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ABSTRACT Although much research has been conducted in the field of automated cochlear implant
navigation, the problem remains challenging. Deep learning techniques have recently achieved impressive
results in a variety of computer vision problems, raising expectations that they might be applied in other
domains, such as identifying the optimal navigation zone (OPZ) in the cochlear. In this paper, a 2.5D joint-
view convolutional neural network (2.5D CNN) is proposed and evaluated for the identification of the OPZ
in the cochlear segments. The proposed network consists of two complementary sagittal and bird-view (or
top view) networks for the 3D OPZ recognition, each utilizing a ResNet-8 architecture consisting of five
convolutional layers with rectified nonlinearity unit (ReLU) activations, followed by average pooling with
a size equal to the size of the final feature maps. The last fully connected layer of each network has four
indicators, equivalent to the classes considered: the distance to the adjacent left and right walls, collision
probability and heading angle. To demonstrate this, the 2.5D CNN was trained using a parametric data
generation model, and then evaluated using anatomically constructed cochlea models from micro-CT images
of different cases. Prediction of the indicators demonstrates the effectiveness of the 2.5D CNN, for example,
the heading angle has less than 1° error with computation delays of less that <1 milliseconds.

INDEX TERMS Automated insertion, virtual surgery, cochlear implant, convolutional neural network, real-
time systems, low-cost navigation, robust centerline tracing.

I. INTRODUCTION

The cochlear implant [1] is one of the most successful
implantable devices in clinical practice. It helps to restore
lost hearing by delivering electrical impulses to the auditory
nerves via an electrode array inserted into the cochlea in the
inner ear [2]. Cochlear implant navigation involves inserting
a wire containing an array of stimulating electrodes into the
delicate spiral (or snail) shaped tube that varies in diameter
and height along the Z plane and imposing geometrical lim-
itations to the cochlear implant surgery as shown in Fig. 1.
The quality of restored hearing sensation is strongly related
to the efficacy of cochlear implant surgery, in particular the
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optimum positioning and the insertion depth of the elec-
trode array inside the cochlea without further damaging the
remaining hearing [3]. The standard technique relies on the
surgeon’s manual skills when pushing the electrode array
down the spiral-shaped cochlea and requires the surgeon to
identify the optimal insertion path largely by feel. Although
the tip of the electrode array is not sharp enough to pierce
through the bony wall of the cochlea, extreme pressure may
increase the risk of the electrode tip crossing the auditory
nerve or the modiolus. Medical-imaging techniques such as
MRI, computerized tomography (CT) [4] and X-rays [5]) are
not practical options for guidance in implantation surgery as
they cannot provide real-time imaging and they are impracti-
cal due to the very small volume of the cochlea. The systems
in [6], [7], [8], [9], [10], [11], and [12] for cochlear implant
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FIGURE 1. Guidance of cochlear implant electrode array. The mean
heights at the basal, middle and apical turns are 2.3 mm, 1.2 mm and
0.8 mm respectively [13]. The quality of restored hearing sensation is
strongly related the optimum positioning and the insertion depth of the
electrode array inside the cochlea without further damage to the
remaining hearing.

navigation derive information from impedance measure-
ments on the electrodes at the end of the electrode array.
While useful for identifying the position of the electrode tip,
performance is compromised by the limited accuracy of the
measured impedance values. Integration of a robotic arm [14]
does not lead to better navigation performance as it similarly
receives the guidance parameters from imprecise impedance
calculations. The present limited accuracy of identification
of the position of the tip would be improved by embedding
intelligence, which would require accurate navigation.

To avoid adverse consequences such as crossing the
anatomical wall as a result of the extreme geometrical lim-
itations, computer-assisted surgery has been used [15]. These
methods identify the extremely precise centerline trajec-
tory required inside a three-dimensional (3D) reconstructed
cochlea as priori knowledge (or post-processing) for cochlear
implant electrode array insertion by automatic means. Elec-
trode insertion algorithms have been designed based on
the type of electrode: 1) lateral wall electrode [16] that
slides along the spiral ligament; and 2) modular-hugging
electrode [17] which tends to go closer to the inner wall
(the modiolus).

This paper proposes a method to significantly enhance
cochlear implant navigation by rapidly identifying an inter-
active safe insertion zone in real-time using a novel 2.5D
convolutional neural network (CNN), providing very high
insertion resolution accuracy. The proposed 2.5D algorithm
navigates the tip of the electrode safely along the centerline
coordinates to ensure minimal insertion risk while the rest
of the electrodes slide along the cochlear wall. The electrode
array model used is based on a commercially available array
with 16 platinum electrodes [Advanced Bionics HiFocusTM
SlimJ electrode (Hannover, Germany)].

The rest of the paper is organized as follows. Section II
presents the prior art and the cochlear implant navigation
algorithm proposed in this work. Section III describes the
methods used for data generation and a framework to derive
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the navigation indicators. It also discusses the design of the
2.5D CNN and the joint 3D operator. Section IV examines
the efficacy of the 2.5D CNN in different scenarios and visu-
alizes the navigation steps for an anatomical cochlea model.
Concluding remarks are drawn in Section V.

Il. RELATED WORK: CENTERLINE TRACING ALGORITHMS
There are a variety of approaches that can be utilized to
identify the centerline of tubular structures. One category
consists of skeletonization approaches [18] and those using
multiscale enhancement, morphological reconstruction and
segmentation methods [19], [20], [21], [22]. They require the
processing of full 3D volume and every image pixel with
numerous operations per pixel.

A second category tracks the centerline based on a filter
or an assumed model. Commonly used filters are based
on eigen-structure of local Hessian [23], idealized tubular
models of vessels [24] and Hough transforms [25] to locate
vessel direction and its cross vectors at a reference frame.
For example, Hessian of the image is interpreted as second
order partial derivatives of 3D sub-images at reference nodes,
which requires extensive computation time. Cylindroidal
superellipsoids [26] is an advanced model of probing for 3D
tubular shapes using recursive fitting methods. Although the
fitting-based approaches perform well across morphological
complexities, they derive model parameters using maxi-
mum likelihood which is an extremely complex and lengthy
process.

A third category utilizes vectorization algorithms [27],
[28], [29] for tubular structure boundary analysis and cen-
terline tracing where only pixels close to the border are
processed. They are well-suited to real-time and robust
tracing in large image sets. The sparse exploration of the
boundaries yields low computational overhead, but it intro-
duces higher sensitivity to the discontinuities and geometrical
complexities. An algorithm utilizing vectorization approach
to handle 3D (volumetric) data is described in [30]. Itis a fully
automatic tracing algorithm emulating a 3D cylinder model
and recursively explores the boundary of tubular structures.
The simulations using the 3D cylinder algorithm on con-
structed cochlea models illustrate that the centerline tracing
does not perform reliably when it is faced with high-order
tubular changes.

Machine learning offers an alternative approach to identify
and trace the central coordinates [31], [32], [33]. Steerable
features and randomized decision trees are used in [31] to
perform centerline extraction by learning the structural pat-
terns of a tubular-like object. The approach in [33] uses
orientation flow field and classifier to extract blood vessel
centerlines. The average computation for tracing all coronar-
ies takes about 1 minute on an Intel Core i7 2.8 GHz processor
with 32 GB RAM as reported in [33].

CNNs are a class of deep learning algorithms that have
recently been utilized in 3D tubular structure tracing [34],
[35], [36]. In [34], a 3D dilated CNN [37] was trained to
predict the most likely direction and radius of an artery at any
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FIGURE 2. Overview of the proposed joint-view navigation framework.
The sagittal and bird-view views are generated by projecting the 3D
points onto two orthogonal planes (i.e. X-Y and X-Z planes). Two CNNs
are trained in parallel to map each view’s projected image to its
corresponding navigation indicators, which are then fused together to
estimate 3D joint operator.

given seed point. The tracing scheme in [34] was developed
based on determining a posterior probability distribution over
a discrete set of possible directions as well as an estimate of
the radius. The drawback with this design is that the optimal
direction determination is posed as a classification problem.
The possible directions are distributed on a sphere where each
point corresponds to a class. The best classification perfor-
mance was obtained for the directions {500, 1000 or 2000}.
The design in [34] demands excessive computational cost in
classifying directions and is not suitable for real-time appli-
cations; it requires 20 seconds for fully automatic coronary
tree extraction using the Nvidia Titan Xp GPU. In [35] and
[36], 3D CNNs were proposed to trace the cardiovascular tree
structure. They require 58 and 25 seconds using 12 GB GPU
and Tesla P40 GPU, respectively.

This paper proposes a novel low computation deep nav-
igation method using 2.5D multi-view CNNs that can better
transform the input image to a small number of key perception
indicators to recover 3D tracing information on the tubular
structures, as shown in Fig. 2. The 3D cochlea segment
is pre-processed and projected onto sagittal and bird-view
planes and then applied to separate CNNs for a mapping
process. Each view decodes the relevant navigation (or trac-
ing) information and fuses them; it contains the location
distribution of the joint-view 3D tracing operator.

The proposed tracing method has the following contribu-
tions: 1) A 2.5D tracing algorithm which shows significant
trade-off between the performance and processing time by
removing a dimension of an image. The algorithm is a good
fit for tracing-related tasks in real-time processing images.
2) A compact residual convolutional architecture is used for
each projected 2D image. It predicts the steering angle and the
indicators including the collision probability and the distance
to the left-right walls in real-time. 3) A direct perception
approach maps an input image to a small set of indicators
that are used to identify the optimal tracing path or insertion
zone for navigation, for example, of the electrodes inside a
cochlea. The mapping framework performs abstraction of the
images by keeping only a set of compact and yet complete
descriptors resulting in real-time optimal path identification.
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FIGURE 3. Synthetic data generation. (a) Illustration of the parametric
cochlea segment model. There are two arcs defined between the A and B
nodes, and between the C and D nodes. Their width and the length are
tunable in this proposed model. (b) shows the arc intensity change. In (c),
the length of the arcs is tuned to the smaller values. (d) shows when the
width is tuned based on adjusting the arc length between C and D.
Cochlea segment rotation is an important factor in implant navigation
and this capability is shown in (e). (f) Combining (b), (d) and (e).

4) A comprehensive physiological-inspired tubular dataset
which provides a very diverse set of virtual environments
for training the 2.5D tracing algorithm. Through extensive
evaluation, it is shown that the trained model is efficient and
can be applied to real cochlea models. The training set-up can
be completely generalized for unseen scenarios. 5) A joint 3D
operator for navigation in 3D set-ups.

lll. METHODS

In this section, the datasets used in this study are described
followed by the deep mapping framework for extraction of
the navigation indicators and the CNN architecture. The def-
inition of the input data and desired outputs provide a better
understanding of the methods. Finally, the joint 3D navigation
operator is discussed.

A. DATA

To learn the navigation indicators (or parameters) in cochlea
tracing, two types of dataset are utilized. The first dataset
is composed of synthetic MATLAB-generated images for
training purposes. The second dataset contains anatomical
cochlea models. Both are used to quantitatively analyze the
navigation performance of the proposed 2.5D CNNs.

1) SYNTHETIC IMAGES
For the sagittal and bird views of the cochlea structure,
a parametric segment model of the cochlea is proposed to
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accommodate all the navigation features for training the 2.5D
CNNs. The model shown in Fig. 3(a) has deformation capa-
bility to emulate all the variations along the cochlea such
as bend, rotation, and length-width variation. For example,
in the bird-view mode (i.e., looking at the cochlea from the
top), the bend intensity changes constantly along the cochlea.
The bend in each cochlea segment (either bird-view or sagit-
tal) is composed of two crucial parameters; the arc intensity
and the turning effect which are evident when there are sharp
turns. Both effects are shown in the Fig. 3(a)-(b). A closer
look at Fig. 3(b) shows that the inner arc between A and B
nodes is smaller compared with the outer arc between nodes
C and D, which defines the turning points along a cochlea.
The length and the width vary radically along the cochlea path
(e.g., the mean width at the basal, middle and apical turns are
2.3 mm, 1.2 mm and 0.8 mm, respectively [13]). The length
and the width are, therefore, generated for various sizes to
cover all the variations along the cochlea. In Fig. 3(d) the
width of the cochlea segment is tuned by stacking the number
of length-adjusted arcs. Orientation information is important
for cochlear tracing. In the proposed parametric model, it is
required to obtain a rotational invariant representation for
cochlea segments. In order to make the model more robust to
orientation variations, the generated images are also rotated
along the z-axis by [0:360°] to emulate the bird-view of
the cochlea and along the y-axis by [0:90°] to generate the
sagittal tracing segments. The rotation step size is 5°. Overall,
the most practical point in data generation is to design the
edges having high correlation with the cochlea projection into
two sagittal and bird-view planes. Generating the right edges
greatly helps to identify the navigation inferences, through
the generalization capability and the noise-artefact robustness
of the 2.5D CNN.

2) COCHLEA MODELS

The 2.5D CNN and tracing algorithms were exam-
ined with a set of three synthetic cochlea models
(Synth,,,,s1 - - - Synth,, ..;3). The purpose of utilizing syn-
thetic data is to provide an analysis of the algorithms under
controlled conditions that mimic the cochlea structure. The
averaged model used for the synthetic cochlea models was
generated in MATLAB 2022.b using:

X = (g) sin (s),y = (g) cos(s),z= (—%) €))]

where s ranges from 6.5 to 21.25 to resemble the anatomical
human cochlea with a mean length of 41.5 mm and diameter
of 2 mm for parametric sweeping purposes [38]. The syn-
thetic 3D cochlea models were constructed within a 10 mm x
10 mm x 10 mm volume comprising the cochlea model and
the pad arrays to obtain consistent (x, y, z) dimensions for
evaluation of tracing performance.

In a similar manner three anatomical cochlea models
were constructed from micro-CT images (Anatomyode;1 - - -
Anatomy,,q4e;3). These evaluate the centerline tracing
algorithm against a “golden standard,” a hand-traced cen-
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FIGURE 4. The initial height (h) and width (w) (h < w) of the anatomical
models (Anatomy,,gefq - - - Anatomp,,4e3) around the scala tympani seed
point. The models are designed to have (h/w),, . e11 <

(h/W) moder2 < (B/W) moders- The models consider geometrical
variations along the navigation paths.

terline by surgeons in realistic reconstructed cochlea models.
The realistic cochlea models were derived from micro-CT
images of 512 x 512 pixels per slice. A manually defined
ground-truth was used to quantify traversal performance. The
micro-CT data was imported to Simpleware ScanIP v2016.09
(Synopsys, Mountain View, USA) for image processing and
data segmentation by defining regions in the image data
that belong to the same anatomical layers [6]. Smoothing
filters utilizing recursive Gaussian, median, and mean filters
were used to adjust the grayscale range. Manual segmenta-
tion was used by editing the morphology or filling cavities
(i.e., dilate, erode, open and closed functions) were used
in ScanIP software. To obtain appropriate boundaries and
remove any overlapping sections between the tissue layers,
Boolean operations were applied [6]. The volume conductor
of the cochlea and the layers in its vicinity were generated
based on a high-resolution (2.24 um x 2.24 pm x 5 pum)
voxel size micro-CT image stack of a human cochlea. Due
to limited computation memory, the effective operative field
of the scans was rescaled to include only the cochlea and its
immediate surroundings and was subsequently down sampled
to an isotropic resolution of 9.6 um with a spatial resolution
of 930 x 930 x 1014 voxels.

The constructed synthetic and anatomical models represent
height () and width (w) variations (A < w) in human cochlea
anatomy. For example, the (h / w) ratio of the Anatomy,pge;1,
Anatomy,ge;2 and Anatom,,,.;3 are (45 / 62), (35 / 55) and
(50/67). 1t should be noted that the reported ratios are the
initial height over width as shown in Fig. 4 and decrease along
the cochlea.

B. DEEP MAPPING FROM AN IMAGE TO INDICATORS

A framework is laid out to map the generated images to a
set of typical navigation indicators shown in Fig. 5. Three
types of indicator to represent an optimal path navigation
are proposed: the distance to the adjacent walls, the distance
to the frontal wall (i.e. collision probability) and heading
angle. The electrode array insertion is concerned with the two
adjacent anatomical walls for following the centreline when
the tip of the array is pushed inside the tubular structure. This
is shown in Fig. 5(a) by identifying the distance of the elec-
trode to the left and right walls indicated by (Dist — LW) and
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FIGURE 5. lllustration of navigation indicators. (a) electrode distance to
the left and right walls, (Dist — LW) and (Dist — RW). (b) Collision
probability (Collision) which shows the distance to the front wall. (c) The
navigation angle and (d) safe insertion zone for optimal navigation to the
left and right walls, (Opt — LW) and (Opt — RW).

(Dist — RW) respectively. Collision probability (Collision)
is the next indicator that shows the maximum allowable
navigation jump to avoid crossing the anatomical walls along
insertion iterations. This is a crucial indicator as it accurately
shows the stopping points specifically in the tubular turns
before mapping the next image frame shown in Fig. 5(b). The
navigation angles (0, ¢) are the next indicators that direct
the optimal rotation of the electrodes along the sagittal (6)
and bird-view (¢) projection planes. In total, four affordance
indicators to interpret the navigation scene are extracted from
each image frame using the 2.5D CNN for each view. With
the 2.5D view processing, a 3D safe insertion zone can be
defined using all generated height and width variations of
the cochlea in sagittal and bird-view projections around the
predicted centerline coordinates as a hypothetical insertion
cylinder [e.g., 50% of Dist — RW as shown in Fig. 5(d)].

C. ARCHITECTURE OF THE 2.5D CNN

The 3D points are projected on two views (i.e., 2.5D view).
For each view, a convolutional network having the same
network architecture and architectural parameters and the
outputs are constructed. Based on multi-task learning [39],
a ResNet [40] architecture followed by separate outputs
shown in Fig. 6 is proposed. Since residual architectures
are known to help generalization on both shallow and deep
networks, it is adapted to increase model performance. The
architecture of the 2.5D CNN is highly compact, where the
input layer has a size of 64x64 to accept the sagittal or top
views. The output of each 2D convolutional layer is activated
by a rectified nonlinearity unit (ReLU) with its parameter
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FIGURE 6. (a) The 2.5D CNN is a joint deep mapping network,

from a single 64 x 64 frame including (Dist — LW), (Dist — RW), collision
probability (Collision) and the tracing angles along sagittal and bird-views
(9,9). Main architecture of the CNN consists of a ResNet with 4 residual
blocks; (b) followed by dropout and ReLU non-linearity. Afterwards,

the network branches into 4 separated fully connected and regression
layers. The design notation including the convolution kernel’s size, the
number of filters and the residual connections are shown in the figure.

equal to 0.1, which allows for a small, non-zero gradient when
the unit is saturated and inactive.

Since most parameters in the proposed network lie in
the first fully connected layer, a convolutional layer and
a max-pooling layer are added to improve the degree of
discrimination of the learned feature and reduction of the
number of parameters. Dotted lines represent skip connec-
tions defined as 1x1 convolutional shortcuts to allow the
input and output of the residual blocks to be added. After
the last ReLU layer, the architecture splits into two different
fully connected layers. The main branch consists of a fully
connected layer and a softmax output layer to classify the
collision probability (Collision), distance of the electrode
to the left (Dist — LW) and right (Dist — RW) wall (see
Section III-B). For the auxiliary branch, neurons are split to
form a regression network for estimation of the tracing angles
along sagittal or bird-view planes (6, ¢). Mean-squared error
(MSE) and cross-entropy (CEN) losses are utilized to classify
the tracing angles and the affordance indicators, respectively:

Lyy: = a (Lyse) + B (Lcen) - )

L1y, Lysg and Legy represent the total loss of the model,
the loss of tracing angle prediction and the loss of other
indicators, and o, B show the loss weights. The network
was designed with a compact architecture, but the joint opti-
mization might pose a convergence problem. Specifically,
imposing no weighting between the two losses during train-
ing results in convergence to a very poor solution. This is
because the MSE gradient’ norms are proportional to the
absolute tracing angle and initially has much higher value.
Therefore, « is set to 0.1 and more weight is assigned to Lyssg
in later stages of training (i.e., 0.2-0.3). Adjusting the loss
weight between the two losses would likely result in optimal
performance or require much longer optimization times. The
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FIGURE 7. Illustrating the joint 3D navigation operator. The AavX = [, ¢]
is formed by identifying the navigation indicators from the sagittal and
the bird-view projections. In this example, the navigation operator is
shifted by 6° to the left and ¢° upward. The length of the navigator is
defined by the minimum of collision probability of sagittal and the
bird-view projections. The distance to the walls in both projections also
give margins for shifting the navX = [0, ¢] to left-right and up-down
considering the green dotted arrows according to the optimal safe zone.

Adam optimizer [41] is used with a starting learning rate of
0.001 and an exponential per-step decay equal to 107 5.

D. JOINT 3D NAVIGATION OPERATOR

A joint 3D tracing operator is proposed to flexibly position
the electrode array through the complex 3D tubular struc-
ture. As illustrated in Fig. 7, the 3D navigation operator is
composed of three elements: 1) the bird-view axis (Y) to
monitor the width variations in a tube, 2) the sagittal axis (Z)
to identify the height of a tube, and 3) a navigation vector
nay* . Bird view (Y) and sagittal (Z) axes are jointly connected
at node O shown in Fig. 7 and form a unified structure that is
rotated based on the assigned angles to the unity vector nav*.
3D space directions are indicated by considering two angles;
0 and ¢ around a unity vector navk = [6, ¢] in Fig. 7, where
0 describes the bird-view rotations around the Z axis and ¢
describes the sagittal rotations around the Y axis after being
rotated by 6° around the Y axis. The length of the navigation
vector nayk also defines the maximum allowable length that
the electrode array that can be pushed inside the tubular
structure (the cochlea in this case) in each iteration and shown
in Fig. 7. The navigation vector nav* can be shifted along
the identfied distances [(Dist — LW) and (Dist — RW)] to
the cochlea walls from the origin (O) in both sagittal and
bird-view projections. All the defined parameters in the joint
3D tracing operator introduce super-flexibility in different
scenarios with highly precise tuning of the navigation of the
electrodes.

IV. EXPERIMENTAL SETUP AND RESULTS

This section presents and discusses the results, using the
metric-based experimental setup, cochlear implant electrode
insertion in noisy scenarios and the navigation indicators
prediction in a real cochlea model.
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A. REGRESSION AND CLASSIFICATION RESULTS

In this section, the quantitative and qualitative results of
the 2.5D CNN are discussed. The 2.5D CNN addresses the
regression network for estimation of the tracing angles along
sagittal or bird-view planes (0, ¢). To quantify the regression
performance two metrics are used: root-mean-squared error
(RMSE) and explained variance ratio (EVA). RMSE mea-
sures the average magnitude of the prediction error, indicating
how close the observed values « are to those estimated by the
network &:

N

1 N
N 2 (& — ). 3)

=1

RMSE =

The EVA measures the proportion of variation in the pre-
dicted values with respect to those of the observed values.
Such variations are given by the variance of the residuals

Var = (@ — o) and the variance of the observed values
Var = (a).
Var (& — Ol)
EVA=1— ———~ 4)
Var (a)

If predicted values approximate the observed values well, the
residual variance will be less than the total variance, resulting
in EVA § 1. Otherwise, the residual variance will be equal
or greater than the total variance, producing EVA = 0 or
EVA < 0, respectively. To assess the performance on collision
prediction (Collision), the distance of the electrode to the left
(Dist — LW) and right (Dist — RW) wall, average classifi-
cation accuracy and F-1 score are used. It should be noted
that training of the 2.5D CNN used the combination of the
synthetic data generated by the parametric model explained
in Section ITI-A1 and the projection of the synthetic cochlea
models (Synth,, ;.1 ...Synth,, ;.,3) in Section II-A2.
Using the parametric synthetic data generation and synthetic
cochlea models (Synth,, 4 ... Synth,,,./3), the sagittal
and bird view networks were trained by over 1 million
2D cochlear segments with different width, length, inner
and outer arcs and rotation directions. The trained networks
have high generalization capability to data variation and can
perform electrode navigation for unseen cochlea cases from
different patients.

The generated data were divided into a training set contain-
ing 70% percent of the data to optimize the parameters and the
hyperparameters, and a testing set consisting of the remaining
30% to evaluate the 2.5D CNN performance on the unseen
data. The whole network was then examined on the anatom-
ical models (Anatomy,pder1. - - Anatomy,,q4e;3) with manually
defined ground-truth to quantify traversal performance. The
tracing process begins by defining a sampling cube around the
seed point in the scala tympani. Having sampled a segment
of 3D cochlear, it is projected onto the bird and sagittal views
and sent to the 2.5D CNN. The sampling cube is rotated and
adjusted based on the latest tracing information [0, ¢] for
sampling the next cochlea segment. This process continues
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TABLE 1. Average quantitative results on cochlea models
(Anatom o def1 - --Anatom o qer3): EVA and RMSE are computed on the
(Dist — LW), (Dist — RW) and the tracing angles along sagittal or top
views (0, ¢), while Avg. accuracy and F-1 score are evaluated on the
collision prediction task. Despite being relatively lightweight in terms of
number of parameters, 2.5D CNN maintains a very good performance on
both tasks.

Model EVA | RMSE Avg. F-1 Num. | ppg*
accuracy | score | Layers
AlexNet" 0.63 0.128 88.2% 0.80 8 23
ResNet-50° 0.81 0.067 97.8% 0.93 50 7
VGG-16° 0.73 0.109 92.7% 0.84 16 12
2.5D CNN 0.76 0.078 95.4% 0.92 8 20

* Processing time in frames per second (fps).
* References for a, b and ¢ are [42], [40]and [43] respectively

to the last segment and sampling iterations along the cochlea;
it is user controlled.

Table 1 compares the average performance of the 2.5D
CNN using cochlea models (Anatomypder1 - - - ANatomypder3)
with other architectures from the literature [40], [42], [43].
From these results, it is observed that the 2.5D CNN, even
though 70 times smaller than the best architecture (ResNet-
50), maintains considerable prediction performance while
achieving real-time operation. Furthermore, the comparison
against the VGG-16 architecture indicates the advantages
in terms of generalization due to the residual learning
scheme and parametric data generation model, as discussed
in Section III-C and Section III-A.1, respectively. The design
succeeds at finding a good trade-off between tracing perfor-
mance and the number of parameters detailed in the CNN
architecture as shown in Table 1. In order to enable the place-
ment of an electrode array to promptly react to situational
changes, it is necessary to reduce the network’s latency as
much as possible.

B. DEEP MAPPING OF NAVIGATION INDICATORS IN
NOISY SCENARIOS

Cochlea navigation is a difficult task, primarily because of the
noise and variability associated with the real-world scenes.
Computer vision has displayed a promising performance and
flexibility when dealing with high degrees of noise and vari-
ability. This is because unlike most of the iterative methods
where the search of true direction is determined based on
a local estimate of the orientation and history information,
the proposed and other CNN methods consider the whole
feature map and the outline of the images (i.e. the borders).
Typically, the added noise corrupts the process of mapping
cochlea images to the navigation indicators including the
distance to the adjacent left and right walls, collision proba-
bility and heading angle, and results in either minor or major
deviations from the ground truth. The results in Fig. 8(a) show
RMSE«<0.1 for noise standard deviation (oy) of 0 < oy <
0.15. 2D gaussian noise was embedded in the generated
images and used for deep extraction of the navigation indi-
cators in noisy situations. Fig. 8(a) shows that for oy <
0.22, the average RMSE of (Dist — LW) (or (Dist — RW))
in cochlea models (Anatomypger1 . . . Anatomy,yq.13) is below
0.18. Increased noise causes more variations on the border
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FIGURE 8. (a) The calculated RMSE in mapping of (Dist — LW) to the
ground truth as a function of noise compiled for the anatomical models
(Anatomp,ode1 - - - Anatomp,,qers)- (b) Ratio of successful iterations

completed by 2.5D CNN as a function of noise compared with AlexNet
[42], ResNet-50 [41] and VGG-16 [43].

information of the projected cochlea segments. This can
be seen as a stream of images with localized amplitude
(or intensity) variations which makes the border recogni-
tion extremely difficult. For oy > 0.4, the RMSE of all
algorithms increase at a higher rate. Fig. 8(a) also shows
that the ResNet-50 always has higher noise robustness for
0.05 <oy < 0.55.

Contiguous tracing which is the ratio of successful trials
in tracing centerlines in all trials is calculated and shown in
Fig. 8(b) for 0.05 < oy < 0.55. The contiguous ratio anal-
ysis considers the randomness of the 2D noise distribution.
The graphs are computed from a total number of 30 trials for
the cochlea models (Anatompgell - . . Anatomyeger3). For the
2.5D CNN, the tested cochlea models are traversed contigu-
ously because the designed ResNet architecture helps with
generalization of the border recognition in the image seg-
ments. In Fig. 8(b), the ratio of successfully traced centreline
coordinates by the ResNet-50 algorithm are higher compared
to 2.5D CNN but has about 3X longer execution time.

C. JOINT-VIEW PROJECTION AND NAVIGATION:
STEP-BY-STEP STUDY

Fig. 9 shows the qualitative results of progressive projection
and tracing in Anatomy,qe3, its corresponding 3D operators
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FIGURE 9. Automated tracing along a 3D cochlea using the Anatom,,4e/3- (a) , (b), (c) and (d) represent the
shifted 0SC shown by cyan color along the Anatom,,,,4e3- The superimposed OSC along cochlear samples
different geometrical complexities at different turns. In (a), the OSC is placed around the scala tympani seed
point, the sampled 3D cochlea segment is projected into the orthogonal sagittal and bird-view planes. The
navigation indicators for both views are derived in two different columns below the projections. For example,
sagittal view of 3D tracing algorithm starts from the seed point with 6 = —5°, Collision= 45, Dist — LW = 30
and Dist — RW = 25. Rotated joint 3D operators are also superimposed in each 0SC for different scenarios.
The derived navigation indicators {Top, Bottom, Left and Right} are shown in (a), (b), (c) and (d).

and the identified indicators. An oriented sampling cube
(OSC), which is a tight fit around 3D point in local space,
is generated at four different locations of the Anatom,gers
to show the performance of the 2.5D CNN. These locations
capture almost all the geometrical difficulties along the navi-
gation path (i.e. width and height variations, rotations along Z
axis etc.). Fig. 9(a) is the start of the navigation and location
of the OSC around the scala tympani seed point, so seed point
x-y-z coordinates are set to the center of the OSC. 3D sampled
points obtained from the input depth image are projected onto
x-y and y-z planes of the coordinate system, respectively.
Notice that the projections on the three orthogonal planes
may be coarse because of the resolution of the depth map [44],
which can be improved by performing median filter and open-
ing operation on the projected images. The designed CNNs
for each view then process and map the input projections
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into the navigatio’s indicators. For the identified indicators
including (Dist — LW), (Dist — RW) and (Collision) in each
view, the distances from the left, right and the frontal walls are
normalized between 0 and 64 (6 neurons to quantize 64 steps,
with nearest points set to O and farthest points set to 64).
The navigation angles (6 and ¢) are also indicated by two
numbers. By fusing the computed navigation indicators from
both sagittal and bird-view projections, a 3D joint operator is
finally formed as shown in Fig. 9(a)-(d). The superimposed
3D navigators in each figure consists of blue and black arrows
to quantify the height and width of the sampled cochlear
respectively. The red arrow also shows the optimal navigation
path. For example, the navigation parameter for the OSC sam-
ples around the scala tympani seed point, the (Dist — LW),
(Dist — RW)of both views are (Dist — LW /RW )44l

30/25) and (Dist — LW /RW) girg—view = 29/24). (Collision)
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which shows the length of 7@ is also set to 39, the minimum
of collision in both views fand ¢ are also set to —5°and 115°.
This process is then repeated for four different locations by
moving the OSC along cochlea as shown in Fig. 9(a)-(d).
3D depth sampling is obtained by rotating the OSC to the
identified 6 and ¢ of the previous step (i.e., the 8 and ¢
history). The height, width and depth of OSC are also defined
according to the derived information in the previous step [e.g.,
(Dist — LW), (Dist — RW) and the minimum of collision
probability in both views 6and ¢]. This is an automated and
reliable depth sampling that converts the whole cochlea to the
smaller segments. The size-adjusted OSC rotates along the
cochlea; the sagittal and bird-views also rotate accordingly
to capture the projections. The identified coordinates and the
3D operator present the optimal navigation tool for surgical
purposes.

V. CONCLUSION

In this paper, 2.5D CNN is proposed to map the projected 2D
cochlea images into accurate navigation indicators, including
the distance to the adjacent left and right walls, collision
probability and heading angle. A novel network architecture
was designed (i.e. converting a 3D to two complementary
networks) to trade off performance for processing time to
enable online operation, Each network consists of 5 dense
convolutional layers with {(12x12) ... (96x96} kernels and
ReLU activations, followed by just one average pooling,
with size equal to the size of final feature maps and three
dense layers. The training was performed by minimizing the
categorical cross entropy with the Adam optimizer. Tracing
of the cochlea is a laborious and dangerous task as error
margins are extremely small. The proposed method learns
to promptly react to the radical directional changes, geo-
metrical variations and overall rotations along the cochlea.
It was shown through extensive evaluations on processing
time, navigation accuracy and noise robustness analysis that
the proposed approach performs well with both synthetic
MATLAB-generated images and anatomical cochlea mod-
els constructed from micro-CT images. The results confirm
reliable navigation with an average of >98% mapping accu-
racy. The processing time of the navigation platform which
consists of 3D segment sampling, 2.5D projections, naviga-
tion indicators extraction and eventually the remapping to
3D navigators is around a millisecond per insertion step.
Where there are local noise and artefacts, the feature map
activations clearly recognize the edges of the of the gen-
erated images by the parametric model. Future work will
focus on integrating the proposed navigation method into
a robotic arm with a real-time imaging module to imple-
ment a precise computer-aided system for virtual cochlear

surgery.
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