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ABSTRACT Improving the energy efficiency of robots is an important issue for the widespread use of
robots in society. However, previous methods plan motions to perform tasks in the shortest possible time in
consideration of work efficiency. Other methods change the trajectory for same path to decrease unnecessary
acceleration/deceleration. On the other hand, it would be efficient to plan a path and trajectory that proceeds
to a goal position after waiting in an energy-efficient posture with low joint torque load. The energy-efficient
posture is depending on a robot’s structure such as length or mass of each link, joint specifications and a
spring of a joint to support weight of a robot. Furthermore, there is a possibility to improve the calculation
speed by using quantum computing technology, which can solve combinatorial optimization problems at high
speed. In this study, we propose a method for generating low energy-consumption motions for robots using
quantum computing technology. The problem is formulated by discretizing the transitions of end-effector
positions that represent the robot’s motion in terms of workspace and work time, and by using the total torque
required for the motion as an objective function and constraints representing the robot’s performance and
the range and time of the target work. Simulation results show that the proposed method reduces the total
torque consumption by 10% compared to a simple linear motion, and the computation time could be reduced
by 77%. Moreover, a torque consumption reduction of 2%was confirmed compared to the optimized motion
without springs.

INDEX TERMS Robotics, energy consumption, optimization, quantum computing.

I. INTRODUCTION
Robots are alreadywidely used in industry. On the other hand,
the problem of energy shortage is becoming a serious issue
not only in the robotics field but also worldwide. Many robots
that run on electrical energy are naturally unable to move
when energy is in short supply. In addition, if a robot’s energy
efficiency is low, energy is wasted. The low energy efficiency
of robots will limit their widespread use in society, as in the
case of automobile decarbonization regulations. Therefore,
improving the energy efficiency of robots is an important
issue for robot adoption soon.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

If motion planning considering robot dynamics could be
planned widely over many different possible types of motions
with a time allowance to reach the goal, it would be possible
to planmotionswith low total energy consumption bymoving
to the goal via postures with low energy consumption for the
robot.Methods have been proposed to plan actions to perform
tasks in the shortest possible time in consideration of work
efficiency [1], [2], [3], [4]. However, in many cases, energy
consumption is not minimized when the shortest work time is
achieved. For example, many robots, like humans, require a
lot of energy when they extend their arms or move their arms
quickly. When the arm is extended, the joints must exert a lot
of torque due to the weight of the arm. In other words, under
gravity, a posture in which the link is directly above or below
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FIGURE 1. Schematic view of the proposed method.

the joint consumes less energy. However, motion optimiza-
tion over the wide range which the robot can move requires a
long computation time. Therefore, if there is enough time to
reach the position for the task by ‘‘task deadline’’, which is the
time that the robot must reach the position for the task, energy
efficiency can be improved by planning a path that moves
to the position for the task after taking the energy-efficient
posture. Moreover, some robots are equipped with not only
actuators but also springs to assist the weight of their own
arms to reduce energy consumption [5]. When considering
how the spring can appropriately be utilized, the problem
becomes more complex. Other ways to reduce energy con-
sumption by varying the execution time of a predetermined
end-effector path for reducing acceleration and deceleration
since inertial forces are generated in the links [6], [7], [8], but
optimizing both path and trajectory will be more effective.

In this study, we propose a method for planning low
energy-consumption motions for robots using quantum com-
puting technology. In contrast to general path planning, the
proposedmethod plans a path and trajectory that proceeds to a
goal position at a velocity that does not cause excessive accel-
eration/deceleration of a robot after waiting in an energy-
efficient posture with low joint torque load, depending on a
robot’s structure. The problem is formulated by discretizing
the transitions of end-effector positions that represent the
robot’s motion in terms of workspace and work time, and by
using the total torque required for the motion as an objective
function and constraints representing the robot’s performance
and the range and time of the target work.

This study has two main contributions to the robotics
field. First, the method of discretizing and planning motions
over a wide range of workspace and a task deadline facili-
tates motion planning in which the robot waits in a posture
with low energy consumption. Previously, most optimization
methods specified the time required for work, so it was
necessary to determine a suitable energy-efficient posture in
advance in order to plan motions that include such energy-
efficient motions. The optimal energy-efficient posture varies
depending on the structure of the robot, whether the robot is
equipped with springs that can store the energy for decreasing
energy [9] and can be calculated simply by using these as

constraint conditions (Fig. 1). Second, we confirmed that
the use of Fujitsu Digital Annealer, which can solve the
combinatorial optimization problem at high speed through
calculations that mimic quantum annealing [10] allows for
faster motion planning than conventional methods. The high
speed allows for immediate response to work changes and for
consideration of large problems.

The remainder of this paper is organized as follows.
In Section III, we detail the proposed optimization method.
In Section IV, the simulations are presented and discussed.
Finally, in Section V, conclusions and future directions of the
work are outlined.

II. RELATED WORK
Various studies have been proposed to reduce energy con-
sumption, which can be achieved by modifying the robot’s
structure and design, as well as its motion planning and
control to take advantage of these features.Most of the energy
consumption during robot operation is motor power rather
than electric circuit power consumption. There are also meth-
ods of storing energy inside the elasticity of the robot [5] and a
capacitor [11], [12]. Buondonno et al. proposed an optimiza-
tion framework for the design and analysis of underactuated
biped walkers, characterized by passive or actuated joints
with rigid or non-negligible elastic actuation/transmission
elements [13].
Other than changing the robot’s structure, energy con-

sumption reduction methods include robot motion planning
such as motor control of each joint and trajectory plan-
ning with multi-joints. In addition, a method to devise by
controlling the whole body of the robot has been proposed
[14], [15], [16]. Various methods are used for motion plan-
ning, including optimization calculations and reinforcement
learning. Shin et al., presented a solution to the problem
of minimizing the cost of moving a robotic manipulator
along a specified geometric path subject to input torque/force
constraints, taking the coupled, nonlinear dynamics of the
manipulator into account [17]. The proposed method uses
dynamic programming to find the positions, velocities, accel-
erations, and torques that minimize cost. Wigstrom et al.,
presented a dynamic programming method that can be used
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to find multiple energy optimal trajectories with different
execution times that follow the same path as a given tra-
jectory [18]. Li et al., proposed an efficient computation
method for robot trajectory optimization based on parameter
separation, an energy characteristic parameter model based
on the dynamic time-scaling [19]. Chettibi et al., proposed a
minimum cost trajectory planning problem for robot manipu-
lators connecting two points in the operation spacewhilemin-
imizing the dynamic equations of motion and a cost function
that takes into account the position, velocity, jerk, and torque
bounds of the joints. This general optimal control problem is
transformed into a nonlinear constrained optimization prob-
lem via a clamped cubic spline model of the joint’s time
evolution and processed by the sequential quadratic pro-
gramming method [20]. Vysocky et al., present a trajectory
generation method relies on particle swarm optimization with
a Bezier curve interpolator for the execution of a point-to-
point robot motion [21]. Xiong et al. proposed an improved
method based on the conventional direct collocation method
using Functional Mock-up Units compared to particle swarm
optimization [22] Nonoyama et al., developed a model for
the joint robot placement and motion planning problem using
metaheuristic algorithms such as Genetic Algorithms and
Particle Swarm Optimization methods to create a more pre-
cise robot motion trajectory, resulting in an energy-efficient
robot configuration [23].

For storing energy efficiently, various motion planning
methods were proposed. Zhakatayev et al., proposed a frame-
work for defining and solving various types of optimal control
problems for variable stiffness actuator robots [24]. In the
optimal control problem, power and energy constraints are
explicitly considered to minimize energy consumption or
maximize performance. Khalaf et al. have proposed a trajec-
tory optimization method for incorporating a capacitor in a
robot joint and storing and using the consumed energy into
capacitors during motions [11].

Although an increasing number of studies are beginning
to use quantum computing for rapid motion generation as
an advanced method, most of them compute the kinemat-
ics of the robot arm’s motion and do not solve the energy
minimization problem. Fazilat et al., proposed a quantum-
based kinematic model for computing the position and the
orientation of the six-jointed robotic arm [25]. Schuetz et al.,
developed an end-to-end optimization pipeline that integrates
classical random-key algorithmswith quantum annealing into
a quantum-ready, future-proof solution to the problem [26].
This research aims to generate motions via an energy-

efficient position, which requires the computation of the
optimal solution from a wide range of possible solutions
by considering both paths and trajectories at the same time.
However, it is difficult for existing methods to solve this
problem quickly when the optimization problem is large.
Existing motion planning methods either consider paths in
space or trajectory that adjust acceleration and deceleration
for the same path, and sometimes use a combination of each
method. In numerical optimization methods, the wide range

of motion increases the complexity of the equations, which
makes it difficult to solve the problem. On the other hand,
in the combinatorial optimization method, the time required
to find the optimal solution increases as the problem becomes
larger.

III. MATERIALS AND METHODS
A. APPROACH
We aim to find motion trajectories that minimize the amount
of energy when the robot starts from an initial configuration
at time zero, and moves to a final configuration by a specified
time T . A motion planning method proposed in this study
mainly consists of the following steps:
(1) Discretize the range of motion of the robot end-effector
(2) Calculate joint angles, angular velocities, and angular

accelerations at the discretized end-effector positions
and their combinations

(3) Set objective functions and constraints depending on
the work to be performed

(4) Convert the minimization problem to quadratic uncon-
strained binary optimization (QUBO)

(5) Optimize with QUBO
For this purpose, the problem is formulated as an optimal
control problem of finding a series of discretized end effec-
tor positions that minimize energy consumption. In general,
energy consumption of a robot is calculated in Equation (1).

E =

∫ T

t=0

∑N

j=1

(
ωj (t) τj (t) +

Rjτm (t)2

kj2

)
(1)

where,ωj (t) is angular velocity of the j-joint at time t , τj (t) is
torque of the j-joint at time t , τm (t) is torque of a motor of the
j-joint at time t , Rj is the electrical resistance of a motor of the
j-joint, and kτ is the torque constant of a motor of the j-joint.
The power consumed in each joint is calculated, and then the
total power consumption is calculated by summing all joints
power consumptions. Constraints are the range of motion and
angular velocity of each joint of the robot as Equations (2)
and (3).

θj_min ≤ θj ≤ θj_max (2)

ωj_min ≤ ωj ≤ ωj_max (3)

where θj is j-th joint angle at time t , θj_min and θj_max is range
of j-th joint motion, ωj_min and ωj_max is j-th joint angular
velocity limitations.

B. ROBOT DYNAMICS MODEL
In general, the equation of motion of the robot joint is given
in Equation (4).

M (q)q̈+ H (q, q̇) + G(q) = τ (4)

where M (q) is the inertial matrix; H (q, q̇) is the Coriolis and
centrifugal terms, G(q) is the gravity vector, q is the N vector
of joint coordinates, τ is the N vector of joint torques. Robot
joints are generally actuated by motors only, but springs are
sometimes installed in parallel with the motors to support the
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robot’s weight. When a spring is mounted in parallel with a
motor, the torque exerted by the joint is sum of torque of a
motor τm and a spring τspring, as shown in Equation (5).

τj = τm + τspring (5)

The exerted torque of a spring is the displacement from
the natural angle of a spring θj_free multiplied by the spring
constant K .

τspring = K (θj − θj_free) (6)

C. DISCRETIZATION OF END EFFECTOR MOTION
To simplify a wide range of robot motions, the end-
effector position is discretized instead of each joint space.
Since a typical arm robot has six or fewer joints that can
control the position and posture of the end-effector, the
end-effector’s position is obtained by forward kinematics
calculation. When considering robot motion in joint space,
kinematics calculations and equations of motion become
more complex as the number of joints increases. Therefore,
when attempting to optimize the robot motion in each joint
angle space, the problem becomes more complicated and
the computation time increases. In particular, in this study,
the optimization problem is QUBO modeled and solved by
quantum computing to reduce the computation time. How-
ever, if the problem exceeds second order, optimization by
QUBO becomes difficult because to perform QUBO, the
problem to be solved must be represented by a second-
order equation. Thus, the problem must be second order or
lower.

For optimizing the sequence of end-effector positionswith-
out being affected by the number of degrees of freedom
of robots, in this study, the three-dimensional positions of
the robot’s end-effectors are discretized. The range of end-
effector positions is determined by the range required by the
task. If the trajectory is to be searched from a wide range,
it should be set widely. On the other hand, if the task is to be
performed following curves, the position on the curves can be
discretized.

D. IMPLEMENTATION OF DIGITAL ANNEALER
We used a new technology as an Ising machine, the Digi-
tal Annealer developed by Fujitsu. The Digital Annealer is
a technology that specializes in solving complex combina-
torial optimization problems at high-speed using a digital
circuit design inspired by quantum phenomena [27], [28].
This allows QUBO calculations to be performed faster than
conventional methods such as simulated annealing [29]. The
Digital Annealer is used in part to solve large-scale combina-
torial optimization problems, and a general QUBO model is
expressed as given in Equation (7) to describe the combina-
torial optimization problem.

Ex =

n∑
i=1

i∑
j=1

cijxixj (7)

FIGURE 2. Schematic view of discretization of an end effector position.
Blue balls mean discretized position within the movable range of a robot.
When an end effector located on position p1 at time 0, binary α01 is 1.

where Ex is the energy of the optimization model, cij is the
coefficient and xi is binary (xi ∈ 0, 1).
When discretizing the end-effector motion, instead of dis-

cretizing the position in each direction and converting it to
binary separately, a binary αtb (αtb ∈ 0, 1) representing the
three-dimensional position at time t is used (Fig. 2). When
the end effector position in each directionwere binarized indi-
vidually, this requires multiplying three binaries representing
the position in each direction to represent the end-effector
position in three-dimensional space. This makes it difficult
to create a QUBO model, which must be less than binary
squared.

The energy function H, which is a Hamiltonian, should
be constructed from the objective function and constraint
function, as expressed in Equation (8).

H = Hobjective + w ∗ Hconstraint (8)

where w is the weighting factor between the objective func-
tion and constraints. However, the transformation from an
optimization problem to a QUBO model consists of the fol-
lowing steps:

1) formulate the energy function,
2) binarize the integer variables,
3) obtain the QUBO from the coefficients.
Programming QUBO for Ising machines can be difficult

when the energy function is complex. Therefore, we used
PyQUBO, a Python library, to construct the QUBO model
in a straightforward and easy way [30]. Using this library,
programming can be made almost identical to the form of the
equations constructed in steps 2) and 3) above. Thus, the user
only needs to construct the objective function and constraints.

E. IMPLEMENTATION OF OBJECTIVE FUNCTION AND
CONSTRAINTS
In this study, the end-effector position during motion is dis-
cretized within the range of motion to minimize the torque
required to execute a series of end-effector positions. Since
the calculation of joint torques of a robot by dynamics calcu-
lations requires information on acceleration during motion,
this study uses information on three consecutive points in
the robot’s trajectory to simply estimate the acceleration and
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deceleration. The QUBO model is created as a simplified
optimization problem model from the objective function for
evaluating the energy consumption of the robot and the con-
straints expressing the robot specifications and the operation
condition.

The objective function Hobjective, which is the sum of the
absolute values of the required torques of each joint, is for-
mulated as expressed in Equation (9).

Hobjective =

∑T

t=0
α(t−1)a ∗ αtb ∗ α(t+1)c ∗ τ (t, a, b, c) (9)

where αtb is the binary which means the end effector locates
on the b-th position at time t , and τ (t, a, b, c) is the required
torque when moving from the a-th to the b-th and c-th end
effector positions at time t . Since this study focuses on a wide
range of motion generation rather than detailed motion, the
effect of inertial force due to acceleration and deceleration of
the robot is simply taken into consideration. When moving
from time t−1 to t , t+1, the acceleration of the motion of the
j-th joint is assumed to be linear as in Equation (10).

θ̈tj =
θ(t+1)j − θtj

1t
−

θtj − θ(t−1)j

1t
(10)

To calculate the required torque for each joint of the robot
from the equations of motion using Equation (4), we need the
discretized end-effector positions for three consecutive times.
Therefore, Equation (9) uses the cost of the objective function
as the torque required at each joint for the motion represented
by the multiplicative combination of the three binaries. How-
ever, in order for the objective function to be QUBO, the
objective function must be represented by an expression that
is less than or equal to the second-order equation of the binary.
Therefore, we created a new supplementary binary βtbc
that represents the combination of the end-effector positions
a-th and b-th at time t and t+1, and the objective function is
expressed as Equation (11) as the quadratic expression of the
binary representing the end-effector position at time t−1 and
the supplementary binary.

Hobjective =

∑T

t=0
α(t−1)a ∗ βtbc ∗ τ (t, a, b, c) (11)

In order to use the supplementary binary in place of the two
binaries αtb and α(t+1)c, the constraint Hconstraint_β that the
supplementary binary βtbc is also 1 if two binaries are 1 is
formulated as in Equation (12).

Hconstraint_β =

T∑
t=0

αtb ∗ α(t+1)c

− 2 ∗ βtbc ∗ (αtb + α(t+1)c) + 3βtbc (12)

A constraint function Hconstraint is sum of the constraints,
as expressed in Equation (13).

Hconstraint = Hconstraint_onehot + Hconstraint_angle
+ Hconstraint_angular_velocity + Hconstraint_β
+ Hconstraint_start + Hconstraint_goal (13)

where Hconstraint_onehot is the constraint indicates that only
one of the binaries related to time t is 1, Hconstraint_angle is
the constraint that each joint angle which achieves the end-
effector position at time t is within the range of motion, and
Hconstraint_angle_velocity is the constraint that each joint angular
velocity which achieves the end-effector motion from time
t−1 to t is within the range of each joint angular velocity
limitation. These constraints are expressed as Equations (14)
to (20).

Hconstraint_onehot =

T∑
t=0

1 −

position_num∑
p

αtp

2

(14)

Hconstraint_angle =

∑T

t=0
αtp ∗ ρ (15)

ρ =


1 (if θtj < θj_min,

or θtj > θj_max)
0 (else)

(16)

Hconstraint_angle_velocity =

∑T

t=0
αtp ∗ α(t−1)p ∗ υ (17)

υ =


1 (if

θtj − θ(t−1)j

1t
< ωj_min,

or
θtj − θ(t−1)j

1t
> ωj_max)

0 (else)

(18)

Hconstraint_start =

∑position_num

p
α0p − α0start (19)

Hconstraint_goal =

∑position_num

p
αTp − αTgoal (20)

where θtj is j-th joint angle at time t , θj_min and θj_max is range
of j-th joint motion, ωj_min and ωj_max is j-th joint angular
velocity limitations, and α0start and αTgoal are the binaries
which means the end effector locates on the start position at
time 0, and on the goal position at work end time T .

F. SIMULATION CONDITIONS
In optimization, a physical model of the robot is prepared,
and optimization calculations are performed by specifying
the start and end points of the end-effector motion, the three-
dimensional space interpolation of themotion, and themotion
completion time and motion time interval. We used the 3rd
generation Digital Annealer. It can search for the optimal
solution around the extracted good solutions in hardware at
high speed. The number of iterations affects the time required
to find the global optimal solution without falling into a
local optimal solution. In the simulations, the number of
iterations was set to 1000000 in order to find the global opti-
mal solution. In addition, the Digital Annealer can increase
the probability of finding the optimal solution. If no bit-flip
candidates are found, a positive offset can be added to the
energy to facilitate escape from the local minimum state [29].
To reduce the computation time, the number of iterations and
implementations of the Digital Annealer should be increased.

To verify the effectiveness of the proposed method on
various robots, two types of robot models were prepared in
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FIGURE 3. Schematic view of robot models. In this paper, the humanoid robot is referred to as robot A and the PUMA robot as robot B.

this study (Fig. 3). One is a right arm of a humanoid robot that
we have developed in our previous study [31], and the other
is a well-known industrial robot, PUMA500, which consists
of three main joints and a spherical wrist, which together
provide six degrees of freedom for the robot. Here, we only
consider the dynamics of the three main joints of the robot
that have the most potential for energy consumption. Table 1
shows the important specifications of each robot [32].

IV. RESULTS
A. VERIFICATION OF MOTION PLANNING THROUGH AN
ENERGY-EFFICIENT POSTURE
A simulation was conducted to verify minimum-energy
movements by specifying the end time of the movement
including an energy-efficient posture when there is enough
time for the work. With robot model A and B, two types of
motions were tested: one in which the robot straightens its
arm forward from a bent position and the other in which the
robot raises its arm. We specified an end time of 1 second
for the motion that could be accomplished in approximately
0.3 seconds considering the robot’s performance. The motion
was discretized by dividing the three-dimensional space into
5 divisions in positive area of each direction for 125 dis-
cretizations, and the time was divided into 10 divisions at
0.1-second intervals.

The simulation results in Fig. 4 for the robot A and Fig. 5
for the robot B. When extending the arm, the robot A waited
with the arm bent until 0.6 seconds, and then extended the
arm to the goal position in the remaining 0.3 seconds. On the
other hands, the robot B waited with the arm bent until
0.6 seconds, and then extended the arm to the goal position
in the remaining 0.3 seconds. In the case of raising the arm,
the robot A raised the arm in 0.5 seconds and moved forward
the hand to the goal position in the remaining 0.5 seconds.
On the other hands, when extending the arm, the robot B
waited with the arm bent until 2.7 seconds and then extended
in the remaining 0.2 seconds. In the case of raising the arm,
the robot B waited with the arm bent until 2.6 seconds and
then raised in the remaining 0.3 seconds. The total torque
consumed during the motion was summarized in Table 3 for
the robot A and Table 4 for the robot B. Compared to a simple
constant-velocity linear motion, the robot A motion planned

TABLE 1. Specifications of robot models.

TABLE 2. Simulation conditions.

TABLE 3. Results of motion planning with robot A through an
energy-efficient posture.

TABLE 4. Results of motion planning with robot B through an
energy-efficient posture.

by the proposed method reduces torque by 10% for both the
arm extension and the arm raising.
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FIGURE 4. Comparison of planned motion with the robot model A. The units in the figure are meters. The color of the line
transitions from black to dark blue, blue, green, yellow, orange, red, and gray at each time interval 0.1 s to show the arm
motion in the time series.

B. VERIFICATION OF MOTION PLANNING THROUGH AN
ENERGY-EFFICIENT POSTURE WITH A SPRING
With a simulation, we verified whether a motion plan includ-
ing an energy-efficient posture that utilizes the spring is
possible when the robot is equipped with a spring. A spring
was mounted on the shoulder pitch joint axis of the robot
model A in parallel with the motor. In this case, the joint
torque is given by the equation (5). The spring elasticity
was set to 10 Nm/rad, and the spring was also set to its
natural length when the robot’s end-effector was at themotion
start position. As in the previous simulation, the motion was
performed with the arm extended forward, with a motion
end time of 3 seconds and a time interval of 0.1 seconds.
Themotionwas discretized by dividing the three-dimensional
space into 5 divisions in positive area of each direction for
125 discretization.

The simulation results in Fig. 6 and Table 5. In the absence
of springs, the robot would transition to an energy-efficient
posture with the arm pointing upward. However, when there
was a parallel spring at the shoulder joint, the motion was
planned to transition to an energy-efficient posture with the
arm extended forward and lowered to the posture where
the spring could support the arm load, and finally to reach
the goal with the arm raised. With the tested robot parameters
and motion targets, a torque consumption reduction of 2%
was confirmed compared to the optimized motion without
springs.

TABLE 5. Results of motion planning through an energy-efficient posture
with a spring.

C. CALCULATION TIME COMPARISON
For the energy minimization problem of end-effector motion
considered in this study, we performed optimization cal-
culations using the interior point method used in previous
studies and compared the calculation time with the Digital
Annealer. A computer with an Intel Core i5-10310U CPU
and 16 GB memory was used to perform the optimization
using the Matlab R2022. As the previous study [12], we used
the method of direct collocation [33] to transform the optimal
control problem into a large-scale nonlinear program prob-
lem. In this method, the states are discretized into N time
nodes. The cost function and constraints are discretized
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FIGURE 5. Comparison of planned motion with the robot model B. The units in the figure are meters. The color of the line
transitions from black to dark blue, blue, green, yellow, orange, red, and gray at each time interval 0.1 s to show the arm
motion in the time series.

FIGURE 6. Planned motion including an energy-efficient posture with a
spring. The units in the figure are meters. The color of the line transitions
from black to dark blue, blue, green, yellow, orange, red, and gray at each
time to show the arm motion in the time series.

using appropriate finite difference approximations of the state
derivative. In this paper, the backward Eulerian approxima-
tion is used. The cost function becomes a function of the
state at each grid point, and the dynamic constraints are
transformed into a set of algebraic constraints that are also
functions of the discretized state. The optimal control prob-
lem is transformed into a constrained optimization problem
of finding the state and control at each grid point that mini-
mizes the discretized cost function and satisfies the algebraic
constraints. The direct collocation problem is solved using
the interior point optimizer numerical solver [34]; the IPOPT

solver typically finds a local optimum for nonlinear problems.
The optimizationwas run several times starting from different
random initial conditions to find the best possible solution
with the robot model B.

The optimization problem was solved with 16000 iter-
ations and took 440 seconds. On the other hand, solving
the same problem with the proposed method took about
100 seconds annealing time. Therefore, the proposed method
could calculate more rapidly.

V. DISCUSSION
A discretization and optimization method for large-space and
long-duration motion was proposed. This enables motion
planning in which the robot temporarily goes through a
posture with low energy consumption, unlike many existing
motion planningmethods that connect the start and end points
ofmotionwith near-linear trajectories or change only the time
trajectory of a linear path. In the simulation results, the total
torque consumed for each motion was compared. However,
when considering the actual energy consumption, the square
of the torque affects the power consumption as shown in
Equation (1), so the difference in torque consumed by the
different motions has a greater effect on reducing energy
consumption. As a limitation of the proposed method, the
optimization problem becomes too large when considering
the possibility of motion over a large space and a long period
of time with high resolution in both space and time. In the
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simulation results shown, since the resolution of the proposed
method is not small to shorten the computation time, it is
considered that the overall torque consumed is small while
the linear motion is performed slowly, but locally the torque is
wasted due to extra acceleration and deceleration. We believe
that it is also effective to divide the scale of motion into a
large space and long time region and a local space and time
region, and to plan locally and globally optimized motion by
optimizing the proposed method in two steps.

Further functionality can be added for practical use. For
example, the following functions could be added.

• In addition to joint torque calculation, the motor torque
can be calculated and minimized using the reduction
ratio and gear efficiency of each joint to consider the
effect of joint structure.

• It is easy to add objectives. For example, maximizing
the velocity of the end-effector motion during a certain
period of time allows for dynamic motion. Further-
more, obstacle avoidance can be achieved by increasing
the cost as a certain joint position approaches a certain
region or by excluding from the calculation the binary
of postures that collide with obstacles.

VI. CONCLUSION
In this paper, we proposed a discretized and low-power con-
sumption motion planning method for large-space and long-
time motion of robots using quantum computing method
called the Digital Annealer developed by Fujitsu. It was
possible to plan motions including energy-efficient postures
that take into account the characteristics of each of three
robot models, and these motions were estimated to reduce
the total torque consumption by 10% compared to simple
constant velocity linear motion, and the computation time
could be reduced by 77%. Moreover, a torque consumption
reduction of 2% was confirmed compared to the optimized
motion without springs.

In the future, we plan to examine the proposed method
using a real robot. Moreover, it is expected to be applied
to motion planning that takes into account the different gear
ratios of the robot’s joints and other structures, as well as to
motion planning with more practical tasks.
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