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ABSTRACT Spatial mobility provides a rich context for human life, and the demand for indoor nav-
igation and localization has increased. Pedestrian dead reckoning (PDR) is a viable solution thanks to
its cost advantages and robustness to environmental changes. In this paper, we propose two generic
ideas for improving inertial pedestrian navigation. One is about the estimation of gravitational accel-
eration and the other is about the estimation of heading change angles. Gravitational acceleration is
dynamically extracted on the fly rather than assuming sensors to be fixed in a certain orientation.
It can be used to estimate step lengths and heading change angles as a baseline. Also, heading change
angles are digitized by combining the estimated gravitational acceleration with a simple threshold-based
turn detection algorithm. Turns tend to occur across multiple steps and we separate turns from steps
in walking. To demonstrate the effectiveness of the ideas a simple scheme, steps-and-a-turn (SnT),
is designed for inertial pedestrian navigation. In experiments using a complete daily route, we show that
the estimation of gravitational acceleration is consistent and robust, and that the digitization of heading
change angles is highly effective in typical building environments: the positioning error is about 1.2%
of the total length of the experimental path. Various state-of-the-art schemes served on top of pure
inertial pedestrian navigation are expected to benefit by utilizing the proposed ideas as basic building
blocks.

INDEX TERMS Estimating gravitational accelerations, digitizing heading change angles, inertial navigation
system, pedestrian dead reckoning, steps-and-a-turn.

I. INTRODUCTION
Enhancements in mobile devices and wireless communica-
tion technology demand location-based services in various
fields including aerospace, robotics, healthcare, wellness, and
entertainment to provide information on the surroundings for
user convenience. In outdoor environments, GNSS (Global
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Navigation Satellite System) handles the requirements [1],
[2]. For example, GPS (Global Positioning System) satellites
orbiting the earth transmit signals such that GPS receivers
can determine their locations on the earth with those signals.
In indoor environments, however, it is difficult or impossible
to provide services due to attenuations or blocking of satel-
lite signals. Since people spend most of their time indoors
(87% inside buildings and another 6% in automobiles) it
is important to provide positioning information reliably in
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the environments [3]. Indoor navigation and localization
are challenging tasks and an active topic for research and
development.

Many different approaches for indoor navigation and local-
ization have been proposed with their own strengths and
weaknesses. There are methods relying on radio signals such
as Wi-Fi, UWB, Bluetooth, etc. [4], [5], [6]. Using triangu-
lation, it computes the distances between a mobile unit and
an array of AP (access point) installed in buildings at known
locations. Their initial cost is high because an infrastructure
of AP is required. Also, these methods are sensitive to radio
wave interference from walls, furniture, and other electronic
devices. There are methods based on fingerprinting [4], [7],
[8]. A map of various signal properties such as magnetic field
or strength of communication signal is collected in a priori
and compared to identify user’s location. These methods have
an advantage in terms of accuracy but are difficult to respond
to environmental changes, which might be frequent due to
mobile devices. Any environmental change means that a
process of mapping, which is expensive and time-consuming,
must be performed. There are methods without external refer-
ences. Dead reckoning (DR) is a self-contained system,which
uses inertial sensors [4], [9], [10], [11]. A user’s location
is estimated by reflecting the moving direction and distance
from one’s previously known position. Since no infrastructure
or mapping process is required other than sensing devices
to detect user’s displacement, it has a great advantage in
terms of cost and is robust against environmental changes.
Drawbacks of DR approaches are noisy sensing data and
cumulative errors over time. To complement errors there have
been lots of efforts including map-aided approaches with
domain-specific constraints or sensor fusions with additional
data from magnetometers, GNSS systems [11], [12], [13],
[14]. All those efforts are, however, based on pure inertial
navigation systems.

As MEMS (Micro Electro-Mechanical Systems) inertial
sensors become ubiquitous PDR (Pedestrian Dead Reckon-
ing) systems are getting more interested [9], [15], [16], [17].
Their small-size, low-cost, low-power consumption make it
easy to be embedded in smartphones and various wearable
devices. However, MEMS-based sensors have, in general,
large noise. In addition, pedestrians are all about humans
that are not made up of a rigid body. Tedious and compli-
cated calibration-based approaches do not work well. It is
an area in which heuristics might be applicable for efficient
solutions. In this paper, we propose two generic ideas for
improving inertial pedestrian navigation. One is about the
estimation of gravitational acceleration on the fly. Although
the direction of gravity plays an essential role in PDR its
practical estimations have not been actively pursued [10],
[18], [19]. Instead, works in many literatures assume that
sensing devices remain vertical during walking or demand
that pedestrians hold sensing devices for a while with no
movements. However, it is impractical to firmly fix sensing
devices or is inconvenient to keep stationary period for pedes-
trians. We provide a practical and systematic procedure to

estimate gravitational acceleration in real-time. By dynam-
ically estimating gravitational acceleration pedestrians can
be free in carrying sensing devices. The other idea is about
the estimation of heading change angles. Heading estimation
is a crucial part of PDR since it is a dominant factor in
positioning accuracy. In many works of pedestrian navigation
with a turn detection algorithm, pedestrians are considered
walking straight when no turn is detected. The same con-
siderations can be applied even when a turn is detected.
We propose a method to digitize heading change angles by
combining the estimated gravitational acceleration with a
simple threshold-based turn detection algorithm. It is a simple
but practical approach for pedestrian navigations, espe-
cially in typical buildings with straight corridors and limited
directions.

To demonstrate the effectiveness of the ideas a simple
scheme, called steps-and-a-turn (SnT), is designed by com-
bining basic building blocks of inertial pedestrian navigation.
In experiments on a complete daily route, we show that
the estimation of gravitational acceleration is consistent and
robust, and that the digitization of heading change angles sig-
nificantly reduces errors in pedestrian navigation. We expect
that the proposed ideas, as basic building blocks, will improve
existing state-of-the-art schemes including sensor fusions or
map-aided techniques as they are served on top of pure iner-
tial pedestrian navigation.

The remainder of this paper is organized as follows.
In Section II we describe the algorithm for estimating grav-
itational acceleration and the details of digitizing heading
change angles. Also, a brief description of the SnT scheme
is presented. Section III provides a comprehensive evalu-
ation and analysis of the experiments and results. Finally,
Section IV summarizes our results and conclusions.

II. MEMS BASED INERTIAL PEDESTRIAN NAVIGATION
DR is a self-contained navigation technique commonly used
in the past for ships, aircraft, and missiles. It estimates a
relative location rather than an absolute one by using inertial
measurement units (IMU) - a combination of accelerome-
ters and gyroscopes. Current position (xn, yn) is determined
by updating its known previous location (xn−1, yn−1) based
on the displacement of traveled distance d and directional
change θ .

(xn, yn) = (xn−1 + d · cosθ, yn−1 + d · sinθ ) (1)

In the context of PDR, a modified form of DR, two refer-
ence coordinates, namely navigation (N) frame and body (B)
frame, are utilized [10], [18], [20]. N-frame is the coordinate
for indicating a pedestrian’s position according to his or
her mobility. B-frame refers to the coordinate where sensors
are attached for measurements. Since B-frame and N-frame,
in general, do not coincide with each other, a coordinate
transformation needs to be performed. For example, a vector
−→
Vb on B-frame can be transformed to a vector

−→
Vn on N-frame

as shown in Figure 1. It shows the Euler rotation sequence of
Z-Y-X denoting an initial rotation about the Z-axis byψ , then
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FIGURE 1. The coordinate transformation between B-frame and N-frame:
the Euler rotation sequence of Z-Y-X.

about the rotated Y-axis (denoted y′) by θ , and finally about
the twice-rotated X-axis (denoted x′′) by ∅.

−→
Vn = R

−→
Vb

R =

 1 0 0
0 cos∅ sin∅
0 −sin∅ cos∅

  cosθ 0 −sinθ
0 1 0
sinθ 0 cosθ


×

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (2)

In a typical INS (Inertial Navigation System), the tri-axial
accelerometer signals on N-frame are double integrated for
traveled distance and the gyroscopes signals on N-frame are
single integrated for directional change [4], [9], [21]. In the
process it is necessary to subtract acceleration due to gravity.
A critical drawback of this approach is that errors are rapidly
accumulated over time.

SHS (Step and Heading System) is an alternative approach
for pedestrian navigation. It indirectly calculates traveled dis-
tance based on pedestrian’s walking model called gait cycle
[11], [22], [23]. It counts number of steps from measured sig-
nals and multiplied by step length for traveled distance. Since
number of steps is proportional to time, the accumulated error
can be reduced. In addition, a noise margin of sensors can be
secured in the conversion process. A typical SHS uses the
same heading estimation as INS.

A. ESTIMATING GRAVITATIONAL ACCELERATION
Accelerometers measure linear accelerations caused by a
pedestrian’s motion.While tri-axial accelerometer signals are
time-varying there exists the static gravitational acceleration
within them [10], [18].

−−→accb =
−→
fb +

−→gb (3)

where −−→accb = (accb_x , accb_y, accb_z) is the vector made
up of the accelerometer measurements on B-frame,

−→
fb is

the dynamic component by a pedestrian’s specific motion
and −→gb is the static component by gravitational accelerations.
Also, accelerometer measurements can be decomposed into
its vertical component −−→accv and horizontal component −−→acch.

−−→accb =
−−→accv +

−−→acch (4)

Since the gravitational acceleration −→gb is apparently par-
allel to the vertical component on N-frame, for a given
measured signal−−→accb, we have the vertical component−−→accv =
−−→accb·

−→gb by vector dot product and the horizontal component
−−→acch =

−−→accb−
−−→accv by vector subtraction. Then, the horizon-

tal components−−→acch can directly be used for the calculation of
traveled distance d without coordinate transformations. Also,
the vertical component −−→accv can be used for the estimation of
directional change θ .
We propose a practical procedure to extract the grav-

itational acceleration −→gb from the measurements −−→accb on
B-frame. Ideally, when there is no movement, the dynamic
component

−→
fb will be zero being −−→accb =

−→gb , of which
magnitude approaches 9.81 m/s2. Practically, when

−→
fb is

minimum, −−→accb is likely to be dominated by gravitational
acceleration being −−→accb ≈

−→gb . We can approximate the
gravitational acceleration −→gb by capturing the instantaneous
stationary moment of pedestrians’ walking such as

1. Measured acceleration signals are segmented, as in
SHS, by steps. Let’s say there are Kstep measured sam-
ples within a step.

2. Calculate magnitude of acceleration
∣∣−−→accb∣∣ for each

Kstep measured samples.∣∣−−→accb∣∣ =

√
acc2b_x + acc2b_y + acc2b_z (5)

3. Choose a measured signal −−→accb among Kstep measured
samples as a gravitational acceleration-possible−−−−→gb,guess
based on the value of

∣∣−−→accb∣∣. It corresponds to the
moment at which the pedestrian appears to be barely
moved within a step.

4. The gravitational acceleration −→gb is estimated dynam-
ically by taking the moving average of gravitational
acceleration-possibles −−−−→gb,guess of its previous N steps:

−−→
gb[n] ≈

1
N

∑N−1

i=0

−−−−−−−−→
gb,guess[n− i] (6)

For the gravitational acceleration-possible −−−−→gb,guess we con-
sider the following four candidates among Kstep measured
samples within a step.

• Maximum magnitude −−−→gb,Peak : the measured value −−→accb
at the point when the magnitude

∣∣−−→accb∣∣ is maximum.
• Minimummagnitude−−−−→gb,Valley: the measured value−−→accb

at the point when the magnitude
∣∣−−→accb∣∣ is minimum.

• Minimum difference in magnitude −−−−−→gb,MinDiff : the mea-
sured value −−→accb at the point when the magnitude
difference between two consecutive acceleration sig-
nals is minimum.

• Arithmetic mean −−−−−→gb,AvgPV : the average of −−−→gb,Peak and
−−−−→gb,Valley.

B. ESTIMATING HEADING CHANGE ANGLES
Heading change estimation is themost crucial process in PDR
applications since a heading change angle is a dominant factor
in navigation accuracy [10], [19]. We present a practical
procedure to estimate heading change angle θ relying both
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on the estimated gravitational acceleration−→gb and on a simple
threshold-based turn detection algorithm.

Gyroscopes measure angular velocity and let −−−→gyrob =

(gyrob_x , gyrob_y, gyrob_z) be the vector made up of the gyro-
scope measurements on B-frame. We define a turn as a
pedestrian’s single monotonic motion that does not change
its direction in the middle. To reduce any effects of the way
to carry a sensing device, the magnitude of angular velocity
data collected from three axes perpendicular to each other is
considered.∣∣−−−→gyrob

∣∣ =

√
gyro2b_x + gyro2b_y + gyro2b_z (7)

There is a single threshold Thgyro such that heading change
estimation can be performed only when a turn is detected.
A turn begins when the magnitude of the angular velocity∣∣−−−→gyrob

∣∣ crosses upward the threshold Thgyro. Then, a peak
during the turn is retrieved. There might be multiple peaks
within a turn and we consider the largest as a peak. A turn is
finalized when the magnitude of the angular velocity

∣∣−−−→gyrob
∣∣

crosses downward the threshold Thgyro. The value of Thgyro
is set high enough to be sensitive to pedestrian’s heading
changes but not to other causes of rotation.

Figure 2 shows the concept of turn detections. The line
graph is the magnitude of angular velocity data

∣∣−−−→gyrob
∣∣ on

the primary y-axis and the impulse graph represents differ-
ent phases of turn detection on the secondary y-axis: the
beginning, the peak, and the end. We define turn period as
tturn = t2Peak + t2End . The turn period and amplitude are
reflected in turn detection algorithm such that only peaks
with sufficient amplitude and period are considered valid
turns. We empirically determine the minimum amplitude of
a valid peak and the average period of a valid turn through
preliminary experiments.

FIGURE 2. The concept of turn detections: turn period and amplitude.

Let’s say there are Kturn samples of gyroscope measure-
ment for a turn detected. According to Euler’s rotation
theorem, any 3D rotation can be specified by axis-angle
representation [24], [25]. That is, each of the Kturn samples
from the turn detection represents a rotation angle

∣∣−−−→gyrob
∣∣1t

around the axis −−−→gyrob where1t is the sampling period of the

gyroscope. Since pedestrians move horizontally, we expect
that the rotation axis −−−→gyrob is parallel to the gravitational
acceleration vector −→gb . However, that is not true in general
because measured signals include rotation behaviors other
than pedestrian’s heading change. Instead, we project the
angular velocity vector−−−→gyrob to the gravitational acceleration
−→gb .

−→ωb =

−−−→gyrob ·
−→gb∣∣−→gb ∣∣ (8)

The projected angular velocity vector −→ωb represents a
rotation around the axis of the gravitational acceleration −→gb
by the angle

∣∣−→ωb∣∣1t . The heading change angle θ can be
approximated by considering all the Kturn samples during the
turn.

θ ≈ α ∗

(∑Kturn−1

i=0

∣∣∣−−−−−−→
ωb [n− i]

∣∣∣1t) + θbias (9)

where α is a scale factor and θbias is a bias to complement
the turn detection algorithm. It is a threshold-based one and
detections are naturally lagged by several samples from the
actual beginning of a turn. Also, there exists leftovers after
finalizing a turn by several samples. It can be complemented
by a small constant since they correspond to the head and tail
in the magnitude of angular velocity data. In this study, we set
α to 1 and θbias to 0 for simplicity.
With MEMS-based sensors, however, we easily find that

the estimated heading change angle θ is not accurate. We also
understand that walking is restricted in an indoor environ-
ment. A typical man-made building has straight corridors
and fewer than eight directions, with four being dominant.
Therefore, it is practical to assume that turns in an indoor
environment occur only to some extent by digitizing the
heading change angle. In fact, in many works of pedestrian
navigation, a pedestrian is assumed to be walking straight
if no turn is detected. We extend the same considerations
even when a turn is detected. The problem is the resolution
of the unit angle for the digitization. Though it is desirable
to have a fine resolution, in this study, a coarse resolution
of 45◦ is considered for demonstration purposes. This can
be done by separating turns from steps in walking with the
turn detection algorithm. That is, by considering a turn as a
whole, the estimated heading change angle θ becomes emi-
nent enough to be digitized. Otherwise, the heading change
angle θ is easily amortized into steps blurry because a turn
tends to occur overmultiple steps. In addition, we canmanage
the resolution dynamically by reflecting the structure of a
building in map-aided approaches or by utilizing additional
data from magnetometers in sensor fusion approaches.

C. INERTIAL PEDESTRIAN NAVIGATION
To demonstrate how to utilize the proposed ideas for PDR
applications we design a simple scheme, which belongs to the
class of SHS, by combining basic building blocks of pedes-
trian navigation. Some are from the proposed ideas and others
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FIGURE 3. The structure of an inertial pedestrian navigation system.

from existing algorithms. We call this scheme steps-and-a-
turn(SnT) to emphasize the fact that a turn occurs across
multiple steps. Figure 3 shows the structure of an inertial
pedestrian navigation system. The blocks of a straight line
are utilized in this study and the ones of a dotted line includ-
ing sensor fusions are for extensions in near future. Each
block can be substituted with any well-modeled algorithm for
obtaining a pedestrian’s complete trajectory. We want algo-
rithms that are simple and practical with low computational
complexity. The shaded blocks of gravitational acceleration
estimation, the turn detection, and the heading change esti-
mation are based on the proposed ideas in this study.

Many works have been done for step detection includ-
ing peak detection, zero-crossing, and correlation techniques
[23], [26], [27]. The key idea is the recognition of repeated
patterns in measured data. In this study, we borrow a
threshold-based step detection algorithm and slightly modify
it to reflect both the step period and amplitude. Accelerom-
eters are used and, as with gyroscopes, the magnitude of
acceleration data

∣∣−−→accb∣∣ is considered. There is an upper
threshold ThaccH and a lower threshold ThaccL such that step
counting can only be performedwhen a pedestrian is walking.
A step begins when the magnitude of acceleration

∣∣−−→accb∣∣
crosses the upper threshold ThaccH . Then, a pair of peak-
and-valley during the step is retrieved. It corresponds to a
consecutive detection of a swing phase followed by a stance
phase in the human gait cycle. A gait cycle consists of a stance
phase (60∼62%) when the foot of interest touches the ground
and a swing phase (38∼40%) when the foot of interest is in
the air [22]. Both feet are on the ground during the first and
last 10∼12% of the stance phase. Depending on pedestrians’
behavior there might be multiple peaks or valleys within a
step. We consider the largest as a peak and the smallest as a
valley. Once a pair of peak-and-valley is found then the next
crossing of the lower threshold ThaccL finalizes its current
step. The very next crossing of the upper threshold ThaccH
after the crossing of ThaccL represents the beginning of a new
step. As with turn detection, only pairs of peak-and-valley
with sufficient amplitude and period are considered valid
steps to prevent missing or fake step occurrences. We empir-
ically determine the minimum amplitude of a valid peak, the
maximum amplitude of a valid valley, and the average period
of a valid step through preliminary experiments.

FIGURE 4. The concept of step detections: step period and amplitude.

Figure 4 shows the concept of step detections. The line
graph is the magnitude of acceleration data

∣∣−−→accb∣∣ on the
primary y-axis. The impulse graph represents different phases
of step detection on the secondary y-axis: the beginning, the
peak, the valley, and the end. By separating the beginning of a
step from the end of its previous step we can clearly identify a
pedestrian’s movement according to the gait cycle. We define
step period from the end of its previous step to the end of
current step such that tstep = t2Begin+ t2Peak + t2Valley+ t2End .
It is assumed that t2Begin = 0 for the first step of a walk
segment.

Traveled distance d is estimated by multiplying step count
and step length. Though step length depends on various
factors including pedestrian’s height, walking speed, accel-
eration variance, etc. it is well modelled in many literatures
[11], [23], [27], [28]. Also, different step length model does
not affect the positioning accuracy severely in PDR applica-
tions. In this study, we use, for our convenience, the empirical
model by Weinberg [29].

StepLength ≈ k 4
√∣∣accv,max ∣∣ −

∣∣accv,min∣∣ (10)

where
∣∣accv,max ∣∣ and

∣∣accv,min∣∣ are the maximum and the
minimum of vertical acceleration components for each step
and k is a proportional factor that needs to be calibrated for
each pedestrian. This model is easy to implement, and we can
have −−−−−→accv,max and

−−−−→accv,min during the step detection process
as well.

III. EXPERIMENTS AND RESULTS
To control the whole process of experiments from data col-
lection to pedestrian navigation we design a device with the
Atmega328P microcontroller and the GY-89 IMU module
using an I2C interconnection. GY-89 is a typical low-
cost MEMS-based inertial sensor module and contains an
LSM303D accelerometer and an L3GD20 gyroscope of
STMicroelectronics [30], [31]. The measurement range of
L3GD20 is configured by ±250 dps, and that of LSM303D
by ±2 g. This device gathers raw sensing data every 50 ms
(20 Hz) and applies 2nd order Butterworth low-pass filter
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FIGURE 5. Step detections for a walk segment of 10 steps.

to manage noise from the low-quality MEMS sensors. The
cutoff frequency is set to 3.5 Hz in consideration of typi-
cal pedestrians’ walking frequency of 1.48 to 2.61 Hz [32].
A uSD module with UART interconnect is used for manip-
ulation of the collected data. Four participants are involved
in the experiment. They held the data collecting device with
one hand and keep his or her attitude while walking. Par-
ticipants are briefed on the experiments and asked to walk
naturally without intentional acceleration or deceleration.
Walking backward or sideward is not allowed. It is assumed
that participants’ initial orientation is known in advance.

A. STEP DETECTION AND STEP LENGTH ESTIMATION
We conduct the experiments in a corridor of 36.0 m in length
and 3.0 m in width. Participants walk straight 10 steps and
pause for a while then repeat. At the beginning and end of
a walk segment, both feet are set parallel. That is, for the
walk segment, there is an extra (the 11th) step that does not
contribute to any advance in moving distance. Since step
count is directly related to moving distance, the last step
would rather not be counted.

Figure 5 shows a result of the proposed step detection for
a walk segment. The line graph represents the magnitude
of acceleration data

∣∣−−→accb∣∣ and the impulse graph represents
different phases of step detection. It also shows the upper
threshold ThaccH = 10.1 and the lower threshold ThaccL =

9.5 for convenience. As expected, the acceleration data has
a clear biphasic pattern during walking. Experimental results
show a detection accuracy of 99.6%. It successfully detects
steps as do existing methods in many literatures. The contexts
of step detection, however, are much richer by identifying
different phases of a step.

Figure 6 shows the extra contexts of step period and ampli-
tude in boxplots. Step take a 12.8 sampling period on average,
which is 0.64 sec in this experiment. A swing phase roughly
corresponds to the duration of (t2Peak+t2Valley) and the double
limb support of a stance phase corresponds to (t2Begin +

t2End ). We use these data in the step detection algorithm.

FIGURE 6. Extra contexts of the step detection: (a) step period and (b)
step amplitude.

FIGURE 7. Moving distance of a typical SHS with various gravitational
acceleration-possible −−−−−→gb,guess.

Only peak-and-valley pairs, whose amplitudes
∣∣−−→accb∣∣ are

within the 1.5 IQR (Interquartile Range), are considered valid
steps excluding outliers. That is, the peaks whose amplitude∣∣−−−−−→accb,Peak

∣∣ larger than Q1-1.5 IQR and the valley whose
amplitude

∣∣−−−−−−→accb,Valley
∣∣ smaller than Q3+1.5 IQR are valid.

In Figure 5, we can see that the 11th step of a walk segment is
nullified using the extra contexts of step detection. It cannot
be expected if we use a simple peak detection algorithm,
which counts a step at an early stage of step activity. A miss-
ing or a fake step count tends to occur at the beginning
or end of a walk segment. The extra contexts can be used
for various pedestrian-related problems since people have
different physical characteristics including the disabled.

We repeat the experiments, but participants walk without
being disturbed along the same corridor. At the beginning and
end of a walk, both feet are set parallel. The Weinberg model
is used to estimate step length. Gravitational acceleration −→gb
in equation (6) is provided dynamically by taking the moving
average of the previous 5 steps (N=5). In addition, partici-
pants are asked to remain stationary for a few seconds before
each trial so that we can take the average of the measured
acceleration −−→accb during the stationary interval as a reference
for gravitational acceleration −−−→gb,Ref .
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FIGURE 8. Per-step moving distance of a typical SHS with various
gravitational acceleration-possible −−−−−→gb,guess: (a) horizontal moving
distance and (b) vertical moving distance.

Figure 7 shows a result for the moving distance of a
typical SHS with various gravitational acceleration-possible
−−−−→gb,guess. The graph represents the navigation trajectory on
the xz-plane of N-frame. It also includes the ground truth of
36.0 m. We ignore any directional changes if any. We set the
proportional constant k of the Weinberg model properly for
each participant: the k is set between 0.478 and 0.508. This
is the only parameter to be personalized in the experiments.
The participant’s data is provided on Table 2 in Appendix.
From the graph, we can see that, with different gravitational
acceleration-possible−−−−→gb,guess pedestrians move similarly hor-
izontally but differently vertically. Note that the experiment
is carried out on a non-tilted hallway.

Figure 8 is the moving distance per step in boxplots.
We can see that pedestrians move forward horizontally by
about 0.73 m on every step regardless of the gravitational
acceleration-possible −−−−→gb,guess. Also, from the graph, we can
figure out the cause of the difference in vertical movements
with the different gravitational acceleration-possible −−−−→gb,guess.
Pedestrians move downhill or uphill at about 0.06 m on
every step with −−−→gb,Peak or −−−−→gb,Valley, respectively. It happens
because −−−→gb,Peak is chosen right after a maximum of

∣∣−−→accb∣∣,
which is likely downward. Similarly, −−−−→gb,Valley is chosen right
after a minimum of

∣∣−−→accb∣∣, which is likely upward. Errors
are accumulated over the number of steps. With −−−−−→gb,MinDiff
pedestrians appear to move up and down slightly. We can say
that the minimum difference point of

∣∣−−→accb∣∣ within a step is
inconsistent. The−−−−−→gb,AvgPV is most stable with respect to verti-
cal movements providing a trajectory comparable to that with
−−−→gb,Ref . We can expect the gravitational acceleration-possible
of −−−−−→gb,AvgPV to perform well for pedestrian navigation.

B. TURN DETECTION AND HEADING CHANGE
ESTIMATION
We run the experiments in the same corridor but participants
walk in a zig-zag fashion with 90◦ turns. Figure 9 shows
a result of the proposed turn detection. The line graph rep-
resents the magnitude of angular velocity

∣∣−−−→gyrob
∣∣ and the

FIGURE 9. Turn detections for a walk in a zig-zag fashion with 90◦ turns.

FIGURE 10. Horizontal trajectory on the xy-plane for SHS with −−−−→gb,Ref and
SnT with various gravitational acceleration-possible −−−−−→gb,guess.

impulse graph represents different phases of turn detection.
It also shows the threshold Thgyro = 0.5 for convenience.
The magnitude of angular velocity

∣∣−−−→gyrob
∣∣ at peaks is so large

that we can easily tell a 90◦ turn. Also, we can see that the
angular velocity data fluctuate irregularly even when pedes-
trians walk straight. Turns are 100% detected throughout the
experiments.

Figure 10 shows the corresponding navigation trajectory
on the horizontal xy-plane of N-frame. It includes the tra-
jectory of a typical SHS using −−−→gb,Ref and that of SnT using
various−−−−→gb,guess. It also provides the ground truth consisting of
4 left turns and 4 right turns as an expected trajectory. We can
see that the trajectory of SHS deviates rapidly as steps go
on. When pedestrians walk straight the heading change angle
is expected to be zero. However, the estimation of heading
change angle is off by some small values at each step being
continuously accumulated. In SnT, the estimated heading
change angle is deployed only when a turn is detected, which
eliminates the slightly deviated stepwise drifts. There are
flat lines in the trajectory resulting from the turn detection
algorithm. Using different gravitational acceleration-possible

VOLUME 11, 2023 108301



J. Kim: Empirical Approaches for Improving Inertial Pedestrian Navigation

FIGURE 11. Extra contexts of turn detection: (a) turn period (b) turn
amplitude and (c) heading change angles for SHS and SnT with −−−−→gb,Ref .

−−−−→gb,guess is not critical concerning the estimation of heading
change angle.

Figure 11 shows the extra contexts of 90◦ turns with respect
to its period, amplitude, and estimated heading change angle.
We can confirm that at peaks the magnitude of angular veloc-
ity

∣∣−−−−−−→gyrob,Peak
∣∣ is eminent. Also, it shows that a 90◦ turn takes

around 21.2 sample period on average, which means that two
or three steps are involved for a single turn. On that extension,
we classify steps into three types: a step in straight walking
StepTnone, a step with a turn in progress StepTing, and a step
with a finalized turn StepTdone. Figure 11 (c) shows the esti-
mated heading change angles of a typical SHS and SnT with
−−−→gb,Ref . Note that the values of SHS are per step of different
types while the values of SnT are per turn. Positive angles cor-
respond to left turns and negative to right in this experiment.
We can compare StepTnone of SHS with TurnTnone of SnT.
Pedestrians sway by about 2.9◦ with each step even when
they walk straight. In SHS, sway angle directly contributes
to deviating pedestrians’ trajectory. In SnT, however, since
a turn is not detected during the period sway angle can be
ignored. Similarly, we can compare StepTing and StepTdone
of SHS with TurnTdone of SnT. Because a turn can begin or
end in the middle of a step TurnTdone ≤ StepTing + StepTdone.
In SnT, the angle of 90◦ for a single turn is counted as a whole
such that it can be clearly distinguished, but in SHS, it is
amortized in several steps blurry.

With SnT, we can imagine digitized heading change
angles. We run the same experiments but with 45◦ turns.
Figure 12 shows the estimated heading change angles of SnT
with various gravitational acceleration-possible−−−−→gb,guess. Each
column has five boxplots in the order from the top: 90◦ and
45◦ left turn, straight walk, 45◦ and 90◦ right turn. We can
see that there are only marginal differences in the estimated
heading change angle using different −−−−→gb,guess. It can be said
that the direction, left or right, of turns can be completely dis-
tinguished. Also, by considering the 1.5 IQR we can identify
the heading change angle between 90◦, 45◦, 0◦, −45◦, and
−90◦. None of the whiskers in the boxplot are overlapped
each other: −−−−−→gb,AvgPV seems to have noise margins for both
left and right turns. It is desirable to have a fine resolution
at heading change angles but digitizing by 45◦ is practical.
Typical buildings consist of straight corridors and a limited

FIGURE 12. Per-turn heading change angles of SnT with various
gravitational acceleration-possible −−−−−→gb,guess.

FIGURE 13. The experimental path in #207 engineering building,
Chung-Ang University.

number of pathways, with four being dominant. We will call
this scheme digitized SnT.

C. PEDESTRIAN NAVIGATION
To evaluate the effectiveness of the proposed ideas a set
of experiments is performed with a complete daily route
involving a sequence of walking and making turns. Figure 13
is the path we used in the experiments: the 6th and the 5th

floor of #207 engineering building at Chung-Ang University,
Seoul. It starts at ‘A’, proceeds in alphabetical order, and
returns to the starting point ‘A’ again consisting of corridors
and stairs with a total length of 157.5m including 7 left
turns and 2 right turns. The turns at ‘B’ and ‘C’ are 45◦

and the others are 90◦. The path can be divided into four
sections. In sections ‘J-A-B-C’ and ‘F-G’ pedestrians move
horizontally. They correspond to the corridor on the 6th and
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FIGURE 14. Step detection and turn detection along the experimental
path.

the 5th floor, respectively. In sections ‘C-D-E-F’ and ‘G-H-
I-J’ pedestrians move vertically as well as horizontally. They
include stairs between the floors. Subsections ‘D-E’ and ‘H-I’
indicate landings in the middle of stairs.

Figure 14 shows a result of the steps and turns detected
while a participant moves along the experimental path. It pro-
vides, for convenience, the same label as in Figure 13 for the
location of turns on the x-axis. We can see that all 9 turns
are successfully detected. Also, the step detection counts
207 while the participant walks 208 steps, which results in
detection accuracy of 99.52%.

Figure 15 shows the corresponding navigation trajectory
both on the horizontal xy-plane and on the vertical xz-plane
of N-frame. It includes the trajectory of a typical INS and
SHS with −−−→gb,Ref and the trajectory of SnT and digitized SnT
with−−−−−→gb,AvgPV . From the trajectory on the xz-plane, we can see
that none of the methods comply with the vertical movement.
PDR itself is about 2D navigation and the change in pedestri-
ans’ acceleration is very small compared to the magnitude
of gravity. From the trajectory on the horizontal xy-plane,
we can see the trajectory of digitized SnT follows the ground
truth. Typical INS and SHS deviate from the ground truth in
the early stages of walking. We can easily see the impact of
accumulated errors on navigation over time. SHS just utilizes
a realistic model in step length over INS. The trajectory
deviation of SnT is delayed until a couple of turns occur.
With a turn detection it works for short-term navigation. This
corresponds to a digitization of heading change angles only
when walking straight.

In order to quantitatively compare the effectiveness of
the proposed ideas we use synchronized Euclidean distance
(SED) metrics [2]. It can count on both spatial and tempo-
ral aspects of a trajectory. For the calculations we assume
that pedestrians move at constant speed on the experimental
path. The ground truth path is divided evenly by the number
of steps. Then we simply calculate the distance between a
point on the ground truth and the corresponding point on the
trajectory of interest.

FIGURE 15. Pedestrian’s trajectory on the xy-plane and the xz-plane of
N-frame.

FIGURE 16. SED comparison of different pedestrian navigation schemes.

TABLE 1. A summary of performance comparison for different pedestrian
navigation schemes.

Figure 16 shows the SED comparison of different pedes-
trian navigation schemes on the horizontal plane and Table 1
provides a summary of the result. The upper graph of
Figure 16 is SED for each step and the lower one is the aver-
age SED up to the step. The labels on the x-axis indicate the
location of turns. We can see that the trajectory deviation of
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typical INS and SHS increases rapidly from the early stage of
walking. The SED decreases after passing point ‘D’ because
the experimental path makes a complete loop returning to
the starting point. Otherwise, it would keep diverging at a
higher rate. We can see that the SED of SnT is suppressed
until passing point ‘C’, but that the average SED diverges
over time. It implies the importance of accurate estimation of
heading change angles. The SED of digitized SnT is limited
to a certain range.Most of the drifts result from the step length
estimations of the Weinberg model we used. Large SED can
be found around the landing of stairs: points ‘D’, ‘E’, ‘H’,
and ‘I’. A constant width of stair cannot be estimated by
the model. The SED of digitized SnT at the final location
is 1.89 m, which is about 1.2 % of the total length of the
experimental path. By suppressing errors, even a pure inertial
pedestrian navigation technique can be applied to mid-range
navigations as well as short-range ones. We expect that, as a
basic building block, the proposed ideas can play a role in
inertial pedestrian navigation.

IV. CONCLUSION
Users’ location is of vital importance having immense impli-
cations. Thanks to the technology of GNSS it becomes easier
to get location data in outdoor environments. How-ever, peo-
ple spend most of their time indoors, and providing indoor
navigation and localization is a challenging task. In this paper,
we presented two generic ideas for improving inertial pedes-
trian navigation. One is about estimation of gravitational
acceleration in real-time. Since gravitational acceleration is
dynamically estimated, for pedestrian navigation, we can
determine moving distance and directional change without
constraining the way of carrying a sensing device. The other
is about digitization of heading change angles. By combin-
ing the estimated gravitational acceleration with a simple
threshold-based turn detection algorithm we can practically
digitize pedestrian’s heading change angles. To demonstrate
the effectiveness of the ideas a simple scheme, steps-and-
a-turn, is designed by combining basic building blocks of
inertial pedestrian navigation. From the experimental results
with a complete daily route, we showed that the estimation
of gravitational acceleration is consistent and robust, and that
the digitization of heading change angles is highly effective in
typical building environments. The positioning error of SnT
schemewas about 1.2% of the total length of the experimental
path, showing its applicability for mid-range navigations.
We expect that many existing state-of-the-art schemes served
on top of pure inertial pedestrian navigation will benefit from
the proposed ideas. Sensor fusions or map-aided techniques
using the proposed ideas in less restrictive experimental con-
ditions will be pursued as future work.

APPENDIX
The personalized data of the four participants is provided for
better understanding of the experiments in Section III.

TABLE 2. A summary of personalized data on participants.
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