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ABSTRACT This study explores the use of attention mechanism-based deep learning models to construct
subject-independent motor-imagery based brain-computer interfaces (MI-BCIs), which present unique and
intricate challenges from a machine learning perspective. By comparing four attention mechanism-based
models and employing nested LOSO methods for robust model selection, the study enhances the reliability
of performance estimates and offers unique insights into the application of attention mechanisms in building
subject-independent BCIs. The results indicate the potential of the Spatio-Temporal CNN + ViT model
for practical BCI applications, as it outperforms other models on several datasets. Additionally, the study
presents a realistic approach to building subject-independent BCIs by combining attention mechanisms and
deep learning models to identify informative features common across subjects while filtering out noise and
irrelevant data. While there are limitations and areas for future work to enhance the potential of these models,
transformer-basedmodels could become evenmore valuable in the BCI research field, leading tomore robust
and accurate subject-independent BCIs for various applications. The need for subject-independent MI-BCIs
is amplified due to their potential in assisting individuals with severe neurological conditions, such as ALS
and locked-in syndrome, which severely limit mobility and communication.

INDEX TERMS Attention mechanism, brain-computer interface (BCI), deep learning (DL), vision
transformers (VT), motor imagery (MI), EEG, subject-independent BCIs, transformers.

I. INTRODUCTION
Brain-Computer interfaces (BCIs) have shown considerable
promise in redefining the interaction between humans
and external devices. Numerous applications have been
explored, from aiding individuals with severe disabilities
such as amyotrophic lateral sclerosis (ALS) and locked-in
syndrome [1], [2], to the early identification of epileptic
seizures [3], [4], [5]. Further applications include the use
of advanced prosthetics [6], [7], [8], engagement in gaming
and virtual reality [9], [10], as well as advancements in
scientific research [6], [11], [12]. Among the methods
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employed in BCIs, Electroencephalography (EEG) stands as
an essential technique. By recording the brain’s electrical
activity through non-invasive scalp electrodes, EEG provides
invaluable real-time data on neural activity [13], [14]. Given
its high temporal resolution, EEG is particularly useful
for BCI systems that require rapid response times. Despite
recent advances, the field still confronts a notable challenge:
the variability of EEG data among individuals. Factors
contributing to this variability include unique brain structures,
differing mental states, and individual head shapes. This
makes the task of developing universally applicable BCIs
quite challenging. To address these challenges, research has
generally split into two main approaches. The first invol-
ves subject-dependent models that require individualized
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calibration. Although these models can be quite accurate,
they require ongoing calibration for each new user, leading
to resource-intensive implementations [15], [16]. The second
approach focuses on subject-independent models, aiming
to identify features that are consistent across different
individuals to avoid the need for calibration [17], [18]. While
this approach is less resource-intensive, it often results in
compromised performance [19]. Consequently, resolving the
issue of subject variability stands as a crucial task, not just as a
research query but also as a practical imperative for realizing
the comprehensive benefits of BCIs across a range of real-
world applications.

‘‘Attention is All You Need’’ by Vaswani et al. has been
influential in the field of attention-based models, particularly
due to its introduction of the Transformer architecture [20].
This framework has been successfully applied in a wide range
of natural language processing tasks, including machine
translation and language modeling. It has also shown promise
in areas such as computer vision and EEG classification.
Building upon this, a recent study by Sun et al. has made
noteworthy contributions to EEG classification by proposing
a transformer-based model [21]. Their work offers valuable
insights into the role of attention mechanisms in enhancing
the generalizability of BCIs. It highlights the merit of
continued exploration in this direction, especially given the
potential for such models to improve the lives of individuals
with disabilities.

In the context of these contributions, this study seeks
to examine the application of attention-based deep learning
models to create more versatile, subject-independent BCIs.
Our methodology involves utilizing attention mechanisms
and deep learning to identify and learn the most relevant
features that are uniformly present across multiple subjects
while discarding noise and other irrelevant information.
We assess the efficacy of this approach by analyzing its
performance across four distinct Motor Imagery (MI)–
based EEG datasets. The availability of such datasets opens
up opportunities to further explore the role of attention
mechanisms in the creation of more universally applicable
BCIs.

Our ultimate goal is to leverage attention-based deep
learning models to discern useful patterns in brain signals,
with the aim of developing BCIs that are not just tech-
nically reliable but also user-centric. This work represents
a constructive addition to ongoing efforts to make BCIs
more accessible and beneficial, particularly for those with
disabilities.

This paper provides several key contributions to the field
of subject-independent BCIs, including:

1) Comparative Analysis: A comprehensive compari-
son of attention mechanism-based models - ViT,
Spatial CNN + ViT, Temporal CNN + ViT, and
Spatio-Temporal CNN + ViT - was provided. This
analysis was in terms of classification accuracy, robust-
ness, computational efficiency, and signal-to-noise
ratio, furthering the understanding of the strengths and

weaknesses of eachmodel when applied to various BCI
tasks and datasets.

2) Model Evaluation: The traditional Leave-one-subject-
out (LOSO) and nested LOSOmethods were employed
for model selection, enhancing the reliability of
performance estimates and promoting the development
of more accurate and efficient BCIs.

3) Dataset Exploration: Four distinct Motor Imagery (MI)
based EEG datasets were investigated. The analysis
offered unique insights into the application of attention
mechanisms in building subject-independent BCIs
using these datasets.

4) Significance for BCI Development: The comparative
analysis highlights the distinct performance charac-
teristics of various models, notably highlighting the
limitations of the Spatio-Temporal CNN + ViT model
on the BCI IV 2a, 2b, andWeibo datasets. Such insights
open the way for improving model selection criteria for
practical BCI applications.

5) Innovative Approach: Attention mechanisms and deep
learning models were combined to identify informative
features common across subjects, effectively filtering
out noise and irrelevant data.

These contributions presented advancements in subject-
independent BCIs and furnished valuable insights for future
research in this domain.

The paper is organized as follows: Section II presents
a comprehensive literature review of previous work on
BCIs and the application of attention mechanism-based deep
learning models. Section III provides a detailed overview
of the materials and methods used in the study, including
the classification methods employed, the datasets used,
the data preprocessing steps, the classification architec-
tures developed, the CNN models implemented, and the
performance evaluation techniques. Section IV discusses
the results obtained from the study, delving into the
performance and robustness of the models tested. Finally,
Section V offers a summary of the study findings, their
implications, and the scope for future work in the area
of subject-independent BCIs using attention mechanisms.
By breaking down the components of the study in this
way, the paper aims to offer a thorough exploration of
the potential of attention mechanisms in designing effective
BCIs.

II. LITERATURE REVIEW
EEG serves as a useful tool for understanding the activities
of neuronal groups within the central nervous system (CNS)
and finds widespread application in both neurology and
BCIs [22], [23]. Within the BCI ecosystem, the Motor
Imagery (MI) paradigm is often utilized, where participants
are encouraged to mentally simulate rather than physically
perform specific movements [24], [25]. Accurate classi-
fication of EEG data derived from different MI tasks is
fundamental for enabling BCIs to control various external
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devices effectively, particularly in patient rehabilitation
scenarios [25]. However, the task is far from straightforward.
EEG signals are characterized by substantial variations
between individuals, confined spatial resolution, and a high
temporal resolution, compounded by a low signal-to-noise
ratio [23]. These factors collectively pose challenges to
the accurate classification of MI-EEG data, constraining
the efficacy of BCI systems and their associated signal-
processing techniques.

Feature extraction and classification have long been funda-
mental elements in traditional machine-learning approaches
for classifying MI-EEG data. Conventional techniques for
feature extraction often employ methods like Fast Fourier
Transform [26] and Wavelet Transform [27]. For feature
classification, supervised learning algorithms such as Support
Vector Machines (SVM) [28] and Random Forest (RF) [29]
are commonly used. However, these approaches risk omitting
important EEG data during the feature extraction phase.
To address this issue, deep learning models, which are
capable of directly processing raw EEG data, have emerged
as a promising alternative [23], [25]. In the realms of
medicine and neuroscience, convolutional neural networks
(CNN) [25], [30] and hybrid CNN architectures [31] have
been particularly influential. These CNN models use spatial
and temporal kernels to extract features from multiple EEG
channels simultaneously or from a single channel across
different time intervals [25], [30]. Some studies have even
explored the synergy of CNNs and auto-encoders for EEG
signal classification [32]. Although CNNs are frequently
employed for motor imagery EEG classification, they do
have limitations, such as constraints in detecting global
dependencies [23], [30].
The attentionmechanism serves as a valuable enhancement

to the capabilities of deep learning models, drawing parallels
to how attention functions in biological neural networks.
Specifically, the multi-head attention mechanism, a variant
of self-attention, establishes relationships between each pair
of temporal points [33]. Unlike traditional recurrent or
convolutional layers, the Transformer architecture capitalizes
on multi-head attention for feature extraction, as evident in
well-known models like BERT [34] and GPT-2 [35]. Initially
gaining prominence in the realm of natural language process-
ing (NLP), Transformer-based models have since broadened
their utility to include image classification, video processing,
speech recognition, and even music generation [36], [37],
[38], [39].

This adaptability makes the Transformer particularly
promising for addressing the challenges tied to EEG data
classification, especially in capturing long-range dependen-
cies [40]. It offers the unique advantage of achieving this
without requiring convolutional neural networks (CNNs),
thereby providing additional interpretability when compared
to other deep learning architectures [21]. However, with this
advantage comes the potential issue of prioritizing noisy
segments in the EEG data. Additionally, the computational
demands of attention mechanisms could present challenges

TABLE 1. Information on EEG datasets with ‘‘L’’ representing left-hand,
and ‘‘R’’ representing right-hand motor imagery tasks.

for real-time applications or setups with constrained compu-
tational capabilities [41].

In the context of EEG-based applications, Transformer
models have been explored for tasks such as imagined
speech recognition, emotion detection, and sleep stage
identification [42], [43], [44]. A limited number of studies
have attempted to apply Transformer-based models specif-
ically to motor imagery EEG (MI-EEG). Tao et al. [40],
for instance, used a gated Transformer on the same
PhysioNet dataset as the one examined in this study,
although their focus was restricted to a single multi-class
classification task. Other researchers such as Du et al. [33]
and Kostas et al. [45] have used more complex pipelines
involving spatial filtering and two-stage models, but their
work often suffered from limitations such as a small number
of subjects or lack of generalizability across different
individuals.

This work seeks to build upon the efforts of these previous
studies, specifically those of Du et al. and Song et al.,
by implementing the Vision Transformer both with and
without CNNs as part of its architecture (see Section III
for details). Our aim is to explore whether the Transformer
architecture can offer an efficient and generalizable solution
for EEG data classification, particularly in the context of
subject-independent motor imagery BCIs.

III. MATERIALS AND METHODS
A. DATASET DESCRIPTION
This study utilized publicly available EEG data frommultiple
sources to analyze motor-imagery tasks performed by various
subjects using chosen neural networks. The investigation
focused on decoding motor imagery data for left-hand and
right-hand tasks, and accordingly, datasets were selected.
Additionally, the continuous EEG data was partitioned into
separate 4-second trials for left-hand and right-hand imagery
tasks, following the onset of mental imagery, as described in
a paper by Abibullaev et al. [46]. Details on each dataset are
provided in the following sections.

1) WEIBO2014
This dataset comprises EEG recordings from a sample of
ten healthy right-handed participants, seven females and
three males aged between 23 and 25 years. A 64-channel
Neuroscan SynAmps2 amplifier was used to record EEG
data at a sampling rate of 1000 Hz. The data was then
band-pass filtered between 0.5 and 50 Hz and down-sampled
to 200 Hz for analysis. The nose and grounded prefrontal
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lobe were used as reference points for the international 10-20
electrode implantation method. Dataset was initially gathered
to compare simple and complicated limb motor imagery’s
effects on EEG patterns. A red circle served as a visual
indication for the participants during each eight-second trial,
which was then followed by a cue suggesting either left- or
right-hand imagery. Participants engaged in kinesthetic motor
imagery for about four seconds during this time. Data were
collected across nine sessions, each consisting of 60 trials
of motor imagery data per task (for further details, refer
to [47]).

2) PHYSIONET
The Physionet Motor/Mental Imagery database is a vast
and comprehensive collection of motor-imagery EEG data.
The data was obtained from a group of 109 participants,
where they were asked to do motor/imagery tasks while the
EEG signal was recorded by the BCI2000 system using the
10-10 electrode placement scheme. A total of 64 channels
of EEG data were recorded per participant, with a sampling
rate of 160 Hz. 14 experimental runs totaling two 1-min
baseline runs and 12 2-min task runs were completed by
each participant. In the task runs, participants were required
to execute four motor/imaginary tasks, including performing
the corresponding physical action when the target appeared
on the computer, visualizing acting, and then resting when
the target vanished. In this study, we concentrated on the
classification of the motor imagery. We chose three task runs
for the motor imagery of the left hand vs. the right hand,
where participants had to visualize opening and clenching the
matching hand while a target appeared on the left or right
side of the computer screen. Each participant was assigned
46 trials for both right and left-hand tasks. Please see [48]
and [49] for further details.

3) BCI 2A - DATASET IIA FROM BCI COMPETITION 4
This dataset was obtained using a cue-based brain-computer
interface (BCI) paradigm from a sample of nine participants
who performed four different types of imagery tasks involv-
ing left-hand, right-hand, both feet, and tongue movements.
Data were gathered over the course of two sessions, each
consisting of 288 trials for a specific visual task. Each
session began with a fixation cross displayed on a blank
screen, followed by a visual signal in the shape of an arrow
pointing left, right, up, or down, shown for 1.25 seconds.
Participants were instructed to carry out motor imagery
exercises until six seconds had passed since the fixation
cross last displayed on the screen. Monopolar EEG data was
captured using 22 Ag/AgCl electrodes based on the 10-20
electrode positioning system. The right mastoid was used
as the ground electrode, and the left mastoid served as the
reference electrode. Data were bandpass filtered from 0.5 Hz
to 100 Hz and sampled at 250 Hz. In this study, only left-hand
and right-hand tasks were used. For further details, please
refer to [50].

4) BCI 2B - DATASET IIB FROM BCI COMPETITION 4
This dataset contains EEG data collected from a sample
of nine healthy, right-handed participants. EEG data from
three channels (C3, Cz, and C4) were captured at a sampling
rate of 250 Hz and bandpass filtered between 0.5 Hz
and 100 Hz. Five data collection sessions were conducted on
the participants, with the first two sessions occurring without
feedback and the final three with feedback. The Fz electrode
was used as an EEG ground. During the study, participants
engaged in two-class motor imagery tasks involving left-
and right-hand motions, using a cue-based paradigm. Each
motor imagery task consisted of 120 trials per session. Each
trial began with a fixation cross and a brief warning tone,
followed by a 1.25-second visual cue arrow. The motor
imagery tasks lasted four seconds, with a brief intermission
of 1.5 seconds between each set of trials. In sessions
with feedback, participants were instructed to perform the
motor imagery tasks after a cheerful face appeared on
the screen for 3 to 7.5 seconds. For further details, refer
to [51].

B. DATA PREPROCESSING
Deep learning research has demonstrated an increased
efficacy in directly learning from raw EEG data, reducing
the necessity for elaborate preprocessing or feature engineer-
ing [23], [52], [53]. In alignment with this, we employed a
basic preprocessing strategy on the four datasets detailed in
the preceding section. For more insights into the preprocess-
ingmethods and the effectiveness of the deep learningmodels
used, we direct readers to consult [52], [54].

Specifically, we applied a high-pass filter to the EEG
waveforms with a cut-off frequency of 4 Hz, using a
fourth-order Butterworth IIR filter. This filtering was per-
formed to minimize electro-oculographic artifacts caused
by eye movements, which are typically dominant in the
0.1 to 4 Hz frequency range within EEG recordings. Apart
from this, and in line with the recommendations from [52],
we refrained from applying low-pass filtering to preserve the
integrity of the raw EEG data. Additionally, the continuous
EEG recordings were divided into left-hand and right-
hand motor imagery trials, each lasting four seconds and
commencing at the onset of the motor imagery. These
segmented EEG data trials were then subjected to artifact
correction through a statistical thresholding technique, which
filtered out: (i) trials with prominent movement-related
noise and (ii) channels with potential poor scalp connec-
tivity that resulted in noise. To identify these, the mean
absolute value per trial was computed, and any trials
with values exceeding three standard deviations above the
mean were excluded. All the methodologies outlined here
were implemented in the MNE Python framework [55].
Our approach to minimal preprocessing allows the deep
learning models in this study to automatically learn mean-
ingful features from EEG data that is nearly raw, thereby
eliminating the need for prior assumptions or extensive
preprocessing.
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Addressing the common issue of limited trials in motor
imagery (MI) datasets, a range of data augmentation strate-
gies were employed. Traditional methods, such as cropping or
adding Gaussian noise, can degrade the signal-to-noise ratio
or risk compromising the inherent coherence.

To generate new augmented data for MI datasets, which
typically have fewer trials, this work utilizes a segmentation
and reconstruction (S&R) technique in the time domain.
The method presented in [41] partitions training data into
Ns segments, which are then randomly concatenated while
preserving the original time sequence. Here, Ns was set to 3,
as time samples from EEG data, such as 321 and 201, are
divisible by 3. When combined with the original data, the
augmented data effectively doubles the dataset size because
it is generated with each iteration to match the batch size.
Additionally, Z-score normalizationwas applied to reduce the
non-stationarity of the EEG data before data augmentation,
as shown in the following equation:

xi =
x0 − µ

σ
(1)

where x0 is the original EEG data, and xi is the data after
standardization. µ and σ represent the mean and standard
deviation.

C. DEEP LEARNING MODELS
In this section, we will discuss the use of multiple
deep-learning models.1

1) CONVOLUTIONAL NEURAL NETWORKS FOR EEG-BASED
MI TASKS
Convolutional Neural Networks (CNNs) have gained recog-
nition for their effectiveness in analyzing EEG data, par-
ticularly in the context of Motor Imagery (MI) tasks [46].
Unlike traditional Artificial Neural Networks (ANNs), CNNs
incorporate specialized layers–namely convolutional and
pooling layers–alongside fully-connected layers which serve
as classifiers [25]. The convolutional layers utilize a sliding
window approach, using filters or kernels, to identify intricate
patterns within the data. These filters are designed to
recognize progressively more complex features as we delve
deeper into the network [56]. Pooling layers further simplify
the data by employing kernels to perform operations like
max-pooling or average-pooling, thereby reducing computa-
tional demands [46], [56].

In this study, we employ CNNs due to their ability to
automatically learn high-level features from EEG data, which
are crucial for accurate MI classification.

a: MATHEMATICAL FORMULATION
Let’s consider a 3D input tensor X of dimensions cX ×

hX × wX, where cX = 1 is analogous to a grayscale
image and hX corresponds to the number of EEG channels.
The convolutional layer employs a 4D kernel tensor K of

1Note that the supplementary materials present the detailed outcomes of
the models during the selection process

dimensions cY × cX × hK × wK to compute a 3D output
tensor Y, following the equation:

Yl,m,n =

∑
i,j,k

Xi,m+j−1,n+k−1Kl,i,j,k (2)

In a multi-layer CNN tailored for EEG-based MI classifi-
cation, the output tensor from one layer serves as the input
tensor for the subsequent layer. Each convolutional layer
consists of cY(cX × hK × wK + 1) learnable parameters,
enabling the network to adapt to the unique characteristics
of EEG data [57].

2) TRANSFORMERS MODELS
When using RNN and LSTM models for sequence-to-
sequence NLP tasks, issues with long-range dependencies
need to be addressed [20]. Unlike RNNs, Transformers do
not have recurrent connections to record distant relationships.
Instead, they use self-attention to process complete sequences
simultaneously and deal with the memory problem. One
potential solution to the variability problem in BCIs is to use
attention mechanisms in transformer models. These mecha-
nisms allow deep learning models to focus on important input
data features, thus reducing noise and variability effects. The
combined methods used to create the original transformer
are discussed below, followed by an explanation of the
transformer’s overall architecture.

1) Tokenization: A conversion into numbers is necessary
for a computer to comprehend natural language.
An extremely basic illustration of such a transformation
from the NLP field entails giving each word a unique
number and then altering input phrases employing
these numbers [20].

2) Text embeddings: While computers can process
natural language by turning it into numbers, whether
they can learn from it is another matter. The vectors of
numbers sent to learning algorithms must be meaning-
ful for them to be able to gain knowledge from natural
language. Text embeddings transform the meaning of
a word from dense fixed-length real-valued vectors to
variable-length token vectors, where words that are
close together in the vector space are expected to have
similar meanings. The original transformer uses an
embedding layer that trains the entire model while also
learning word embeddings, although text embeddings
can be produced using external pre-trainedmodels. The
embedding layer consists of a comprehensive lookup
table that contains an embedding for each possible
token. These embeddings are modified during the
model’s training [20].

3) Positional embeddings: As mentioned earlier, the
transformer uses self-attention to make up for the lack
of recurrence. Transformers can be trained significantly
faster than RNNs because they do not require repetition
and can process whole sentences at once. However,
self-attention does not entirely compensate for the loss
of recurrence. Transformers receive whole phrases as
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FIGURE 1. Comprehensive architecture of the transformer encoder module, featuring scaled Dot-Product attention
and multi-head attention mechanisms.

FIGURE 2. Illustration of the complete transformer architecture, highlighting the transformer decoder module.
The architecture is adapted from the seminal work ‘‘Attention is all you need’’ by Vaswani et al. [20].

input, but each word is given its attention. Therefore,
the significance of the word’s placement in the phrase
needs to be recovered. The solution is to supplement
each text embedding vector with a positional embed-
ding vector that records the positions of the input
sequence’s words. Both fixed and learnable positional
embeddings are possible. The original transformer
uses fixed sinusoidal positional embeddings [20] (see
Equation 3).

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
;

PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

)
, (3)

in which pos is the position of the word in a
phrase.

4) Attention: In its layers, the transformer replaces repe-
tition with layers of self-attention. The aforementioned
layers attempt to capture the knowledge that inputs
have about one another. Self-attention operates in the
followingmanner in itsmost basic form. The queryW q,
key W k , and value W v matrices are among the three
sizable matrices that are learned during training [20].
Each component of an embedded input sequence that
enters a self-attention layer is multiplied by these
matrices to produce three new vectors for each input,
namely the query Q, key K , and value V vectors:

Qi =
−→x i ·W q (4)
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Ki =
−→x i ·W k (5)

Vi =
−→x i ·W v (6)

The ‘‘Scaled Dot-Product Attention’’ shown in Fig. 1
was obtained with the formula 7.

Attention(Q,K ,V ) = Softmax
(
QKT
√
dk

)
V (7)

The model can concentrate simultaneously on data
from distinct representational subdomains at different
locations thanks to the ‘‘Scaled Dot-Product Atten-
tion’’ layers that made up multi-head attention [20].
Figure 1 and formula (8) both depict the ‘‘Multi-Head
Attention’’:

MultiHead(Q,K ,V ) = [head1, . . . , headh],

headi = Attention(Qi,Ki,Vi) (8)

3) SPATIAL TEMPORAL ATTENTION
Attention mechanisms have been increasingly used in
deep learning models for analyzing EEG data, and here
are some common attention mechanisms that can be
used:

• Spatial Attention: Spatial attention is a mecha-
nism that learns the weight the contributions of
different spatial locations of the EEG electrodes.
This can be particularly useful when the location
of the electrodes is relevant to the task.

• Temporal Attention: Temporal attention is a
mechanism that allows the model to focus on
specific time intervals in the EEG signal. They are
useful when the time course of EEG features is
important for the task.

These attention mechanisms can be used in various
deep learning models, such as Convolutional Neural
Networks (CNNs), and Transformers to improve the
performance of the model in analyzing EEG data.
In this work we combine CNNswith Vision Transform-
ers (ViT).

5) Architecture: Vaswani et al. [20] introduced the
original transformer (see Figure 2), featuring an
encoder-decoder architecture. The encoder processes
tokenized input sequences through multiple blocks,
each with a multi-headed attention layer followed by
a feed-forward layer. The decoder is autoregressive,
generating each token iteratively. Decoder blocks
consist of a feed-forward neural network, a multi-
headed attention layer, and a masked multi-headed
attention layer, followed by residual connections and
layer normalization. After the decoder blocks, a linear
and softmax layer is added to compute probabilities for
each possible output token, with the highest probability
token being the model’s output.

a: THE VISION TRANSFORMER (VIT)
is a neural network architecture primarily designed for
image classification tasks [36]. Instead of using convolutional

layers, it relies on the transformer encoder from the
original transformer architecture initially developed for NLP
tasks [20].

The first step in applying ViT to MI data is to structure
the data appropriately. One strategy is considering the data
composed of a series of ‘‘tokens’’ or ‘‘patches.’’ The entire
sequence represents the whole signal, and each token can be
considered a time frame in the EEG data. After processing
this string of tokens, the transformer architecture can identify
temporal or spatial correlations and discover the necessary
attributes for categorization.

The transformer architecture requires a lot of processing,
particularly for lengthy sequences. To balance accuracy and
computational demands, it is crucial to carefully choose the
token size, sequence length, and model parameters.

This study implements Vision Transformers, where inputs
are embedded and directly fed into a Transformer Encoder.
Also, this study experiments with CNNs with ViT inspired
by [36] and [41].

D. EXPLORED MODELS
1) CNN MODELS
As illustrated in Figure 3, shows an example of a CNN
architecture used in this study with varying layers of
convolutional kernels, specifically of sizes [64, 32, 16, 8]
and kernel dimensions of 3 × 8. We denote CNN models
by C[Chan 1, . . . , Chan N]_K(height, width). For the output
channels, both increasing and decreasing configurations for
cY,j in different layers were examined. These configurations
were defined by cY,j = 22+j and cY,j = 2L+3−j, as described
in [46] and [56]. Regarding kernel dimensions, a consistent
rectangular kernel shape was adopted across all layers. This
kernel is defined by hK,j = hK = 3 and wK,j =

wK = 8 × τ , where τ was varied within [1, 3] to capture
a diverse range of EEG temporal features. For instance,
considering fs = 80 Hz as a sampling rate of EEG data,
the temporal window of t = 100 ms would be covered by
a kernel width of wK = 8, and t = 300 ms is covered
by kernel widths of wK = 24. We evaluated a variety
of convolutional layers and kernel dimensions, resulting in
12 distinct models for baseline comparison. These models are
compared alongside EEGNet [56] and othermachine learning
architectures. Our design closely follows the methodology
presented in [46], as it employs the same MI datasets
and preprocessing approaches, albeit tailored to the unique
constraints of subject-specific analysis.

2) EEGNET
The EEGNet architecture consists of three convolutional
layers. The first layer employs temporal convolution to learn
frequency filter parameters. The second uses depth-wise
convolution to capture spatial filters specific to frequency
characteristics. The third layer employs separable convolu-
tion to generate temporal summaries for each feature map.
Figure 4, depicts the EEGNet architecture in detail.
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FIGURE 3. In-depth architecture of convolutional neural networks for EEG signal decoding in BCIs applications.

FIGURE 4. Illustration of the EEGNet architecture, inspired from [56]. Employed for EEG signal decoding in the present study.

3) VIT MODELS
The architecture of the Transformer Encoder module requires
the input data to be organized in a specific manner,
treating EEG channels and time samples as analogous to
the height and width dimensions of an image. However,
the dimensions of EEG data are unique and often larger
than typical image dimensions. To address this, Average
Pooling was strategically employed to reduce the effective
width and height of the input, as illustrated in Figure 5.
Following the dimensional reduction, positional encoding
was applied to the data to imbue the Transformer Encoder
with a sense of sequence or temporal order. The technique
for positional encoding was adopted from [41] and was

implemented through a one-dimensional convolutional layer.
This prepared input was then processed by the Transformer
Encoder module. For the final EEG classification, features
extracted by the Transformer Encoder were forwarded to a
sequence of fully connected layers, culminating in a Softmax
activation function to produce class probabilities. In terms
of model selection for the ViT, particular emphasis was
placed on examining the number of Transformer modules
in the architecture. This was a key factor influencing
both classification performance and computational load on
the CUDA hardware. We conducted experiments with a
range of 4 to 10 Transformer modules and found that
using either 3 or 6 modules yielded optimal results for
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FIGURE 5. The detailed architecture of the vision transformer (ViT) model
applied to EEG classification tasks.

different datasets, contingent on the shape of the input
data.

4) SPATIAL/TEMPORAL CNN + VIT
Figure 6 presents the frameworks of Spatial CNN combined
with ViT (s-CViT) and Temporal CNN combined with
ViT (t-CViT) for EEG classification. These frameworks
bear a close resemblance to the Spatio-Temporal CNN +

ViT architecture, with the primary differences lying in the
convolutional modules.

• In s-CViT, the convolutional module consists of two
layers and an average pooling layer. The first convo-
lutional layer employs 40 kernels of dimensions 1 ×

16 and utilizes SAME padding to capture temporal
characteristics of EEG data. This is followed by an
average pooling layer with a pooling size of 1 × 5. The
second convolutional layer, utilizing VALID padding,
features 40 kernels with dimensions 1 × 15.

• The t-CViTmodel has a simpler CNNmodule, including
a single convolutional layer and an average pool-
ing layer. The convolutional layer adopts 40 kernels
of size ch × 1 with SAME padding to focus on
extracting spatial information from EEG signals. The
subsequent average pooling layer has a size of 1 × 5.
After pooling, the features are transposed for further
processing.

For both s-CViT and t-CViT models, features extracted by
the CNN modules are enriched with position encoding and
then processed through Transformer modules. Finally, they
are classified using fully connected layers, as illustrated in
Figure 6.

5) SPATIO-TEMPORAL CNN + VIT
As depicted in Figure 6, the st-CViT model comprises three
main components: spatial and temporal convolutional layers,
a transformer encoder module, and a fully connected classi-
fication layer. The input consists of a group of pre-processed

EEG trials with channel and sample dimensions, as well as
one additional dimension for the convolution channel. The
output is the probability of various EEG categories.

1) Spatial and Temporal Convolution layers: We
constructed two specialized one-dimensional convolu-
tional layers designed to process temporal and spatial
dimensions of EEG data. The first layer focuses on
the temporal axis and consists of k kernels, each with
dimensions of 1×25 and a stride of 1×1. Subsequently,
a second layer is utilized as a spatial filter and
encompasses 40 kernels. These kernels are tailored
to the count of EEG channels, denoted as ch, with
dimensions of ch×1 and a stride of 1×1 (e.g., ch = 22
for the BCI IV 2a dataset). To maintain training sta-
bility and improve generalization, we integrated batch
normalization and Exponential Linear Units (ELUs) for
normalization and activation, respectively. For the dual
purpose of diminishing overfitting risks and optimizing
computational efficiency, an average pooling layer was
introduced in the temporal domain. This layer features
a stride of 1 × 15 and kernel dimensions of 1 × 75.
In the concluding stages, the architecture undergoes
a transformation that condenses the electrode channel
dimension, simultaneously transposing the convolution
channel with the temporal dimension. Additionally, the
feature maps outputted from the convolutional module
are restructured. As a result, the feature channels
corresponding to each temporal instance are tokenized,
setting the stage for subsequent modules.

2) Transformer Encoder Module: To investigate the
global temporal relationships among EEG features,
self-attention mechanisms are employed. Sequential
tokens from the convolutional module are converted
into Query, Key, and Value (QKV) matrices via linear
transformations. Dot products of these matrices allow
us to analyze associations between tokens, a process
further described in Figure 1. A scaling factor and the
application of the Softmax function ensure stability
during training. The attention score, or weighting
matrix, is derived by applying the Softmax function
to the resultant output. The attention score is then
multiplied by the Value (V) using a dot product,
as demonstrated in Equation 7. To enhance the model’s
adaptability, a pair of fully connected feed-forward
layers are appended consecutively. This procedure’s
input and output dimensions remain invariant, and the
module is reiterated three or six times, contingent
upon themodel’s complexity.Moreover, themulti-head
approach is employed to augment the diversity of
representations. The tokens are partitioned into three
or four equidistant segments, each independently
processed through the self-attention module. The final
output is obtained by concatenating the outcomes from
each segment [58].

3) Fully-Connected Classifier: The last component is a
straightforward classification layer. It consists of two
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FIGURE 6. Comprehensive architectural schematics of spatial CNN + ViT (s-CViT), temporal CNN + ViT (t-CViT), and
Spatio-Temporal CNN + ViT (st-CViT) models, specifically designed for EEG classification tasks.

fully connected layers followed by a Softmax activation
to produce an M -dimensional probability vector. The
cross-entropy loss function, defined as

L = −
1
Nb

Nb∑
i=1

M∑
c=1

ylog(ŷ), (9)

guides the training process. Here M = 2 (for EEG
classes), y and ŷ are the true and predicted labels,
respectively, and Nb represents the number of trials in
each batch.

E. PERFORMANCE EVALUATION
1) LEAVE-ONE-SUBJECT-OUT EVALUATION
The Leave-One-Subject-Out (LOSO) cross-validation tech-
nique is a specialized form of k-fold cross-validation
tailored for datasets with multiple samples from individ-
ual subjects. Nested cross-validation offers a systematic
framework for hyperparameter tuning and model selection.
When combined with LOSO, it ensures unbiased evaluation,
especially in datasets with distinct samples from individual
subjects. The outer loop is responsible for model evaluation,
while the inner loop fine-tunes the model hyperparameters
(see Fig. 7).

2) PROCEDURE FOR NESTED LOSO-BASED MODEL
SELECTION
Given a set of candidate BCImodelsℳ = {M1,M2, . . . ,Mn},
each with a potential set of hyperparameters:

1) For each modelMk ∈ℳ:
a) For each subject si in the dataset S:

i) Partition samples from all subjects excluding
si into inner training and validation sets.

ii) Conduct hyperparameter tuning on Mk using
inner LOSO cross-validation.

iii) With the optimal hyperparameters deter-
mined, trainMk on the complete inner training
set.

iv) ValidateMk using only samples from si.
v) Document the performance metric for this

outer iteration, represented as Pk,i.
b) Compute the mean performance forMk across all

subjects:

PLOSO,k =
1
|S|

|S|∑
i=1

Pk,i

2) Identify the model with the top mean performance:

M∗
= arg max

Mk∈ℳ
PLOSO,k

In BCI contexts, employing nested LOSO cross-validation
is important to ensure that models remain resilient against
overfitting to EEG patterns distinct to individual subjects.
Moreover, it ensures the models’ capability to general-
ize effectively over heterogeneous user data. Despite its
computational intensity, the nested procedure provides both
unbiased estimates, confirming the adaptability of BCIs to
new, unseen users. Additionally, the methodology is designed
to minimize information leakage, thus offering a robust
representation of a model’s ability to decode variance across
subjects.

F. HYPERPARAMETER SELECTION
This section outlines the hyperparameter search space for
attention mechanism-based models, specifically ViT, Spatial
CNN + ViT, Temporal CNN + ViT, and Spatio-Temporal
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FIGURE 7. Illustration of Leave-One-Subject-Out (LOSO) and nested LOSO Cross-Validation techniques for model
evaluation.

CNN + ViT. Selecting the right hyperparameters is crucial
for training and evaluating Transformer models effectively.
To ensure a fair comparison and rigorous evaluation,
we have standardized the hyperparameter search space for
CNN and Transformer models based on the following key
assumptions:

1) Epochs: Model training was confined to a maximum
of 150 epochs, incorporating early stopping criteria.

2) Batch Size: For transformer models mini-batch size
of 72 was utilized to strike a balance between
computational efficiency and model performance after
trying different range of batch sizes. In the case of
CNN models, and EEGNet batch size of 32 was
employed.

3) Optimization Algorithm: We employed mini-batch
gradient descent using the Adam optimizer. The
learning rate and decay parameters were set at 0.001
and 0.0001, respectively [59].

4) Loss Function: Cross-entropy was selected as the loss
function for evaluating model performance [60].

5) Transformer Layers: Transformer modules from 4 to
10 were tested, and 6 was chosen depending on
computational efficiency and model performance.

6) Attention Heads: The multi-head self-attention mech-
anism was configured to have 8 to 10 heads.

7) Embedding Size: The dimensionality of the input
embeddings ranged between 40 and 64, depending on
computational efficiency and model performance.

8) CNN Architecture: Our convolutional neural net-
works were structured with up to four convolutional
layers, succeeded by a fully connected layer.

9) CNN Kernel Dimensions: A consistent rectangular
kernel shape was employed across all layers, defined
by hK,j = hK = 3 and wK,j = wK = 8 × τ , where
τ was varied within [1, 3] to capture a diverse range of
EEG temporal features.

10) CNNOutput Channels: We examined both increasing
and decreasing configurations for cY,j in different
layers, with specific configurations given by cY,j =

22+j and cY,j = 2L+3−j [46], [56].
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TABLE 2. Algorithmic hyperparameters for CNNs and EEGNet models: Key
terms include BS (Batch Size), LR (Learning Rate), and WD (Weight Decay).

TABLE 3. Hyperparameter configuration for attention-based models
across diverse datasets: Depth values are specified for BCI 2a/2b, Weibo,
and physionet datasets.

11) Dropout: A dropout layer with a retention probability
p = 0.3 and p = 0.5 were used prior to the fully
connected layer to minimize overfitting [61].

These hyperparameters were selected based on a combination
of empirical testing and best practices from the existing
literature. The aim is to allow for meaningful comparisons
of models, as well as to facilitate the replication of our
experiments.

The following tables 2 and 3 list the hyperparameters of
the attention model for models.

All models were implemented using a Windows work-
station with AMD Ryzen 7 5800H (3.20 GHz) processor,
32GB of RAM, andNvidia GeForce RTX 3060 (RAM=6GB,
CUDA Cores: 3840). The entire model selection workflow
was implemented in the PyTorch deep learning environment.

IV. RESULTS AND DISCUSSION
A. PERFORMANCE ANALYSIS OF BENCHMARK MODELS
In this section, the performance of various deep learning
models on BCI datasets (BCI IV 2a, BCI IV 2b, Weibo, and
Physionet datasets) is examined. These datasets have previ-
ously been studied using different methods, but differences
in their setup and testing methods were observed in those
studies. Models such as CNN, EEGNet, ViT, Spatial CNN +

ViT, Temporal CNN + ViT, and Spatio-Temporal CNN +

ViTwere tested. The efficacy of each method for each subject
was determined using the Leave-One-Subject-Out (LOSO)
method.

To provide a comparison with previous studies, changes
were made to all models. These modifications are detailed
in Sections III-B, III-D, and III-E. In Tables 4, 5, 6, and 7,
the performance of different models on the four MI datasets
using the top LOSO results is presented. Detailed results for
each subject can be found in Appendix A. The performance
of EEGNet and Spatio-Temporal CNN + ViT on the BCI IV
2b dataset using the nested LOSO evaluation accuracies is
presented in Tables 8 and 9, respectively.

CNN models, represented as C[Chan 1, . . . , Chan
N]_K(height, width), were defined by their output channels
and kernel dimensions. Output channels vary in increasing
or decreasing configurations across layers. Consistently,
a rectangular kernel shape was adopted across layers, with
adjustments in width to capture diverse EEG temporal
features.

B. THE EFFECT OF CONVOLUTIONAL LAYERS AND
KERNEL SIZE ON THE PERFORMANCE OF CNN MODELS
The convolutional layers and kernel size can significantly
affect the performance of the CNNs as reflected in the four
datasets. These parameters are critical for the model’s capa-
bility to extract relevant features from the given MI-based
BCI datasets.

On the BCI IV 2a dataset (see Table 4 and Figure 8),
we observed an interesting pattern. As the depth of the
network increased (i.e., more convolutional layers), the
average accuracy tended to improve. Specifically, the model
with the configuration C[64, 32, 16, 8]_K(3, 8) yielded
the highest average accuracy of 68.25%, despite having the
lowest number of parameters (1.01M). This suggests that
deeper networks could potentially capture more complex
patterns in the data, leading to better overall performance.
As for the kernel size, networks with kernel size (3, 24)
generally outperformed those with (3, 8), indicating that
larger kernels might have contributed to a more effective
feature extraction.

The performance trend continued in the BCI IV 2b dataset
(see Table 5). Again, the CNN model with configuration
C[64, 32, 16, 8]_K(3, 24) showed the best average accuracy
(73.54%) with a moderate amount of parameters (328.06K).
The increased kernel size seemed to have a positive effect
on the model’s performance, further demonstrating the
importance of a suitable kernel size in achieving high
classification accuracy.

In the Weibo dataset (see Table 6), the CNN model
with the configuration C[64, 32, 16, 8]_K(3, 8) per-
formed the best, with an average accuracy of 66.38% and
2.65M parameters. However, as the kernel size increased,
the best average accuracy (64.80%) was attained by the
configuration C[32, 16, 8]_K(3, 24). This suggests that
while deeper networks may yield better results, the impact
of kernel size may be more nuanced and potentially
dataset-dependent.

In the Physionet dataset (see Table 7), the CNN model
C[64, 32, 16, 8]_K(3, 8) demonstrated the best performance,
with an average accuracy of 74.42% and 1.77M parameters.
As the kernel size increased, the highest average accuracy
(74.00%) was achieved by the configuration C[32, 16,
8]_K(3, 24), aligning with the trends observed in previous
datasets.

To summarize, the number of convolutional layers and
the kernel size play substantial roles in the performance of
CNNs on BCI datasets. It appears that deeper networks tend
to produce superior results, possibly due to their ability to
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TABLE 4. Performance comparison on unseen BCI IV 2a test subjects: Classification accuracy of CNN, EEGNet, and transformer models evaluated via
LOSO methodology. Best performing models for each subject are highlighted in bold (in %). Different configurations of CNN models are denoted as
C[16, 8]_K(3, 8).

TABLE 5. Performance comparison on unseen BCI IV 2b Test Subjects: Classification accuracy of CNN, EEGNet, and transformer models evaluated via
LOSO methodology. Best performing models for each subject are highlighted in bold (in %). Different configurations of CNN models are denoted as
C[16, 8]_K(3, 8).

capture more complex and nuanced features. Larger kernel
sizes also seem beneficial for accuracy, although the extent
of their impact may vary across datasets. Future studies could
further investigate the impact of these parameters on different
BCI tasks and potentially reveal insights into their optimal
configuration for BCI applications.

C. THE EFFICACY OF ATTENTION MECHANISM-BASED
MODELS WHEN APPLIED TO SUBJECT-INDEPENDENT
BCIS
The study compared the performance of different deep
learning-based models on three benchmark datasets:
BCI IV 2a, BCI IV 2b, and Weibo. The results clearly
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FIGURE 8. Classification accuracy performance of CNN, EEGNet, and transformer models (in %)
on unseen BCI IV 2a test subjects via LOSO methodology.

TABLE 6. Performance comparison on unseen Weibo Test Subjects: Classification accuracy of CNN, EEGNet, and transformer models evaluated via LOSO
methodology. Best performing models for each subject are highlighted in bold (in %). Different configurations of CNN models are denoted as
C[16, 8]_K(3, 8).

showed that attention mechanism-based models, such as
the Vision Transformer (ViT) and its spatial, temporal, and

spatio-temporal variants, showed varying performance
depending on the dataset.
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TABLE 7. Performance comparison on unseen Physionet test subjects: Classification accuracy of CNN and transformer models evaluated via LOSO
methodology. Best performing models for each subject are highlighted in bold (in %). Different configurations of CNN models are denoted as
C[16, 8]_K(3, 8).

TABLE 8. Performance evaluation of EEGNet on unseen BCI IV 2b test subjects: Accuracy assessment using nested LOSO methodology.

For the BCI IV 2a dataset, the results showed that
the performance of the base ViT model was significantly
lower than most CNN models and EEGNet, achieving an
average accuracy of 55.09%. However, when combined with
other modeling approaches, the ViT-based models showed
notable improvements. The Temporal CNN + ViT and
Spatio-Temporal CNN + ViT models achieved significantly
higher accuracies of 72.61% and 80.44%, respectively,
outperforming all the other models.

On the BCI IV 2b dataset, the performance trend was
similar, with the base ViTmodel performing relatively poorly
with an average accuracy of 53.03%. Once again, the addition
of other modeling strategies to ViT showed remarkable
improvements. The Spatio-Temporal CNN + ViT model,
in particular, outperformed all other models, achieving an
average accuracy of 74.73%.

On the Weibo dataset, however, the performance of
the ViT-based models was different. The base ViT model

achieved an average accuracy of 57.83%, outperformingmost
of the CNNmodels. The Spatio-Temporal CNN+ViTmodel
again emerged as the best performer with an average accuracy
of 78.44%.

In terms of parameter size, all the ViT-based models
demonstrated significantly fewer parameters compared to the
CNN models, which is beneficial for model deployment and
computational efficiency. Particularly, the Spatio-Temporal
CNN + ViT model demonstrated high performance while
having the smallest parameter size among all models in all
datasets.

D. THE EFFECT OF SPATIAL, TEMPORAL,
OR SPATIO-TEMPORAL CNN MODELING ON THE
PERFORMANCE OF VIT
From the analysis of the aforementioned data
(Tables 4, 5, 6, and 7), it is evident that the incorporation
of spatial, temporal, and spatio-temporal modeling can
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TABLE 9. Performance evaluation of Spatio-Temporal CNN combined with ViT on unseen BCI IV 2b test subjects: Accuracy assessment using nested LOSO
methodology.

significantly impact the performance of Vision Transformers
(ViT) in BCI systems, particularly when decoding Motor
Imagery (MI) from EEG signals.

1) Spatial Modeling: The application of spatial modeling
alone with ViT resulted in a noticeable improvement
in comparison to the standalone ViT model across all
datasets. However, its performance is generally lower
than that of the temporal and spatio-temporal modeling.
This might be due to the fact that EEG signals
are inherently temporal in nature, and while spatial
features can provide valuable information regarding
the distribution of brain activity across the scalp, they
might not sufficiently capture dynamic changes in brain
states over time.

2) Temporal Modeling: Implementing temporal mod-
eling with ViT significantly outperformed both the
standalone ViT and the Spatial CNN + ViT mod-
els. This is consistent across all examined datasets.
The superior performance of the temporal modeling
suggests that it is critical to exploit the temporal
structure of EEG signals to enhance BCI perfor-
mance. Temporal modeling is adept at handling the
time-varying nature of EEG signals, thereby captur-
ing critical signal characteristics that change over
time.

3) Spatio-Temporal Modeling: Most notably, the com-
bination of both spatial and temporal modeling into
a spatio-temporal CNN + ViT model resulted in the
highest average performance across all datasets, with
a significant reduction in the number of parameters
compared to many other models. This demonstrates the
importance of capturing both the spatial distribution
and temporal dynamics of brain activity in EEG signals
for successful MI decoding. Spatio-temporal modeling
combines the advantages of both spatial and temporal
models, yielding a more comprehensive understanding
of the EEG data, and thereby leading to superior
performance.

Overall, while each of the spatial and temporal models
brings unique benefits, the integration of both spatial and

temporal features in a spatio-temporal model appears to be
the most effective strategy for improving the performance of
ViT in the context of EEG-based BCIs. However, it’s worth
noting that the combination of strengths of two systems (CNN
and ViT), also combines their challenges. This can make the
model slower, especially when working with a lot of EEG
data. Furthermore, the performance of these models can also
be affected by other factors, such as the complexity of the
model (reflected by the number of parameters), the choice
of hyperparameters, and the specifics of the dataset and task.
Therefore, further research is required to fully exploit the
potential of deep learning models, particularly ViT, in the
domain of BCIs.

E. THE EFFICACY OF LOSO METHODS
The LOSO and nested LOSO are cross-validation techniques
commonly used in the context of BCI research, especially
when dealing with small datasets or when the subject
independence of the models is under consideration. The
nested LOSO evaluation entails training on data from every
subject save for one, which is reserved for validation.
The traditional LOSO, in contrast, further segments the
data from each subject into discrete training and validation
subsets.

Our findings from the LOSO evaluation (refer to Table 5)
demonstrate a competitive performance across models.
Specifically, the Spatio-Temporal CNN + ViT model stands
out, registering an accuracy of 74.73%, albeit with an
associated increase in model intricacy, as evident from the
parameter count. Remarkably, the EEGNet model strikes an
optimal balance, delivering an average accuracy of 72.00%
while only employing 19.35k parameters. However, the
LOSO evaluation isn’t without its shortcomings. One notable
concern is the potential overfitting, as the iterative training
and validation may lead the model to optimize itself to
the training dataset excessively, subsequently affecting its
efficacy on unseen data.

On the other hand, utilizing the nested LOSO evaluation
(see Tables 8 and 9) indicates a marginal enhancement in
average accuracies for both EEGNet and Spatio-Temporal
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CNN + ViT models when compared against the LOSO
results. This uptick possibly stems from the augmented
training data available to the nested LOSO evaluation,
circumventing the need to bisect each subject’s data further.

In summary, nested LOSO evaluations furnish critical
insights into the adaptability and efficacy of BCI models
across diverse subjects. Each method possesses inherent
merits and limitations: the LOSO approach might offer
superior performance due to augmented training data but
runs the risk of overfitting, while the nested LOSO method
reduces this risk, albeit with less training data. The selection
between the two methods should depend on the specific
requirements and constraints of the study, such as the avail-
able dataset size, the model complexity, and the tolerance for
overfitting.

V. CONCLUSION AND FUTURE WORK
This study contributes to the field of subject-independent
BCIs in several ways. First, it comprehensively compares
attention mechanism-based models, including ViT, Spatial
CNN + ViT, Temporal CNN + ViT, and Spatio-Temporal
CNN + ViT, in terms of classification accuracy, robustness,
computational efficiency, and signal-to-noise ratio. This
analysis provides a better understanding of the strengths
and weaknesses of each model when applied to different
BCI tasks and datasets. Second, the study employs a nested
LOSO method for model selection, improving the reliability
of performance estimates and promoting the development of
more accurate and efficient BCIs. Additionally, it investigates
four distinct Motor imagery-based EEG datasets, providing
unique insights into the application of attention mecha-
nisms in building subject-independent BCIs using these
datasets. The results demonstrate that the Spatio-Temporal
CNN + ViT model outperforms other models on the BCI
IV 2a, 2b, and Weibo datasets, indicating its potential
for practical BCI applications. Furthermore, by combining
attention mechanisms and deep learning models to identify
informative features common across subjects while effec-
tively filtering out noise and irrelevant data, this study
presents a realistic approach to building subject-independent
BCIs.

Although the attention-based models used in this study
showed promising results in EEG classification, there are
some limitations and areas for future work to enhance their
potential in the BCI research field:

1) Positional Encoding: In this study, the impact of differ-
ent positional encoding strategies was not investigated
extensively on transformer-based models. Future work
could explore various positional encoding schemes to
determine their influence on model performance and
robustness in the context of EEG data.

2) Kernel Sizes of Convolutional Layers: A limited
kernel size set was used for the convolutional lay-
ers in the transformer models. A more extensive
exploration of different kernel sizes could reveal
their impact on model performance and potentially

improve the effectiveness of the transformer-based
models.

3) Transfer Learning with Transformers: Due to resource
and time constraints, the potential of transfer learn-
ing with transformer models was not explored.
Future work could investigate pre-trained trans-
former models and adapt them for EEG classification
tasks, potentially leading to better generalization and
improved performance across different subjects and
tasks.

4) Model Efficiency in Real-Time Scenarios: While our
models demonstrate promising accuracy and robust-
ness, additional improvements might be necessary to
optimize them for real-time EEG data processing.
Investigating model compression techniques, or sim-
plifying certain layers without significant compromise
on performance, could be a path worth exploring for
real-time EEG applications.

By addressing these limitations and extending the research
in the above directions, transformer-based models could
become even more valuable in the BCI research field, leading
to more robust and accurate subject-independent BCIs for
various applications.
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