
Received 8 September 2023, accepted 19 September 2023, date of publication 28 September 2023,
date of current version 4 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3320640

Hybrid Multiple-Access: Mode Selection, User
Pairing and Resource Allocation
AYSHA EBRAHIM 1, (Senior Member, IEEE), ABDULKADIR CELIK 2, (Senior Member, IEEE),
EMAD ALSUSA 3, (Senior Member, IEEE), MOHAMMED W. BAIDAS 4, (Senior Member, IEEE),
AND AHMED M. ELTAWIL 2, (Senior Member, IEEE)
1Computer Engineering Department, University of Bahrain, Sakhir Campus, Sakhir 32038, Bahrain
2Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal
23955, Saudi Arabia
3School of Electrical and Electronic Engineering, The University of Manchester, M13 9PL Manchester, U.K.
4Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait City 13060, Kuwait

Corresponding author: Aysha Ebrahim (amebrahim@uob.edu.bh)

ABSTRACT This paper proposes hybridization of non-orthogonal multiple-access (NOMA) and orthogonal
multiple access (OMA) schemes for next-generation cellular networks. Specifically, two schemes that
operate NOMA/OMA mode selection as well as channel and power allocation are proposed to improve
the resource utilization and bandwidth-efficiency for network capacity maximization. The two proposed
hybrid schemes are: (1) single-cell hybrid multiple-access (SC-HMA) and (2) multi-cell hybrid multiple-
access (MC-HMA) schemes. The SC-HMA scheme determines the optimal NOMA/OMA mode and user
pairs in each resource block by utilizing a matrix representing the capacity outcomes of pairing all possible
combinations of users. On the other hand, in the MC-HMA, the NOMA/OMA modes are categorized into
intra-cell and inter-cell based on an interference map, where the principal objective is to determine the best
mode of operation between the user pairs to improve the overall sum-rate and quality-of-service (QoS).
The results show that the proposed HMA schemes provide superior overall network capacity compared to
benchmark schemes. In addition, the SC-HMA scheme outperforms the MC-HMA in terms of network
capacity at the expense of higher computational complexity.

INDEX TERMS Hybrid, interference management, mode selection, non-orthogonal multiple-access,
resource allocation.

I. INTRODUCTION
Fifth-generation (5G) cellular networks are envisioned to
support superior data rates and provide connectivity to
a massive number of devices to satisfy the increasing
demand for data services. In long-term evolution (LTE)
and LTE-Advanced based cellular networks, orthogo-
nal multiple-access (OMA) techniques (e.g. orthogonal
frequency-division multiple-access) are utilized to allocate
user equipments (UEs) different resource blocks (RBs) [1].
However, OMA schemes suffer from low spectral-efficiency
as the network density increases. Therefore, in 5G
applications and services—such as enhanced mobile
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broadband (eMBB) and massive machine-type communi-
cation (mMTC)— innovative solutions that support higher
spectral-efficiency and UE density have been employed.
Furthermore, non-orthogonal multiple-access (NOMA) has
recently been recognized as one of the key enabling
technologies to fulfill the ambitious demands of 5G+ and
beyond cellular networks [2], [3]. In contrast to OMA,
NOMAenables users to share the sameRB simultaneously by
employing superposition coding (SC) at the transmitter, and
successive interference cancellation (SIC) at the receiver [4].

Despite its desirable spectral-efficiency, NOMA has been
shown to deliver poorer performance than OMA in the
following interference conditions [5], [6]:
1) An ideal NOMA scheme assumes that the SIC process

perfectly cancels out the interference caused by the
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decoded signals. In practice, however, it is possible to
observe a residual interference as a result of channel
estimation and decoding errors.

2) In a multi-cell NOMA network scenario, inter-cell
interference (ICI) becomes a major challenge, as it
can adversely affect the performance of cell-edge
UEs. Indeed, ICI can significantly deteriorate the
performance, especially when power allocation is ICI
agnostic.

Therefore, it is desirable to be able to switch between OMA
and NOMA to enhance the overall network performance
under all prevailing conditions. Moreover, coordination
amongst the base-stations (BSs) is necessary to mitigate ICI
by power and RB allocation.

A. RELATED WORK
Recently, NOMA has been one of the most widely investi-
gated topics due to its potential benefits. The variousworks on
hybrid OMA and NOMA schemes can be exemplified as fol-
lows. The work in [7] investigates the performance of NOMA
for massive multiple-input multiple-output (MIMO) net-
works, which utilizes beamforming and user clustering. The
authors in [8] propose an optimal power allocation approach
for hybrid NOMA/OMA and buffer-aided relay networks,
while accounting for the various data rate requirements of
the users. Given the high requirement for power efficiency
in future wireless networks, the authors in [9] presented
a power consumption based user clustering which utilizes
channel conditions and inter-cell interference information to
minimize each cell’s power consumption. In [10], a dynamic
NOMA/OMA scheme is proposed, which is performed
jointly with power and subcarrier allocation. The proposed
scheme utilizes a utility function that captures the trade-off
between NOMA and OMA. This utility function reflects the
complexity of conducting SIC as well as the complexity
required to secure the minimum required bit error rate. The
work in [11] presents an uplink hybrid NOMA/OMA scheme
to achieve user fairness. Specifically, a fairness indicator met-
ric based on Jain’s index is introduced to provide a criterion
for selecting between NOMA and OMA by characterizing
the impact of individual user rates on the network sum-rate.
A hybrid multiple-access (HMA) scheme based on adjusting
the modulation and coding schemes (MCS) is considered
in [12] to improve the network sum-capacity. In [13],
a joint bandwidth control and OMA/NOMA unified network
technique is proposed using a cooperative bargaining solution
to maximize the network bandwidth-efficiency. The authors
in [14] investigate a resource allocation problem combined
with hybrid NOMA/OMA to improve the network spectral-
and energy-efficiency, while incorporating quality-of-service
(QoS) constraints. Outage and throughput performance of
cognitive radio NOMA/OMA networks is studied in [15].
The work in [16] presents a cooperative device-to-device
(D2D) with NOMA in which a BS communicates with
all users simultaneously and addresses interference and

weak channel conditions using novel decoding techniques.
In [17], the authors investigate a multi-user dual computation
offloading model in which hybrid NOMA combined with
frequency division multiple access (FDMA) is utilized to
improve the spectrum efficiency. The work in [18] compared
the performance of a hybrid NOMA/OMA scheme and
an OMA only for visible light communication (VLC)
systems. The results show that a considerable performance
gain can be attained with hybrid multiple access using
permutation-based genetic algorithms. The authors in [19]
presented a hybridmultiple access scheme for network slicing
and dense mobile edge computing network. The problem
is formulated to optimize the user association, resource
and power allocation. The efficiency of the solution was
demonstrated using extensive simulations. The work in [20]
compared the performance of a hybrid NOMA/OMA scheme
and an OMA only for visible light communication (VLC)
systems. The results show that a considerable performance
gain can be attained with hybrid multiple access using
permutation-based genetic algorithms. The authors in [21]
presented a hybrid multiple access scheme for network
slicing and dense mobile edge-computing network. The
problem is formulated to optimize the user association,
resource and power allocation. The efficiency of the solution
was demonstrated using extensive simulations. In [22],
a distributed hybrid NOMA/OMA approach is developed
for internet of things (IoT) networks. The best of both
multiplexing strategies is exploited to facilitate massive
connectivity of IoT devices with limited resources. The
authors in [23] presented an adaptive NOMA/OMA scheme
to enhance the spectral efficiency and satisfy the requirements
of 6G networks.

On the other hand, many existing research works have
investigated resource allocation and clustering in NOMA
networks. For instance, the work in [24] proposes a method
for improving the quality-of-experience (QoE) of users
in multi-cell NOMA networks by optimizing the user
association, frequency and power allocation of the network
users. In [25], the authors propose a joint power and channel
allocation for downlink NOMA networks to improve the
sum-rate, while maintaining user fairness. The work in
[26] calculates the user-specific rate requirements for each
subchannel to select the preferred channels for different users,
and then a matching game is devised for user scheduling
and channel allocation. In [27], the authors examine the
impact of user pairing on the sum rate performance of two
different NOMA schemes: NOMA with fixed power and
cognitive radio assisted NOMA. In [5] and [28], the authors
address cluster formation and power-bandwidth allocation for
imperfect NOMA-based downlink heterogeneous networks.
Similarly, the work in [6] and [29] deals with uplink resource
allocation and user pairing, and obtains the largest feasible
NOMA cluster size as a function of QoS requirements,
SIC efficiency, and allocated bandwidth. MIMO NOMA
scenarios are considered in [30] and [31], while user
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clustering for uplink NOMA networks is investigated in
[32] and [33]. In [34], the authors presented a multi-cluster
coordination scheme for industrial internet of things (IIoT)
which provides orthogonal code, time and frequency domain
multiple access for interference management. Despite their
valuable contributions, the above works limit their focus on
single-cell networks.

This research is motivated by the fact that hybrid
NOMA/OMA combined with resource allocation in
multi-cell networks has not been sufficiently addressed. Fur-
thermore, most of the existing research use high complexity
optimization methods to achieve optimal clustering whereas
our research focuses on low complexity sub-optimal solutions
that can achieve comparable performance in terms of resource
utilization and network sum capacity.

B. CONTRIBUTIONS
To the best of the authors’ knowledge, the optimal
NOMA/OMA mode selection problem combined with
resource allocation in multi-cell networks is still an open
problem. In addition, most of the schemes in the literature
assume that all the resource blocks (RBs) have identical chan-
nel gains. However, our clustering and resource allocation
scheme is spectrum-aware, such that both the transmitter
and receiver experience different channel quality on different
RBs. To address these issues, two novel hybrid NOMA/OMA
multiple access mode selection, user pairing and resource
allocation schemes are proposed. The main contributions of
this paper can be summarized as follows:

• The first proposed scheme is the single-cell hybrid
multiple-access (SC-HMA), which is proposed for
single-cell networks. In this approach, a 3D capacity
matrix is developed to calculate the achievable capacity
from pairing all network users, which is then utilized
to determine the optimal NOMA/OMA modes and UE
pairs.

• Given the complexity of multi-cell networks, we devel-
oped a low-complexitymulti-cell hybridmultiple-access
(MC-HMA). This scheme expands and improves our
work in [35] to consider different types of operational
modes, namely intra-cell and inter-cell OMA and
NOMA modes. The new approach searches for the
optimal UE pairs that can maximize the network
capacity performance, while maintaining good QoS for
users.

• Comparison to benchmark schemes, including:
(1) conventional OMA, where the RBs are orthogonally
allocated to UEs in a round-robin fashion, (2) conven-
tional NOMA, in which UEs only operate in NOMA
mode

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. Section II
presents the system model, while Section III describes the
problem formulation of the proposed hybrid multiple-access

FIGURE 1. Visualization of the allocation matrix A and its sub-matrices.

and resource allocation schemes. Sections IV and V dis-
cuss the SC-HMA and MC-HMA schemes, respectively.
Section VI evaluates the performance of the proposed
schemes, and compares themwith other benchmark schemes.
Finally, Section VII concludes the paper with some final
remarks.

II. NETWORK MODEL
A multi-cell downlink network of B BSs is considered in
which B refers to a set of BSs. A group of U users are
represented by the set U , where the UEs are distributed
across the network of interest in a uniform and random
manner. Assume Ub is a group of Ub users connected with
BSb, where U =

⋃
b∈B Ub and U =

∑
b∈B Ub. It is assumed

that there are N physical RBs, each having a bandwidth of
W Hz. All BSs in the network are capable of reusing the
entire set of RBs N , in which the users are assigned in
their preferred RBs according to the channel quality indicator
(CQI) feedback provided by the users. Let PT refer to BSb
total transmit power (∀b ∈ B), which is divided equally
among the available RBs, where each RB has a maximum
transmit power of Pmax = PT /N .

The proposed system uses a centralized algorithm. It is
assumed that the evolved packet core (EPC) acts as a central
management unit where all the decisions are made and then
distributed to the BSs [36]. For instance, the multiple access
mode selection, the user pairing and resource allocation
decisions are made by the EPC and then forwarded to
the BSs.

The 3D binary RB-allocation and user-pairing matrix is
denoted by A ∈ {0, 1}U×U×N . As shown in Fig. 1, A
can be decomposed into RB-allocation sub-matrices, i.e.,
A = [A1, . . . ,An, . . . ,AN ], where An ∈ {0, 1}U×U ,
∀n ∈ N . Also, An is the resource allocation matrix on
RBn, and consists of user-pairing sub-sub-matrices An

b,b′ ∈

{0, 1}Ub×Ub′ , ∀(b, b′) ∈ B. Specifically, An
b,b′ is the

user-pairing matrix between the users of BSb and BSb′ on
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RBn, and comprises binary user-pairing elements αnb,u,b′,u′ ∈

{0, 1}, which are defined as

αnb,u,b′,u′

=

{
1, if RBn is allocated to UEu ∈ Ub and UEu′ ∈ Ub′ ,
0, otherwise.

(1)

A resource block allocation and user-pairing decision can
refer to a certain type of access scheme based on the BS and
UE indices, which is explained as follows:
• OMA: Each BSb independently allocates RBn to UEu ∈
Ub (i.e. u = u′).

• Intra-Cell (IAC)-NOMA (b = b′ ∨ u ̸= u′): BSb pairs
its users UEu ∈ Ub and UEu′ ∈ Ub, and allocates RBn to
them.

• Inter-Cell (IRC)-NOMA (b ̸= b′∨u ̸= u′):BSb and BSb′
cooperatively pair users UEu ∈ Ub and UEu′ ∈ Ub′ , and
allocate RBn to them.

The capacity matrix associated with A is denoted by C ∈
RU×U×N , which also follows a similar matrix structure to A
with elements Cn

b,u,b′,u′ .
Throughout the paper, the superscripts b, u, and n will be

used to indicate the indexes for the BSs, UEs, and RBs of
interest, respectively.

A. OMA SCENARIO
Consider a scenario in which the BSs transmit signals to
the UEs orthogonally over the set of available RBs. Hence,
the received signal-to-interference-plus-noise ratio (SINR) of
UEu ∈ Ub on RBn (i.e. when αnb,u,b,u = 1) is given by

0n
b,u,b,u =

Pnb,uh
n
b,u∑

b′∈B
b′ ̸=b

∑
j∈Ub′ P

n
b′,jα

n
b′,j,b′,jh

n
b′,u + η

, (2)

where Pnb,u denotes the power allocated to UEu ∈ Ub on RBn,
hnb,u refers to the composite channel gain which considers
both large- and small-scale fading, and η = WN0 is the
thermal noise power, in which N0 refers to the noise spectral
density. Moreover, the first term in the denominator denotes
the inter-cell interference. Thus, the capacity of UEu ∈ Ub on
RBn is calculated as

Cn
b,u,b,u = W · log2

(
1+ 0n

b,u,b,u
)
. (3)

B. INTRA-CELL AND INTER-CELL NOMA SCENARIOS
In this section, we consider both IAC- and IRC-NOMA
clustering scenarios for the NOMA scheme.

1) IAC-NOMA
An IAC-NOMA cluster is formed by pairing two different
users belonging to the same BS to operate on the same RB.
Assume UEu ∈ Ub and UEu′ ∈ Ub (for u ̸= u′), with channel
gains hnb,u > hnb,u′ . In this case, αnb,u,b,u′ = 1, and the power
assigned to the users is set to Pnb,u < Pnb,u′ to guarantee that
the user with the higher channel gain and lower allocated

power achieves the desired SINR by canceling interference
from the user with lower channel gain. Likewise, the user with
lower channel gain considers the signal of the higher channel
gain user as interference, which is resolved by higher power
allocation.

When SIC is performed by UEu ∈ Ub, some residual
interference can be noticed because of the imperfect decoding
of UEu′ ∈ Ub signal, due to issues related to propagation [2].
Consequently, the SINR expressions for intra-cell clustering
of UEu and UEu′ at RB n can be expressed as [5]

0n
b,u,b,u′ =

Pnb,uh
n
b,u

ϵPnb,u′h
n
b,u+

∑
{i,j}⊆B
b/∈{i,j}

∑
k∈Ui
l∈Uj

Pni,jα
n
i,k,j,lh

n
i,u+η

,

(4)

and

0n
b,u′,b,u=

Pnb,u′h
n
b,u′

Pnb,uh
n
b,u′+

∑
{i,j}⊆B
b/∈{i,j}

∑
k∈Ui
l∈Uj

Pni,jα
n
i,k,j,lh

n
i,u+η

,

(5)

respectively. Moreover, in (4), 0 ≤ ϵ ≤ 1 is the
fractional error factor, which indicates the amount of residual
interference after the SIC process. Additionally, in (5),
the first and second terms of the denominator are the
intra-cell and inter-cell interference terms, respectively. The
SIC decodes superposed messages in the received signal
in an integrative manner, where the strongest and weakest
signals are decoded first and last, respectively. For a two-
user case, the power reception difference between the
strongest and weakest messages must be higher than the
hardware sensitivity; otherwise, decoding can be erroneous
since the receiver cannot distinguish between thermal noise
and the message. In order to account for hardware sensitivity
at the SIC receiver of UEu ∈ Ub, the following constraint
must be satisfied [33]

Pnb,u′h
n
b,u − P

n
b,uh

n
b,u ≥ ζ, (6)

where ζ is the hardware sensitivity.
Based on the above, the sum-capacity of UEu ∈ Ub and

UEu′ ∈ Ub is obtained as

Cn
b,u,b,u′ = W · log2

(
1+ 0n

b,u,b,u′

)
+ W · log2

(
1+ 0n

b,u′,b,u

)
. (7)

2) IRC-NOMA
In IRC-NOMA, two users from different BSs are paired
together to operate on the same RB forming a NOMA cluster.
Assume UEu ∈ Ub and UEu′ ∈ Ub′ (for u ̸= u′ and
b ̸= b′), with channel gains hnb,u > hnb′,u′ . In turn, αnb,u,b′,u′ =
1, and the BSs coordinate to set their allocated powers as
Pnb,u < Pnb′,u′ . Thus, the SINR expressions for inter-cell
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clustering are

0n
b,u,b′,u′

=
Pnb,uh

n
b,u

ϵPnb′,u′h
n
b′,u +

∑
{i,j}⊆B
{b,b′}/∈{i,j}

∑
k∈Ui
l∈Uj

Pni,jα
n
i,k,j,lh

n
i,u+η

,

(8)

and

0n
b′,u′,b,u

=
Pnb′,u′h

n
b′,u′

Pnb,uh
n
b,u′ +

∑
{i,j}⊆B
{b,b′}/∈{i,j}

∑
k∈Ui
l∈Uj

Pni,jα
n
i,k,j,lh

n
i,u′ + η

,

(9)

respectively. To account for SIC hardware sensitivity at
UEu ∈ Ub,

Pnb′,u′h
n
b,u − P

n
b,uh

n
b,u ≥ ζ. (10)

In turn, the sum-capacity of UEu ∈ Ub and UEu′ ∈ Ub′ is
determined as

Cn
b,u,b′,u′ = W · log2

(
1+ 0n

b,u,b′,u′

)
+ W · log2

(
1+ 0n

b′,u′,b,u

)
. (11)

C. NETWORK CAPACITY
The network capacity of the OMA scenario is obtained as

COMA
T =

∑
b∈B

∑
u∈Ub

∑
n∈N

αnb,u,b,u · C
n
b,u,b,u. (12)

On the other hand, the network capacity of the IAC-NOMA
scenario can be expressed as

C IAC-NOMA
T =

∑
b∈B

∑
{u,u′}⊆Ub
u̸=u′

∑
n∈N

αnb,u,b,u′ · C
n
b,u,b,u′ , (13)

while the one for the IRC-NOMA scenario is obtained as

C IRC-NOMA
T =

∑
{b,b′}⊆B
b̸=b′

∑
u∈Ub
u′∈Ub′

∑
n∈N

αnb,u,b′,u′ · C
n
b,u,b′,u′ . (14)

Hence, the overall network capacity is determined as

CT = COMA
T + C IAC-NOMA

T + C IRC-NOMA
T . (15)

III. NOMA/OMA BASED MODE SELECTION, USER
PAIRING, RESOURCE BLOCK AND POWER ALLOCATION
In this work, the aim is to maximize the network capacity
via mode selection, user pairing, resource block and power
allocation. To this aim, the network capacity maximization
(NC-MAX) problem can be formulated as given in (16), as
shown at the bottom of the page. In problem NC-MAX,
Constraint (16b), as shown at the bottom of the page, indicates
that each UEu can be paired with at most one UE over any
RB, while Constraint (16c), ensures that the total transmit
power over each RB does not exceed Pmax. Constraint (16d),
ensures that each UEu satisfies the minimum rate Cmin, while
Constraint (16e), ensures that if two UEs are paired over
an RB, the SIC hardware sensitivity is accounted for. The
last two constraints define the range of values the decision
variables take.
Remark 1: Problem NC-MAX is a mixed-integer nonlin-

ear programming (MINLP) problem, which is non-convex
and NP-hard [37], [38], and thus is computationally-
expensive.
In this work, two network scenarios are considered: (1)

single-cell (SC), and (2) multi-cell (MC). The SC network
consists of a single BS (i.e. B = 1), and hence b =
b′, ∀(b, b′) ∈ B, and thus Ub = Ub′ = U . In this
scenario, the clustered NOMAUEs only experience intra-cell
interference (i.e. no inter-cell interference), and hence, the
network UEs can be assigned RBs via OMA or IAC-NOMA
only. On the other hand, the MC network may involve
OMA, IAC-NOMA and IRC-NOMA clustering scenarios.
Clearly, the MC network scenario is more complex than

NC-MAX: (16)

maximize
A,P

CT = COMA
T + C IAC-NOMA

T + C IRC-NOMA
T (16a)

subject to
∑
b′∈B

∑
u′∈Ub′

αnb,u,b′,u′ ≤ 1, ∀n ∈ N , ∀u ∈ Ub, and ∀b ∈ B (16b)

∑
u∈Ub

Pnb,u ≤ Pmax, ∀n ∈ N , and ∀b ∈ B (16c)

∑
n∈N

∑
b′∈B

∑
u′∈Ub′

αnb,u,b′,u′ · C
n
b,u,b′,u′ ≥ Cmin, ∀u ∈ Ub, and ∀b ∈ B (16d)

αnb,u,b′,u′ ·
(
Pnb′,u′h

n
b,u − P

n
b,uh

n
b,u − ζ

)
≥ 0, ∀u, u′ ∈ Ub, u ̸= u′, ∀b, b′ ∈ B, and ∀n ∈ N (16e)

0 ≤ Pnb,u ≤ Pmax · α
n
b,u,b′,u′ , ∀u, u

′
∈ U, ∀n ∈ N , and ∀b, b′ ∈ B (16f)

αnb,u,b′,u′ ∈ {0, 1}, ∀u, u
′
∈ U, ∀b, b′ ∈ B, and ∀n ∈ N . (16g)
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its SC counterpart scenario, which is due to the inter-cell
interference terms. Thus, an algorithmic solution is proposed
to solve problem NC-MAX for each network scenario.
The first scheme, namely SC-HMA, provides the optimal
network sum-rate at the expense of higher computational-
complexity, while the second scheme (i.e. MC-HMA) yields
a sub-optimal network sum-rate performance, but with lower
computational-complexity.

IV. SC-HMA
In this section, we propose an optimal solution to NC-MAX
problem using the novel algorithmic SC-HMA scheme.
Particularly, a 3D capacity matrix C ∈ RU×U×N is
constructed, and the elements ofC are obtained by calculating
the resulting capacity of all possible UE pairs over each
RB. Particularly, consider the UE pair (u, u′) over RB n (i.e.
αnb,u,b,u′ = 1). Then, the sum-capacity maximization for this
NOMA pair is determined as

maximize
Pnb,u,P

n
b,u

Cn
T ,b,u,u′ = Cn

b,u,u′ + C
n
b,u′,u (17)

subject to Pnb,u + P
n
b,u′ ≤ Pmax (17a)

Cn
b,u,u′ ,C

n
b,u′,u ≥ Cmin (17b)

Pnb,u′h
n
b,u − P

n
b,uh

n
b,u ≥ ζ (17c)

0 ≤ Pnb,u,P
n
b,u′ ≤ Pmax, for u ̸= u′, (17d)

where Cn
b,u,u′ = W · log2

(
1+ 0n

b,u,b,u′

)
and Cn

b,u′,u′ =

W · log2
(
1+ 0n

b,u′,b,u

)
, and 0n

b,u,b,u′ and 0n
b,u′,b,u are defined

in (4) and (5), respectively. This problem can be verified
to be non-convex, which is due to the non-convex rate
functions. Alternatively, it can be efficiently and optimally
solved via the variable substitution Pnb,u = 2Q

n
b,u and Pnb,u′ =

2Q
n
b,u′ , where Qnb,u and Q

n
b,u′ are respectively the transformed

powers allocated to users UEu,UEu′ ∈ Ub over RBn.
Additionally, a lower-bound approximation is used, where1

C = log2 (1+ 0) ≥ ω log2(0) + ϖ ≜ C̄ , with ω = 0̄

0̄+1
and ϖ = log2

(
1+ 0̄

)
− ω log2

(
0̄

)
[39], [40]. Therefore,

the sum-capacity of UEs u and u′ can be lower-bounded as
Cn
T ,b,u,u′ ≥ C̄n

T ,b,u,u′ . Then, the reformulated problem (using
the variable substitution and lower-bound approximation) can
be verified to be a concave maximization problem for fixed
values of ω and ϖ for all UEs [41]. After that, an iterative
algorithm can be straightforwardly devised to solve the
reformulated problem within polynomial-time complexity,
while repeatedly updating the values of ω and ϖ until
convergence to the optimal Pnb,u and P

n
b,u′ values [42].

The diagonal elements in C indicate the capacity achieved
by selecting OMA UEs,2 whereas the non-diagonal elements
correspond to the outcome of pairing NOMA UEs (i.e.
forming IAC-NOMA clusters). Algorithm 1 outlines the

1The approximation is tight for 0 = 0̄, with 0, 0̄ > 0.
2It can be easily verified the capacity-maximizing power allocation

problem for the OMA UEs is concave.

Algorithm 1 SC-HMA
1: Set iterations index t = 0 and error tolerance ε ∈ (0, 1)
2: Initialize matrices A(0), C(0), T(0) and calculate C (0)

T ;

3: while
∣∣∣C (t)

T − C
(t−1)
T

∣∣∣ > ε do

4: C(t)
← CapacityMatrix3D

(
A(t)

)
;

5: T(t)
← OptimalTuples

(
C(t)

)
;

6: C (t)
T ← Assign3D

(
C(t),T(t)

)
;

7: Set t ← t + 1;
8: end while
9: Return A∗, C∗ and T∗;

SC-HMA scheme. The CapacityMatrix3D function calcu-
lates the capacity matrix C, using the allocation matrix A.
The result of this procedure is fed into the OptimalTuples
procedure, which determines the optimal UE pairs over
each RB, as represented by matrix T. Finally, the Assing3D
function allocates the optimal UE pairs to the selected RBs,
such that the network sum-capacity is maximized.

It is assumed that the SC-HMA algorithm uses a central
management unit to calculate the 3D capacity matrix-based
channel state information (CSI) feedback from UEs [36].
The central unit then determines the optimal user grouping
over all RBs based on the capacity matrix. The assigned
resources and user pairing is then forwarded to eachBS. Thus,
the proposed algorithm does not add additional overhead for
hybrid NOMA/OMA as all the processing and decisions are
performed centrally by the 3D assignment algorithm which
makes all the decisions, including the resource allocation,
selection of the mode of operation (NOMA, OMA or hybrid),
and power allocation based on CSI information collected
from users. To be more specific, the optimal tuple obtained
from the proposed 3D assignment approach determines the
mode of operation. The output of this function is then
communicated to the BSs, including the assigned resource
blocks per user and the mode of operation.

A. 3D CAPACITY MATRIX
Algorithm 2 illustrates the procedure for calculating the 3D
capacity matrix C, where the capacity of every pair of UEs
(u, u′) ∈ U is calculated over each RB n. In each iteration,
two conditions are checked: (a) if u = u′, the OMA capacity
will be calculated as per (3), and (b) if u ̸= u′, the capacity is
calculated based on (7).

B. 3D ASSIGNMENT AND USER-PAIRING
TheOptimalTuples function is used to optimize the frequency
resource allocation of users [43]. Specifically, it uses the
capacity matrix C to determine the optimal pair of the UEs
to be allocated over all RBs. The solution to the assignment
problem is approximated using a dual-primal Lagrangian
relaxation technique. The 3D assignment function uses the
Polyak’s sub-gradient optimization algorithm [41], [43]. The
OptimalTuples function generates the tuples matrix, T ∈
R3×U , where T(:, i) indicates the ith assigned tuple (UE pair)
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Algorithm 2 Calculate 3D Capacity Matrix
1: procedure CapacityMatrix3D(A)
2: for u ∈ Ub and u′ ∈ Ub′ do
3: for n ∈ N do
4: if αnb,u,b,u = 1 then
5: Calculate Cn

b,u,b,u;
6: else if αnb,u,b,u′ = 1 then
7: Calculate Cn

b,u,b,u′ ;
8: end if
9: end for

10: end for
11: Return C;
12: end procedure

Algorithm 3 3D Assignment

1: T(t)
← OptimalTuples

(
C(t)

)
;

2: procedure Assign3D(C,T)
3: for t = 1 : U do
4: Get optimal UE pair and RB indexes fromT(:, t);
5: Assign UE pair in A;
6: Update CT ;
7: end for
8: Return CT ;
9: end procedure

in RBn. Note that the first two rows in T(:, i) refer to UE pair,
whereas the third row is the selected RB.

The resource allocation is performed based on the
optimal UE pair results generated from the OptimalTuples
function. This resource assignment process is illustrated in
Algorithm 3, where the Assign3D procedure takes C and T
as input and generates the network sum-capacity CT as a
result. Particularly, in each iteration, the optimal UE pair over
each RB is obtained from T, and assigned in the allocation
matrix A, and then the network sum-capacity CT is updated
accordingly.

C. COMPLEXITY ANALYSIS
The complexity of Algorithm 1 is mainly determined by
the cost matrix calculation and three-dimensional axial
assignment (3D-AA) solution given in Algorithm 2 and
Algorithm 3, respectively. The complexity of the cost matrix
calculation is regulated by the number of UEs and RBs and
given by O(U2N ).3 On the other hand, the 3D-AA is known
to be an NP-Hard problem, whose matching theory based
approximate solutions can obtain results for a square cost
matrix with complexity O

(
3MV 3

)
where M is the number

of relaxations and V is the cost matrix dimensions [44].
Accordingly, the overall complexity of Algorithm 1 can be
calculated asO

(
t
(
U2N + 3MV 3

))
where t is the number of

iterations in Algorithm 1 andV ≜ max(U ,N ). For the special

3Please refer to Fig. 1 for visualization of the impact of matrix dimension
on the cost matrix calculation.

case ofU = N , it can be simplified asO
(
t
(
U3
+ 3MU3

))
≈

O
(
3MU3

)
since t < M in practice.

V. MC-HMA
Given the complexity of multi-cell networks, a low-
complexity sub-optimal algorithmic solution is proposed to
solve problem NC-MAX. The MC-HMA algorithm builds
on the techniques developed in [35] and [45] in which a
multi-level interference map (MLIM) is utilized to obtain
the initial OMA-based RB allocation. Then, it decides
the optimal NOMA/OMA mode of operation and user
pairing, which is followed by guided power allocation. Each
BS calculates a local interference map based on the CSI
information obtained from the associated users and then
forwards this map to the central management unit. Based on
thismap, the central management unit computes the resources
assigned to each user in the network and the user pairing for
hybrid NOMA/OMA and then passes this information back
to the BSs.

A. MULTI-LEVEL INTERFERENCE MAP (MLIM)
Our previous work on MLIM is employed to measure the
interference intensity between the BSs, and the surrounding
UEs [35]. The interference-level thresholds used to determine
the interference map are defined as

φbulower =
§ub

γmax
, (17)

and

φbuupper =
§ub

γmin
, (18)

where §ub is the signal strength experienced by UEu from
BSb to which it is associated (i.e., §ub ≜ Pbhub). Moreover,
γmax refers to the maximum supported SNR, and γmin
denotes the minimum possible SINR value for successful
decoding of received messages [46]. To this end, φbulower
represents the highest interference power that UEu can
tolerate to achieve γmax, while φbuupper can be interpreted
as the upper bound of interference experienced by UEu,
above which the interference level is classified as extremely
high. Hence, the MLIM is characterized by matrix 8 ∈

ZB×U , in which the value of its elements is determined
as per the interference thresholds given in (17) and (18).
That is,

8u
b′ =


0 (low), §ub′ < φbulower ,

1 (mid), φbulower < §ub′ < φbuupper ,

2 (high), §ub′ > φbuupper ,

(19)

where §ub′ represnets the received signal strength from BSb′ ,
for b′ ̸= b. Before allocating users ito RBs, The MLIM
method classifies the interference into a number levels.
In (19), the first case represents extremely low interference,
in which the perceived interference from neighbouring BSs
can be treated as background noise. The second case indicates
tolerable interference, in which NOMA operation is feasible.
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The middle case represents a moderate interference level,
such that NOMA is practical. The third case refer to
excessive interference in which NOMA operation is not
viable.

Thus, the total number of users interfered by BS b denoted
by Ib can be expressed as

Ib =
∑
u∈U

[
1{1}(8u

b)+ 1{2}(8u
b)

]
, (20)

where 1{a}(8u
b) represents an indicator function which returns

1 if a = 8u
b, and 0 otherwise, where a ∈ {1, 2}.

The initial values of αnb,u,b′,u′ are defined according to
the MLIM in (19). These values are obtained by assigning
users to RBs based on the OMA method illustrated in
our previous work in [35], in which the initial amount of
RBs allocated for every UE associated with BSb is given
by Nb = N

Ib+Ub
. Accordingly, our proposed MC-HMA

mode selection scheme is devised based on this initial RB
allocation.

B. NOMA/OMA MODE SELECTION
In a multi-cell hybrid NOMA/OMA network, the effective-
ness of resource utilization is defined according to two major
elements: (1) The group of allocated users, and (2) The mode
of operation of the allocated users (i.e. NOMA or OMA).
This is characterized using a resource allocation and mode

selection map 2 ∈ ZU×U×N , with the elements 2n
u,u′ ∈

{1, 2, 3, 4}which represent the followingmodes of operation:

Mode 1
[
2n
u,u′ = 1 : αnb,u,b′,u′ = 0

]
:

This mode indicates that either UEu or UE′u is not
allocated in RBn. Hence, no pairing between UEu ∈
Ub and UEu′ ∈ Ub′ ,

Mode 2
[
2n
u,u′ =2 : (αnb,u,b,u=1)∩(8u′

b =2∪8u
b′ =2)

]
:

In this mode, NOMA operation is not feasible as
one of the UEs, UEu ∈ Ub and UEu′ ∈ Ub′
experience very high inter-cell interference from
BSb′ and BSb, respectively.

Mode 3
[
2n
u,u′ = 3 : (αnb,u,b′,u′ = 1) ∩ (8u′

b ⊕8u
b′ = 1)

]
:4

In this mode, UEu ∈ Ub produces tolerable
interference to UEu′ ∈ Ub′ , while UEu ∈ Ub
receives minimal interference from UEu′ ∈ Ub′ ,
or vice versa. Therefore, the power allocated to
these users can be tuned, in such a way that UEu′ ∈
Ub′ cancels the interference received from UEu ∈
Ub. This mode applies for both intra-cell mode (b =
b′) or inter-cell mode (b ̸= b′), in which the power
allocation of BSs must be coordinated according to
the rules of NOMA.

Mode 4
[
2n
u,u′ = 4 : (αnb,u,b′,u′ = 1) ∩ (8u′

b ∪8u
b′ = 0)

]
:

OMA if preferred over NOMA in this mode for the

4Symbol ⊕ refers to XOR operator.

FIGURE 2. A multi-cell NOMA network for U1 = {1, 2}, U2 = {3, 4}.

following reasons: (1) both users, UEu ∈ Ub and
UEu′ ∈ Ub′ experience minimal inter-cell interfer-
ence from BSb′ and BSb, respectively, and (2) SIC
may not be successful if UEu and UE′u operate using
NOMA since the perceived interference is weak and
cannot be extracted efficiently from the superposed
signal.

Fig. 2 illustrates the NOMA/OMA modes of operation.
We assume that UE1 and UE2 are associated with BS1,
and UE3 and UE4 are associated with BS2. For instance,
mode 2 applies if we assume that UE2 is receiving excessive
interference from BS2, then UE2 cannot be paired with users
connected to BS2. On the other hand, users connected to the
same BS can be paired in the same RB under IAC if the
conditions of mode 3 are satisfied. Similarly, users belonging
to different BSs can be paired under IRC based on the same
mode. Moreover, users located far away from the coverage
range of neighboring BSs (i.e UE1 and UE4) can be allocated
in the same RB and operate based on OMA as explained
in mode 4, since NOMA operation is not practical in this
case.

C. USER PAIRING AND RESOURCE ALLOCATION
In order to locate candidate users for NOMAmode, we define
two sets: (a) Xn = [1, . . . , u, . . . ,X ] of UEs allocated over
RB n, and (b) Yn = [1, . . . , u′, . . . ,Y ] of UEs that are not
allocated RB n, or classified to be in Mode 2 with the UEs
in Xn. Thus, the potential NOMA pairs—from the sets Xn
and Yn—are defined by the matrix 1 ∈ {0, 1}X×Y , which is
represented as follows

1n
u,u′ =

{
1, if 2n

u,u′ ∈ {3, 4},
0, otherwise.

(21)

After performing the initial RB allocation according to
subsection V-A, the available RBs are searched to find
potential users that can paired over each RB. For each u in
the set Xn, the list of candidate UEs that can be paired with
UEu over RB n is determined from the map 1n

u,u′ .
The following scenarios are investigated for each candidate

user u′:
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Case 1: If u and u′ are associated with the same BS (i.e.
(u, u′) ∈ Ub), they are identified as IAC-NOMA
UEs, and arranged in a descending order based
on their channel gains (i.e. hnb,u > hnb,u′ ). After
that, the serving BS of the high channel gain user,
u, calculates the power reduction factor such that
the lower interference threshold of the low channel
gain user denoted by φbu

′

lower—as per (17)—is not
exceeded:

σ = §ub − φbu
′

lower (22)

where σ represents the power reduction factor
and §ub refers to the signal strength of UE u
received by it’s serving BS denoted by b. Then,
BSb allocates their transmit powers by reducing
Pnb,u while ensuring that the total transmit power
constraint is not violated as follows:

Pnb,u = Pmax − σ (23)

Finally, the SINR expressions for users u and u′ are
obtained via (4) and (5), respectively.

Case 2: If u and u′ are IRC-NOMA UEs (i.e. u ∈ Ub,
u′ ∈ Ub′ , for b ̸= b′), then, the channel gains of
the UEs are sorted in a descending order, and the
BSs coordinate to adjust the transmit powers, while
ensuring that φbu

′

lower is not exceeded as illustrated in
eq. (22) and (23). The SINR expressions are then
calculated based on (8) and (9), respectively.

Case 3: If u and u′ follow Mode 4, this indicates that
NOMA operation is not favourable for this pair, and
UEu′ ’s SINR is determined based on (2).

In all cases, the candidate pair will only be allocated if
the allocation leads to an improvement in the sum-capacity.
The minimum capacity of users and SIC receiver sensitivity
constraints must also be satisfied [5], [6].

D. COMPLEXITY AND CONVERGENCE ANALYSIS
In this section, the complexity of the MC-HMA algorithm
is evaluated. The algorithm starts with OMA-Based resource
allocation as explained in subsection V-A. Since this
operation involves a nested loop that iterates over all BSs
and their associated users, the complexity can be expressed
as O(n2). The second part of the MC-HMA algorithm deals
with the NOMA/OMA mode selection and user pairing.
The mode selection procedure incorporates a nested loop
that iterates over all available BSs and users to determine
the mode of operation. Therefore, the complexity is also
given by O(n2). As per user pairing, a loop iterates over
all RBs to calculate the capacity achieved from the pairing
process. Since the complexity of the Shannon capacity
is unknown according to [47], it is assumed that its
complexity is given by O(1). Therefore, the complexity the
capacity calculation is given by O(n). Thus, the overall
complexity of the MC-HMA algorithm is given by O(n +
2n2). Since the MC-HMA algorithm involves iterating over

the set of available RBs to perform NOMA/OMA user
pairing and capacity maximization, then, the algorithm
converges after a limited number of iterations which is
given by N .

VI. RESULTS AND PERFORMANCE EVALUATION
In this section, the performance of SC-HMA and MC-HMA
schemes is discussed.

A. SC-HMA EVALUATION
The performance of the SC-HMA scheme is evaluated in this
section and compared with the following benchmarks:

• OMA: This scheme assumes that the UEs operate
only in the OMA mode. For fairness purposes, the
OMA scheme uses the same approach discussed in
algorithm 1, but with disabling the NOMA function and
only allowing OMA operation.

• NOMA: This is a pure NOMA scheme, in which the
UEs are only allowed to operate in the NOMA mode.
This scheme is based on Algorithm 1 with the OMA
function disabled and only allowing NOMA operation.

The simulations assume a single BS with varying number of
UEs (10 to 40) and 50 RBs. The path-loss exponent is set
to 2, and the shadowing variance is 4. The BS transmit power
is 46 dBm, and the target minimum rate is 1× 105 Mbps.
Table 1 depicts the impact of varying the residual

interference for a network of 10UEs on the followingmetrics:

• NOMA UEs: Represents the percentage of users allo-
cated in NOMA mode.

• OMA UEs: Indicates the percentage of users allocated
in OMA mode.

• Energy-Efficiency (Mbit/Joule): Total power consump-
tion is measured by dividing the data rate by the total
used power.

• Resource Utilization: The percentage of frequency
resource utilization refers to the number of allocated
users divided by the total available resources.

In NOMA scheme, it is shown that the percentage of NOMA
UEs is 100 for all values of ϵ as a pair of users is allocated
in each RB. The number of OMA UEs is 0 since UEs are
not allowed to operate in OMA mode in this scheme. The
percentage of resource utilization is 20% for all values of ϵ

since two users are allocated in each RBs. It is also shown
that the total power consumption decreases with higher values
of ϵ in all schemes due to decreased data rate resulting
from high values of residual interference. It is observed that
the MC-HMA scheme operates in hybrid mode and that
the percentage of NOMA users reduces at high values of ϵ

and shifts to OMA mode when ϵ is at highest level. This
shows that NOMA mode is not feasible when the residual
interference is significant and therefore OMA operation is
preferred. This is also the case with the SC-HMA scheme
were the OMA mode is selected at high values of ϵ. This
shows that the SC- and MC-HMA schemes perform the
OMA/NOMAmode selection to improve the performance as
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FIGURE 3. Sum-capacity with varying residual interference values.

will be shown in the rest of the results. It is also shown that
the SC- and MC-HMA schemes prefer NOMA mode at low
values of ϵ.

Fig. 3 illustrates the impact of increasing the resid-
ual interference on the sum-capacity for the SC-HMA,
MC-HMA and the other benchmarks with 10 UEs. It is
observed that the pure OMA is not affected by the residual
interference as users operate in OMAmode only. On the other
hand, the pure NOMA scheme result shows that selecting
NOMA mode is not feasible at higher values of ϵ (≥ 10−12),
as this causes the sum-capacity to reduce significantly.
This justifies the drop in the sum-capacity performance
of the SC-HMA and MC-HMA schemes, which gradually
decreases with higher values of ϵ, and starts saturating with
the pure OMA scheme when ϵ ≥ 10−11. This is because the
the operation shifts to pure OMA, which proves that OMA
operation outperforms NOMA at high values of ϵ.
Fig. 4 shows the network sum-capacity result with

varying user densities for OMA, NOMA, SC-HMA and
MC-HMA methods. It is shown that when ϵ = 0, the
performance of SC-HMA is similar to NOMA since the
users prefer to operate in NOMA mode in the absence of
residual interference. It is also seen that the sum-capacity
of NOMA and SC-HMA is superior compared to the other
schemes, which proves that NOMA operation improves the
networks sum-capacity. The results reveal an improvement
in the network sum-capacity at higher user densities due to
the multi-user diversity gain, which is achieved by assigning
the majority of the available resources to the users with good
channel quality, where higher data rates can be achieved. The
results also shows the network sum-capacity performance in
the presence of residual interference. When (ϵ = 10−11),
it is shown that the performance of SC-HMA and MC-HMA
is similar to OMA, since OMA operation is more preferred
when the residual interference is significant. On the other
hand, the NOMA scheme performs poorly at high values of

FIGURE 4. Sum-capacity with varying user densities.

residual interference. To improve the presentation of fig. 4,
the NOMA scheme at (ϵ = 10−11) is presented in a separate
graph due to the significant performance gap compared to the
other schemes.

B. MC-HMA EVALUATION
For MC-HMA evaluation, a 5 × 5 grid area is considered
with an area of 10m× 10m per grid. It is presumed that UEs
and Small BSs (SBS) are allocated in uniform and random
positions within each grid and that there are two UEs per
grid. Moreover, the total available RBs is assumed to be
25, the SBS transmit power is given by 43 dBm and the
path-loss is characterized using the Terrain Type C Stanford
University Interim (SUI) path-loss model [48]. The shadow-
ing variance and the path-loss exponent are given 8 and 3
respectively.

The following benchmark schemes were used to evaluate
the performance of the proposed MC-HMA method:

• Reuse-1: A full frequency reuse approach is considered
in which every user in the network is assigned all the
available RBs.

• OMA: In OMA method, all users are assigned equal
bandwidth using round-robin scheduling algorithm.

• MLIM: This approach was proposed in our previous
work [35].

Fig. 5 illustrates the network average data rate in
comparison to the aforementioned benchmark schemes with
varying cells density. It is evident that the MC-HMA scheme
performs better than the other schemes in terms of average
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TABLE 1. Impact of residual interference on system performance.

FIGURE 5. Average data rate performance with varying cell densities.

FIGURE 6. Cumulative distribution function of network throughput.

data rate. It is also noticed that lower values of γmax in
MLIM scheme lead to improvements in the average data

FIGURE 7. Resource block utilization performance with varying cell
densities.

rate performance as the resource utilization increases when
γmax is lower. On the contrary, when γmax is higher, the
average data rate decreases as a result of lowering the
frequency reuse. Furthermore, when γmax is set to 32 dB,
the performance of MLIM becomes almost comparable to
OMA scheme since increasing γmax leads to poor resource
utilization as a result of users occupying orthogonal RBs.
It can also be seen that the reuse-1 system performs better
than the other schemes when the number of BSs is high. This
is because of the high interference which leads to limiting the
number of RBs assigned to each user in the other schemes.
On the other hand, in reuse-1 system, the users with good
channel conditions are allocated in all available RBs which
improves the average data rate of the network. However,
with the reuse-1 system, the cell-edge users achieve poor
QoS compared to the other schemes as shown in Fig. 6
where almost 60% of the UEs achieve a data rate of less
than 1.5 Mbps, while only 10% of the MC-HMA scheme
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UEs achieve this data rate. This confirms that the reuse-1
system compromises the QoS of cell-edge users to improve
the average network rate. Fig. 6 also shows that increasing
the MC-HMA average rate does not jeopardise the QoS of
users and that the QoS is improved as compared to the other
schemes. The RB utilization as shown in Fig. 7 is measured
by calculating the average number of utilized RBs in each BS.
It is shown that the MC-HMA scheme attains the maximum
RB utilization whereas the resource utilization of MLIM
method can be improved by setting γmax to lower values as
illustrated previously.

VII. CONCLUSION
This paper presented novel hybrid multiple-access resource
allocation schemes for improving the performance of
5G and beyond networks. The proposed SC-HMA and
MC-HMA schemes focus on maximizing the network
capacity and bandwidth efficiency by carefully selecting
the NOMA/OMA mode of operation, which is performed
jointly with resource block and power allocation. The
SC-HMA, provides optimal network sum-rate at the expense
of higher computational-complexity, while the MC-HMA
yields a sub-optimal network sum-rate performance, but with
lower computational-complexity. The performance analysis
showed that the proposed approaches achieve superior results
compared to the benchmark schemes.

This work can be extended in several directions. For
instance, network global energy-efficiency maximization
can be considered from the perspective of the single-cell
and multi-cell hybrid multiple-access schemes [49]. Also,
D2D-enabled communications can be studied [50], while
incorporating interference management in the cellular and
D2D tiers [51]. Lastly, multi-antenna selection and/or
beamforming in hybrid MIMO-NOMA systems can be
pursued.

REFERENCES
[1] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,

F. Tufvesson, A. Benjebbour, and G. Wunder, ‘‘5G: A tutorial overview
of standards, trials, challenges, deployment, and practice,’’ IEEE J. Sel.
Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.

[2] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
‘‘Nonorthogonal multiple access for 5G and beyond,’’ Proc. IEEE,
vol. 105, no. 12, pp. 2347–2381, Dec. 2017.

[3] M. Vaezi, G. A. Aruma Baduge, Y. Liu, A. Arafa, F. Fang, and Z. Ding,
‘‘Interplay between NOMA and other emerging technologies: A survey,’’
IEEE Trans. Cognit. Commun. Netw., vol. 5, no. 4, pp. 900–919, Dec. 2019.

[4] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor,
‘‘Application of non-orthogonal multiple access in LTE and 5G networks,’’
IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.

[5] A. Celik,M.-C. Tsai, R.M. Radaydeh, F. S. Al-Qahtani, andM.-S. Alouini,
‘‘Distributed cluster formation and power-bandwidth allocation for
imperfect NOMA in DL-HetNets,’’ IEEE Trans. Commun., vol. 67, no. 2,
pp. 1677–1692, Feb. 2019.

[6] A. Celik,M.-C. Tsai, R.M. Radaydeh, F. S. Al-Qahtani, andM.-S. Alouini,
‘‘Distributed user clustering and resource allocation for imperfect NOMA
in heterogeneous networks,’’ IEEE Trans. Commun., vol. 67, no. 10,
pp. 7211–7227, Oct. 2019.

[7] M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, L. Hanzo, and P. Xiao,
‘‘NOMA/OMA mode selection-based cell-free massive MIMO,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[8] N. Nomikos, T. Charalambous, D. Vouyioukas, G. K. Karagiannidis, and
R. Wichman, ‘‘Hybrid NOMA/OMA with buffer-aided relay selection in
cooperative networks,’’ IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 524–537, Jun. 2019.

[9] Y. Fu, M. Zhang, L. Salaün, C. W. Sung, and C. S. Chen, ‘‘Zero-forcing
oriented power minimization for multi-cell MISO-NOMA systems: A joint
user grouping, beamforming, and power control perspective,’’ IEEE J. Sel.
Areas Commun., vol. 38, no. 8, pp. 1925–1940, Aug. 2020.

[10] M. Baghani, S. Parsaeefard, M. Derakhshani, and W. Saad, ‘‘Dynamic
non-orthogonal multiple access and orthogonal multiple access in 5G
wireless networks,’’ IEEE Trans. Commun., vol. 67, no. 9, pp. 6360–6373,
Sep. 2019.

[11] Z. Wei, J. Guo, D. W. K. Ng, and J. Yuan, ‘‘Fairness comparison of uplink
NOMA and OMA,’’ in Proc. IEEE 85th Veh. Technol. Conf. (VTC Spring),
Jun. 2017, pp. 1–6.

[12] A. S. Marcano and H. L. Christiansen, ‘‘A novel method for improving the
capacity in 5G mobile networks combining NOMA and OMA,’’ in Proc.
IEEE 85th Veh. Technol. Conf. (VTC Spring), Jun. 2017, pp. 1–5.

[13] S. Kim, ‘‘Heterogeneous network bandwidth control scheme for the hybrid
OMA-NOMA system platform,’’ IEEE Access, vol. 8, pp. 83414–83424,
2020.

[14] Z. Song, Q. Ni, and X. Sun, ‘‘Spectrum and energy efficient resource
allocation with QoS requirements for hybrid MC-NOMA 5G systems,’’
IEEE Access, vol. 6, pp. 37055–37069, 2018.

[15] D.-T. Do, A.-T. Lee, and B. Lee, ‘‘On performance analysis of underlay
cognitive radio-aware hybridOMA/NOMAnetworkswith imperfect CSI,’’
Electronics, vol. 819, no. 7, pp. 1–21, 2019.

[16] Y. Ji, W. Duan, M. Wen, P. Padidar, J. Li, N. Cheng, and P.-H. Ho,
‘‘Spectral efficiency enhanced cooperative device-to-device systems with
NOMA,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4040–4050,
Jul. 2021.

[17] Y. Li, Y. Wu, M. Dai, B. Lin, W. Jia, and X. Shen, ‘‘Hybrid NOMA-
FDMA assisted dual computation offloading: A latency minimization
approach,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3345–3360,
Sep. 2022.

[18] Z. Liu, F. Yang, J. Song, and Z. Han, ‘‘Mulitple access for downlink
multi-user VLC system: NOMA or OMA user pairing?’’ IEEE Wireless
Commun. Lett., early access, Jul. 26, 2023, doi: 10.1109/LWC.2023.
3299115.

[19] M. A. Hossain and N. Ansari, ‘‘Hybrid multiple access for network slicing
awaremobile edge computing,’’ IEEETrans. CloudComput., vol. 11, no. 3,
pp. 2910–2921, Jul./Sep. 2023.

[20] Z. Liu, F. Yang, J. Song, and Z. Han, ‘‘Mulitple access for downlink
multi-user VLC system: NOMA or OMA user pairing?’’ IEEE Wireless
Commun. Lett., early access, Jul. 26, 2023, doi: 10.1109/LWC.2023.
3299115.

[21] M. A. Hossain and N. Ansari, ‘‘Hybrid multiple access for network slicing
awaremobile edge computing,’’ IEEETrans. CloudComput., vol. 11, no. 3,
pp. 2910–2921, Jul./Sep. 2023.

[22] W. Lee, S. I. Choi, Y. H. Jang, and S. H. Lee, ‘‘Distributed hybrid
NOMA/OMA user allocation for wireless IoT networks,’’ IEEE Inter-
net Things J., early access, Aug. 21, 2023, doi: 10.1109/JIOT.2023.
3306877.

[23] G. C. Eichler, C. G. Ralha, A. Farhang, and M. A. Marotta, ‘‘Combining
NOMA-OMAwith amultiagent architeture for enhanced spectrum sharing
in 6G,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS),
May 2023, pp. 1–7.

[24] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, ‘‘QoE-based
resource allocation for multi-cell NOMA networks,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 9, pp. 6160–6176, Sep. 2018.

[25] B. Di, L. Song, and Y. Li, ‘‘Sub-channel assignment, power allocation,
and user scheduling for non-orthogonal multiple access networks,’’ IEEE
Trans. Wireless Commun., vol. 15, no. 11, pp. 7686–7698, Nov. 2016.

[26] B. Di, L. Song, and Y. Li, ‘‘Sub-channel assignment, power allocation,
and user scheduling for non-orthogonal multiple access networks,’’ IEEE
Trans. Wireless Commun., vol. 15, no. 11, pp. 7686–7698, Nov. 2016.

[27] Z. Ding, P. Fan, and H. V. Poor, ‘‘Impact of user pairing on 5G
nonorthogonal multiple-access downlink transmissions,’’ IEEE Trans. Veh.
Technol., vol. 65, no. 8, pp. 6010–6023, Aug. 2016.

[28] A. Celik, F. S. Al-Qahtani, R. M. Radaydeh, and M.-S. Alouini, ‘‘Cluster
formation and joint power-bandwidth allocation for imperfect NOMA
in DL-HetNets,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2017, pp. 1–6.

107262 VOLUME 11, 2023

http://dx.doi.org/10.1109/LWC.2023.3299115
http://dx.doi.org/10.1109/LWC.2023.3299115
http://dx.doi.org/10.1109/LWC.2023.3299115
http://dx.doi.org/10.1109/LWC.2023.3299115
http://dx.doi.org/10.1109/JIOT.2023.3306877
http://dx.doi.org/10.1109/JIOT.2023.3306877


A. Ebrahim et al.: Hybrid Multiple-Access: Mode Selection, User Pairing and Resource Allocation

[29] A. Celik, R. M. Radaydeh, F. S. Al-Qahtani, A. H. A. El-Malek, and
M.-S. Alouini, ‘‘Resource allocation and cluster formation for imperfect
NOMA in DL/UL decoupled HetNets,’’ in Proc. IEEE Globecom
Workshops (GC Wkshps), Dec. 2017, pp. 1–6.

[30] Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, ‘‘Fairness of
user clustering in MIMO non-orthogonal multiple access systems,’’ IEEE
Commun. Lett., vol. 20, no. 7, pp. 1465–1468, Jul. 2016.

[31] J. Ding, J. Cai, and C. Yi, ‘‘An improved coalition game approach for
MIMO-NOMA clustering integrating beamforming and power alloca-
tion,’’ IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1672–1687, Feb. 2019.

[32] M. A. Sedaghat and R. R. Müller, ‘‘On user pairing in uplink NOMA,’’
IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3474–3486, May 2018.

[33] M. S. Ali, H. Tabassum, and E. Hossain, ‘‘Dynamic user clustering and
power allocation for uplink and downlink non-orthogonal multiple access
(NOMA) systems,’’ IEEE Access, vol. 4, pp. 6325–6343, 2016.

[34] H. Zeng, J. Wang, Z. Wei, X. Zhu, Y. Jiang, Y. Wang, and C. Masouros,
‘‘Multicluster-coordination industrial Internet of Things: The era of
nonorthogonal transmission,’’ IEEE Veh. Technol. Mag., vol. 17, no. 3,
pp. 84–93, Sep. 2022.

[35] A. Ebrahim and E. Alsusa, ‘‘A multi-level interference mapping technique
for resource management in cellular networks,’’ in Proc. IEEE 81st Veh.
Technol. Conf. (VTC Spring), May 2015, pp. 1–5.

[36] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for
Mobile Broadband, E. Dahlman, S. Parkvall, and J. Sköld, Eds.,
1st ed. USA: New York, NY, USA: Academic, 2011, pp. i–iii.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780123854896000217, doi: 10.1016/B978-0-12-385489-6.00021-7.

[37] L. Lei, D. Yuan, C. K. Ho, and S. Sun, ‘‘Power and channel allocation for
non-orthogonal multiple access in 5G systems: Tractability and compu-
tation,’’ IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8580–8594,
Dec. 2016.

[38] L. Salaün, C. S. Chen, and M. Coupechoux, ‘‘Optimal joint subcarrier and
power allocation in NOMA is strongly NP-hard,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018, pp. 1–7.

[39] J. Papandriopoulos and J. Evans, ‘‘Low-complexity distributed algorithms
for spectrum balancing in multi-user DSL networks,’’ in Proc. IEEE Int.
Conf. Commun., Jun. 2006, pp. 3270–3275.

[40] J. Papandriopoulos and J. S. Evans, ‘‘SCALE: A low-complexity
distributed protocol for spectrum balancing in multiuser DSL networks,’’
IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3711–3724, Aug. 2009.

[41] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[42] M. W. Baidas and M. R. Amini, ‘‘Resource allocation for NOMA-based
multicast cognitive radio networks with energy-harvesting relays,’’ Phys.
Commun., vol. 42, pp. 1–15, Oct. 2020.

[43] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn, ‘‘A new
relaxation algorithm and passive sensor data association,’’ IEEE Trans.
Autom. Control, vol. 37, no. 2, pp. 198–213, Feb. 1992.

[44] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn, ‘‘A new
relaxation algorithm and passive sensor data association,’’ IEEE Trans.
Autom. Control, vol. 37, no. 2, pp. 198–213, Feb. 1992.

[45] A. Ebrahim, A. Celik, E. Alsusa, and A. M. Eltawil, ‘‘NOMA/OMAmode
selection and resource allocation for beyond 5G networks,’’ in Proc. IEEE
31st Annu. Int. Symp. Pers., Indoor Mobile Radio Commun., Aug. 2020,
pp. 1–6.

[46] Overview of 3GPP Release 12, document TS 36.101, 3GPP, Version 0.2.0,
Sep. 2015.

[47] M. Fallgren, ‘‘On the complexity of maximizing the minimum Shannon
capacity in wireless networks by joint channel assignment and power
allocation,’’ in Proc. IEEE 18th Int. Workshop Quality Service (IWQoS),
Jun. 2010, pp. 1–7.

[48] S. S. Jeng, J. M. Chen, C. W. Tsung, and Y. F. Lu, ‘‘Coverage
probability analysis of IEEE 802.16 systemwith smart antenna system over
Stanford University interim fading channels,’’ IET Commun., vol. 4, no. 1,
pp. 91–101, 2010.

[49] A. Zappone and E. Jorswieck, ‘‘Energy efficiency in wireless networks
via fractional programming theory,’’ Found. Trends Commun. Inf. Theory,
vol. 11, nos. 3–4, pp. 185–396, 2015.

[50] M. W. Baidas, M. S. Bahbahani, E. Alsusa, K. A. Hamdi, and Z. Ding,
‘‘Joint D2D group association and channel assignment in uplink multi-
cell NOMA networks: A matching-theoretic approach,’’ IEEE Trans.
Commun., vol. 67, no. 12, pp. 8771–8785, Dec. 2019.

[51] M. K. Awad, M. W. Baidas, A. A. El-Amine, and N. Al-Mubarak,
‘‘A matching-theoretic approach to resource allocation in D2D-enabled
downlink NOMA cellular networks,’’ Phys. Commun., vol. 54, pp. 1–22,
Oct. 2022.

AYSHA EBRAHIM (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in computer
engineering from the University of Bahrain,
in 2009, the M.Sc. degree (Hons.) in electronic
engineering from the University of York, in 2011,
and the Ph.D. degree in electrical and electronic
engineering from The University of Manchester,
in 2016. She received a postgraduate certificate
in academic practice (PCAP) from the University
of Bahrain, in 2017. She is currently with the

Department of Computer Engineering, University of Bahrain, as an
Assistant Professor. Her research interests include 5G and beyond wireless
networks, MAC layer design for wireless communication systems, green
wireless networking, interference and radio resource management, and cloud
computing. She is a fellow of the Higher Education Academy (HEA), U.K.,
a member of the Institute of Electrical and Electronic Engineers (IEEE), and
a BoardMember of the IEEEComSocBahrain Chapter. In 2019, she received
the Best Paper Award at the prestigious IEEE Wireless Communication and
Networking Conference (IEEE WCNC 2019). She served in many IEEE
events, including the organizing committee in IEEE MENACOM 2019, and
the Track Chair (TPC) of Globecom’18. She has been the Chair of the
Computer Engineering Department, Quality Assurance Committee, since
2018.

ABDULKADIR CELIK (Senior Member, IEEE)
received the M.S. degree in electrical engineering,
in 2013, the M.S. degree in computer engineering,
in 2015, and the Ph.D. degree in co-majors of elec-
trical engineering and computer engineering from
Iowa State University, Ames, IA, USA, in 2016.
He was a Postdoctoral Fellow with the King
Abdullah University of Science and Technology,
Thuwal, Saudi Arabia, from 2016 to 2020, where
he is currently a Senior Research Scientist with the

Communications and Computing Systems Laboratory. His research interest
includes next-generation wireless communication systems and networks.
He also serves as an Editor for IEEE COMMUNICATIONS LETTERS, IEEE
WIRELESS COMMUNICATION LETTERS, and Frontiers in Communications and
Networks.

EMAD ALSUSA (Senior Member, IEEE) received
the Ph.D. degree in telecommunications from the
University of Bath, U.K., in 2000. In 2000, he was
appointed to work on developing high data rates
systems as part of an industrial project based at
Edinburgh University. He joined The Manchester
University (then UMIST), in September 2003,
as a Faculty Member, where he is currently
the Head of the Communication Engineering
Research Group. His research interests include

communication systems with a focus on physical, MAC and network
layers where applications of his research include cellular networks, the
IoT, industry 4.0, radar systems, and powerline communications. His
research work has resulted in over 250 journals and refereed conference
publications mainly in top IEEE TRANSACTIONS and conferences. He is a
fellow of the Higher Academy of Education, U.K. He received a number
of awards, including the Best Paper Award at the International Symposium
on Power Line Communications 2016, the Wireless Communications,
Networks Conference 2019, and the IEEE International Symposium on
Networks, Computers and Communications 2021. He is the TPC Track
Chair of a number of conferences, such as VTC’16, GISN’16, PIMRC’17,
and Globecom’18; and the General Co-Chair of the OnlineGreenCom’16
Conference. He is also the U.K. Representative of the International Union
of Radio Science, and the Co-Chair of the IEEE Special Working Group on
RF Energy Harvesting. He is an Editor of the IEEEWIRELESS COMMUNICATION

LETTERS and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

VOLUME 11, 2023 107263

http://dx.doi.org/10.1016/B978-0-12-385489-6.00021-7


A. Ebrahim et al.: Hybrid Multiple-Access: Mode Selection, User Pairing and Resource Allocation

MOHAMMED W. BAIDAS (Senior Member,
IEEE) received the B.Eng. degree (Hons.) in
communication systems engineering from The
University of Manchester, Manchester, U.K.,
in 2005, the M.Sc. degree (Hons.) in wireless
communications engineering from the University
of Leeds, Leeds, U.K., in 2006, the M.S. degree
in electrical engineering from the University of
Maryland, College Park, MD, USA, in 2009,
and the Ph.D. degree in electrical engineering

from Virginia Tech, Blacksburg, VA, USA, in 2012. He was a Visiting
Researcher with The University of Manchester, from 2015 to 2016 and
from 2018 to 2019. He is currently a Professor with the Department of
Electrical Engineering, Kuwait University, Kuwait, where he has been
with the Faculty, since May 2012. He is also a frequent reviewer of
several IEEE journals and international journals and conferences, with
over 95 publications. His research interests include resource allocation
and management in cognitive radio systems, game theory, cooperative
communications and networking, and green and energy-harvesting networks.
He serves as a technical program committee member for various IEEE and
international conferences. He was a recipient of the Outstanding Teaching
Award from Kuwait University, from 2017 to 2018, and the Best Paper
Award from the IEEE International Symposium on Networks, Computers
and Communications (ISNCC2021).

AHMED M. ELTAWIL (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees (Hons.)
from Cairo University, Giza, Egypt, in 1997 and
1999, respectively, and the Ph.D. degree from the
University of California, Los Angeles, in 2003.
He is currently a Professor of electrical and
computer engineering with the King Abdullah
University of Science and Technology (KAUST),
where he joined the Computer, Electrical and
Mathematical Science and Engineering Division

(CEMSE), in 2019. Prior to that, he has been with the Electrical Engineering
and Computer Science Department, University of California, Irvine (UCI),
since 2005. At KAUST, he is the Founder and the Director of the
Communication and Computing Systems Laboratory (CCSL). His current
research interests include the general area of smart and connected systems
with an emphasis on mobile systems. He has been on the technical
program committees and steering committees for numerous workshops,
symposia, and conferences in the areas of low power computing and wireless
communication system design. He is a Senior Member of the National
Academy of Inventors, USA. He received several awards, including the
NSF CAREER grant supporting his research in low power computing
and communication systems. He received two United States Congressional
certificates recognizing his contributions to research and innovation. In 2021,
he was selected as the ‘‘Innovator of the Year’’ by the Henry Samueli School
of Engineering, University of California, Irvine.

107264 VOLUME 11, 2023


