on AUC, and by 60.44%, 49.47%,
37.91%, 37.97%, 28.76% on RelaImpr, respectively. At the
same time, we observe that on the Office_Products dataset,
the proposed DAIN model outperforms LR, BaseModel,
Wide&Deep model, PNN, and DIN by 12.36%, 10.86%,
9.02%, 9.03%, 7.33%, respectively, on AUC, and by 23.28%,
3.25%, 3.16%, 3.22%, 3.12% on RelaImpr, respectively. The
AUC of PNN and Wide&Deep model are approximate. This
is because their network structures are adjusted slightly based
on BaseModel. Results show that a good network structure
can improve the CTR prediction performance of the tradi-
tional DNNmodel. GIN is better than DIN, indicating that the
introduction of map learning in CTR prediction can use user

intentions to mine relieving the sparseness of behavior. DIEN
uses a specially designed AUGRU to better simulate the
evolution of interest. DMIN captures multiple interests to get
good results. It is worth noting that our method can be better
than all baselines on Electronics, Beauty andOffice_Products
datasets. This is because we not only propose a hierarchical
attention mechanism to calculate user’s interest and make
feature interactions play different values but also we extract
both high-order and low-order feature interactions for CTR
prediction. Experimental results illustrate that our model is
superior to the most advanced method on the CTR prediction
task.

For Electronics dataset, we extract test data from two
different groups: cold start user group and heavy user
group. The data of the cold start user group is historical
behavior 1 to 5; the heavy user group is users’ data of the
historical behavior of more than 23, we use LR, Basemodel,
PNN, Wide&Deep and DIN as the comparison model.
Figure 4 shows the results of cold start user group. The
experimental results show that with the decrease in user
historical behavior data, compared with the results on the
overall data set of Table 3, the accuracy of all methods has
decreased accordingly. And Wide&Deep recommendation
accuracy decreases significantly. However, the DAINmethod
holds the best recommendation performance. It is observed
that the model we proposed can better deal with the
problem of cold start, because we use Stochastic Gradient
Descent (SGD) as an optimizer and we also establish
an automatic decay mechanism for the learning rate to
deal with the overfitting problem. Meanwhile, our model
employs a hierarchical attention mechanism that can not
only calculate user’s interest and make feature interactions
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FIGURE 4. Cold start user group of experiment results.

FIGURE 5. Heavy user group of experiment results.

make full use of CTR prediction. The hierarchical attention
mechanism improves the performance of CTR prediction.
The comparison experimental results of the heavy user group
are shown in Figure 5. The results demonstrate that as the
amount of data decreases, compared with the results on the
overall data set in Table 3, the accuracy of all methods is
reduced accordingly. However, the DAIN method maintains
the best recommendation performance. The results show that
all deep networks are significantly better than LR. The AUC
of BaseModel, PNN, andWide&Deep model is approximate.
This is because their network structures are similar. And it
is obvious that DAIN obtains good improvement. The excel-
lence of DAIN may be related to the hierarchical attention
mechanism.

3) PERFORMANCE OF ACTIVATION FUNCTION
We compare the performance of deep models when applying
sigmoid , relu, and tanh on the dataset of Beauty. As shown in
Figure 6, sigmoid is more appropriate than tanh and relu for
all the deep models. Hence, we apply sigmoid in our paper.

C. APPLICATION STUDY
Wewill show the effect of the FMcomponent and hierarchical
attention model in this section.

1) EFFECT OF FM COMPONENT
The results of different CTR prediction methods is shown
in Table 4. Compared to BaseModel, BaseModel + FM

FIGURE 6. Activation function.

obtains obvious improvement. Compared to BaseModel, it’s
not different to find that not only do the high-order feature
interactions captured by BaseModel play a certain role in the
CTR prediction, but also the low-order feature interactions
are important for CTR prediction.

2) EFFECT OF HIERARCHICAL ATTENTION MODEL
Based on the obtained with BaseModel + FM, we further
explore the effect of the hierarchical attention model on
the datasets of Electronics, Beauty and Office_Products.
As shown in Table 4, DAIN outperforms BaseModel, Base-
Model + FM, and BaseModel + local attention mechanism
respectively on three datasets. So we find the hierarchical
attention model can bring great improvements. It is mainly
by the following two aspects: First, we adaptively calculate
the user’s interest representation according to the candidate
ad by using the local attention mechanism model, which
can not only improve the efficiency and the accuracy of
CTR prediction and increase the explanation of the model.
Second, considering high-order feature interactions captured
by MLP and low-order feature interactions captured by
FM components play different roles in CTR prediction,
we employ a linear-based global attention mechanism to
distinguish their different importance. Consequently, our
proposed method has achieved significant performance
improvements.

V. CONCLUSION AND FURTHER WORK
In this paper, we propose a Deep Adaptive Interest Network
(DAIN) that both learn high-order and low-order feature
interactions in order to overcome the shortcomings of existing
models and achieve better performance. It mainly includes
the following advantages: 1. It learns both high-order and
low-order feature interactions without feature engineering;
2. We propose a linear-based global attention mechanism to
monitor the high-order and low-order feature interactions;
3. It explores users’ interests based on their historical
behaviors to predict CTR more efficiently. We conduct
extensive experiments on the Amazon datasets of Electronics,
Beauty and Office_Products to compare our model to the
most advanced CTR prediction model. Experimental results
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testify that DAIN outperforms most advanced methods in the
aspect of AUC and RelaImpr. In the future, we will study
two directions to improve our model. One is introducing
transformer to strengthen the ability of CTR prediction.
The other is Considering long and short -term interests for
recommendation.
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