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ABSTRACT In the current era of machine learning and radiomics, one of the challenges is the automatic
segmentation of organs and tumors. Tumor detection is mostly based on a radiologist’s manual reading,
which necessitates a high level of professional abilities and clinical experience. Moreover, increasing the
high volume of images makes radiologists’ assessments more challenging. Artificial intelligence (AI) can
assist clinicians in diagnosing cancer at an early stage by providing a solution for assisted medical image
analysis. The automated segmentation of tumor is better realized through conventional segmentationmethods
and, nowadays, through machine learning and deep learning techniques. The segmentation of abdominal
organs and tumors from various imaging modalities has gained much attention in recent years. Among
these, pancreas and pancreatic tumor are the most challenging to segment and have recently drawn a lot of
attraction. The main objective of this paper is to give a summary of different automated approaches for the
segmentation of pancreas and pancreatic tumors and to perform a comparative analysis using various indices
such as dice similarity coefficient (DSC), sensitivity (SI), specificity (SP), precision (Pr), recall and Jaccard
index (JI), etc. Finally, the limitations and future research perspectives of pancreas and tumor segmentation
are summarized.

INDEX TERMS Deep learning, machine learning, pancreas segmentation, pancreatic ductal adenocarci-
noma, tumor.

I. INTRODUCTION
In clinical practice, radiologists help in the visual analysis of
various anatomical structures. Small changes in form, size,
or structure can indicate illness and aid in the confirmation
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of a diagnosis. Manual readings with radiographic images,
such as computer tomography scan (CT) or magnetic
resonance imaging (MRI), are tedious and can lead to
inter and intra-operator variability. Moreover, for quantitative
radiographic image analysis with machine learning which has
shown widespread application in clinical decision making,
segmentation of organs or tumor plays an important role.
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FIGURE 1. Major challenges in segmentation of pancreas and pancreatic
tumor.

Automatic systems with artificial intelligence can assist
radiological experts in detecting and diagnosing disease
and thus improve treatment management. One such disease
that requires automated segmentation is pancreatic can-
cer. One of the most serious illnesses, pancreatic cancer,
is becoming more common. According to the global cancer
observatory (GLOBOCAN) 2020 statistics, pancreatic cancer
accounted for approximately 466,003 deaths worldwide, with
54,277 fatalities reported in the United States in the same
year [1].

The most prevalent kind of pancreatic cancer, pancreatic
ductal adenocarcinoma (PDAC), arises from the exocrine
glands and ducts of the pancreas [2]. Despite improvement in
treatment techniques for cancer care, five year survival rate
for PDAC is only 10% [3] due to its late diagnosis and lack
of effective treatment. More than half of the patients are with
metastasis, and 30%with locally advanced disease at the time
of diagnosis. As themortality and incidence rate of pancreatic
cancer is continually rising globally, there is an unmet need
to enhance the survival outcomes of individuals affected
by this disease through the implementation of advanced
diagnostic and therapeutic interventions. Recent studies show
that patients diagnosed at stage-I can have the most favorable
outcome, with a 5-year survival rate reaching up to 80% [4].
Thus, better detection of early-stage disease is a tremendous
opportunity to improve PDAC prognosis.

However, detection and segmentation of PDAC is often
challenging and vary due to irregular contours and ill-defined
margins [5], as shown in FIGURE 1. In addition, in the
past decade, with the advancement of imaging technol-
ogy, radiographic images are being widely investigated
with machine learning to develop imaging biomarkers of
diagnosis, progression, outcome, and response prediction
[6]. However, these techniques highly depend on manual
segmentation. As compared to the liver, spleen, and other
abdominal organs, the segmentation of the pancreas is
challenging as pancreas shape, size, and position are different
between individuals [7], [8], [9].
Automated segmentation of pancreas and pancreatic tumor

techniques thus can help radiologists not only in proper

detection and diagnosis but also in developing more gen-
eralized imaging biomarkers for pancreatic cancer. Several
approaches have been proposed for automated segmentation
of pancreas and pancreatic tumor using different techniques.
However, the methods with unsupervised learning, such as
clustering, region growing, threshold based methods, etc., did
not provide satisfactory performance.

Deep learning-based segmentation techniques have
recently seen widespread implementation and have out-
performed traditional segmentation techniques in terms
of performance. These models consist of hierarchical
architecture with different layers. Deep learning with
convolutional neural networks (CNN) is the most successful
architecture for image analysis. Neural networks, consisting
of neurons with parameters and activation functions, have
been utilized to extract and combine image features, enabling
the development of diagnostic models.

The neural network is composed of neurons with parame-
ters and activation functions to extricate and merge the image
features, enabling the development of diagnostic models.
In diagnosis and segmentation of various diseases such as
diabetic retinopathy [10], liver masses [11], and skin cancer
[12] CNN has achieved a better accuracy than conventional
methods. Discovering the practicality of CNN in pancreatic
cancer segmentation has major implications discussed in
pertinent sections. This paper aims to comprehensively
review the studies based on the segmentation of the pancreas
and pancreatic tumor by using various conventional, unsu-
pervised and supervised approaches, including deep learning
methods. The paper also discusses the current challenges in
pancreatic tumor segmentation and the future scope of such
techniques.

FIGURE 2 represents the detailed outline of the literature
review paper.

The subsequent sections of the paper are as follows.
Section II focuses on the database selection method.
Section III describes the statistical analysis of AI in
pancreatic cancer segmentation. Section IV addresses various
imaging modalities. Section V presents a detailed review
of various pancreas and pancreatic tumor segmentation
techniques. Section VI describes the evaluation metrics used
in segmentation. Section VII provides an overview of the
experimental datasets. Section VIII discusses the findings
and insights derived from the review. Section IX summarizes
the overall review. Finally, Section X concludes the paper
by outlining the future approaches for pancreas and tumor
segmentation.

II. DATABASE SELECTION METHOD
A comprehensive search for pancreas and pancreatic tumor
segmentation was performed to identify relevant scholarly
articles for this survey. The search included prestigious
scientific papers from reputed publishers in digital libraries
like ScienceDirect, Springer, IEEE Xplore, PubMed, etc.
Additionally, annual challenges like the Medical Segmen-
tation Decathlon (MSD) were reviewed. In addition, the
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FIGURE 2. Outline of Literature Review.

search extended to include databases such as Google Patents,
and the Web of Science, where search keys such as ‘‘pan-
creas’’, ‘‘pancreatic cancer’’, ‘‘segmentation’’, ‘‘artificial
intelligence’’, ‘‘machine learning’’, and ‘‘deep learning’’
were used.

The title and abstract of the articles were assessed as a
part of the screening process, and then the full text review
was performed for the selected articles. The collected data
included information about the authors, article/report title,
year, imaging modality, segmentation method, dataset, and
algorithm performance. The goal of this survey is to offer a
comprehensive analysis of techniques employed for pancreas

FIGURE 3. Implementation of literature review.

FIGURE 4. Analysis of top 15 countries with publication records.

and pancreatic tumor segmentation. FIGURE 3 represents
flow of literature review conducted.

III. STATISTICAL ANALYSIS OF PANCREATIC CANCER
SEGMENTATION
Web of Science database is used for the analysis of pancreatic
cancer segmentation. Web of Science is one of the most com-
mon and acknowledged databases in bibliometric analysis.
The search terms used were ‘‘pancreatic’’ OR ‘‘pancreas’’
OR ‘‘image segmentation’’ OR ‘‘artificial intelligence’’ OR
‘‘machine learning’’ OR ‘‘deep learning’’ OR ‘‘convolutional
neural network’’. The publication date range was restricted
to 2013 to 2023. The documents were restricted to articles
and reviews. VOSviewer and Microsoft Excel are used for
the representation of analysis.

A. QUANTITATIVE ANALYSIS
The quantitative analysis provides an overview of various
countries having research in artificial intelligence for pancre-
atic cancer and an analysis of total publications and citation
records for pancreatic cancer segmentation across the globe.

Major countries around the world have received attention
for research in pancreatic cancer segmentation using AI.
Among those, 15 countries with the highest publication
record for pancreatic cancer were observed and shown in
FIGURE 4. According to the figure, China is the country
with the highest number of publication records for pancreatic
cancer, followed by the United States.

The analysis of the total number of publications worldwide
and the total number of citations from 2013 to 2023 is
depicted in FIGURE 5. The graph clearly illustrates a
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FIGURE 5. Number of publications.

FIGURE 6. Co-occurrence of keywords for pancreatic cancer
segmentation by VOSviewer.

consistent upward trend in the number of publications
focusing on pancreatic cancer segmentation utilizing artificial
intelligence.

B. QUALITATIVE ANALYSIS
Qualitative Analysis includes the co-occurrence analysis that
identifies hot topics and aids scholars in better understanding
current scientific issues by examining the keywords in a
group of publications. In this review, VOSviewer software
was used to analyse the co-occurrence of keywords from
the Web of Science database. Qualitative analysis was
done on both pancreas and pancreatic cancer segmen-
tation. FIGURE 6 represents a visual network map of
the co-occurrence of keywords for pancreatic cancer, and
FIGURE 7 shows a network map of the co-occurrence
of keywords for the pancreas. The visualization nodes are
depicted in various colors to represent different clusters.
The node size corresponds to the occurrence of keywords
associated with it. The greater the size of the node higher
the occurrence of keywords. Additionally, a thick connecting
line between the nodes indicates a strong relation between the
items, highlighting their close association.

IV. IMAGING MODALITIES
Pancreatic cancer diagnosis and evaluation heavily rely
on different imaging modalities, each offering unique

FIGURE 7. Co-occurrence of keywords for pancreas segmentation by
VOSviewer.

FIGURE 8. Imaging modalities.

advantages and capabilities. The common imagingmodalities
used for the detection, diagnosis, and prognosis of pancreatic
cancer are CT, MRI, Positron Emission Tomography (PET)
contrast, and enhanced-endoscopy ultrasound (CE-EUS).
For the assessment of the pancreas and pancreatic cancer,
computed tomography (CT) is frequently used as the
primary imaging modality. It provides extensive anatomical
information, identifying pancreatic lesions and surrounding
structures by exploiting variations in tissue density. The
ability to discriminate between healthy pancreatic tissue
and tumors based on their vascular characteristics is further
improved by enhanced CT. Using CT imaging, the perivascu-
lar vascularity around the pancreas may be seen clearly.

Magnetic Resonance Imaging (MRI) is another important
modality to observe the pancreas and other organs.MRI scans
can help to visualize detailed and in depth properties of organ
scans similar to CT. Different imaging sequences can be used
byMRI to pinpoint the location of lesions and identify minute
anomalies. It is vital to note that CT imaging often provides
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abdominal imaging with a better degree of precision than
MRI.

Another specialized imaging technique, Contrast-
enhanced Endoscopy Ultrasound (CE-EUS), is also used
as an effective visualization method for pancreas and
lesions. In this imaging technique, high-resolution images
are taken using an endoscope with an ultrasonic probe that is
inserted into the digestive tract. Accurate identification and
characterisation of pancreatic tumors are made possible by
real-time imaging with good contrast provided by CE-EUS.

Positron Emission Tomography (PET) is another imaging
modality that can also be used for pancreatic tumor visu-
alization. A radiotracer that builds up in places with high
metabolic activity, such as cancer cells, is injected in this
procedure. PET scans are able to locate and identify pancreas
and pancreatic tumors, as well as determine the size and
likelihood of metastases.

In pancreas and pancreatic cancer evaluation, each modal-
ity has its own strengths and weaknesses. There are various
factors for the choice of the modality, such as clinical
scenario, availability, cost, and expertise. In this literature,
the focus will be more on the CT scan modality. FIGURE 8
illustrates different imaging modalities with advantages and
disadvantages for pancreas and tumor detection, diagnosis,
and segmentation.

V. PANCREAS AND TUMOR SEGMENTATION
The process of medical image segmentation involves utilizing
computer-based image processing techniques to extract
region of interest from medical images, such as to accurately
identify and isolate specific organs, tissues, and tumors from
CT and MRI for detection, diagnosis, or for further studies.
Segmentation basically divides the image into different
sub-regions based on the similarity or differences between
regions. Medical image segmentation enables clinicians to
examine lesions and other region of interest (ROI) both
qualitatively and quantitatively, which can improve the
precision of medical diagnosis.

Different automated pancreas and pancreatic tumor seg-
mentation approaches are explained in the literature. The uti-
lization of automated segmentation techniques can alleviate
the difficulties associated with manually assessing pancreatic
tumors. In this section, first, different pre-processing tech-
niques will be discussed. Next conventional segmentation
techniques followed by supervised machine learning and
deep learning methods for pancreas segmentation and finally
the paper delves into the methods for pancreatic tumor
segmentation with their reported performance.

A. PRE-PROCESSING TECHNIQUES TO REMOVE NOISE
AND ENHANCE THE IMAGE QUALITY
Pre-processing medical images is crucial before perform-
ing any image analysis or segmentation. Pre-processing
improves the image quality and helps remove the noise
for better outcomes in terms of accuracy and reliability for
segmentation tasks. In medical images, noise occurs during

acquisition, specifically when there is a low radiation dose.
Handling different types of noise is necessary for accurate
and precise segmentation of pancreas and pancreatic tumors.
Some of the most common noises are salt and pepper noise,
Gaussian noise, speckle noise, motion artifacts, etc. Different
filtering techniques are incorporated to reduce this noise.
Previously, the noise was removed by traditional filtering
techniques such as mean, median, Gaussian, and Weiner
filters. Nowadays, deep learning based methods such as deep
CNN [12], CNN denoising autoencoder [13], Generative
Adversarial Networks (GAN) [15], [16], conditional GAN
[17], [18], etc. are used to remove noise from medical
images. Other pre-processing operations, including intensity
normalization, cropping, resizing, and data augmentation
techniques, are performed to improve the quality of CT scans.
Intensity normalization is standardizing the pixel values
such that images should have consistent pixel values for
segmentation. Cropping focuses on the region of interest
and discards the area outside that region. Resizing helps
to change the resolution or spatial dimensions of the CT
scans to achieve the desired resolution. Data augmentation
helps to increase the training data artificially. Different
augmentation techniques, such as rotation, scaling, zooming,
and flipping, are applied to improve the robustness of
machine learningmodels for limited training data. The choice
of pre-processing should align with the medical imaging
modality and segmentation task. Pre-processing plays a vital
role in enhancing the quality and effectiveness of medical
images. Pre-processing also helps to mitigate issues such
as acquisition settings and noise. It is essential to consider
pre-processing as an integral component of themedical image
segmentation pipeline to achieve good results.

B. AUTOMATIC METHODS FOR PANCREAS
SEGMENTATION
1) CONVENTIONAL SEGMENTATION METHODS
In conventional segmentation techniques, the multi-organ
atlas-based method is among the common approaches for
medical image segmentation. The ‘‘multi-organ’’ name
indicates that this method segments multiple organs, and
the name ‘‘atlas’’ indicates a labeled reference image or
predefined template of an anatomical structure. The atlas
can be the pancreas, liver, spleen, and any other abdominal
organ. The atlas is obtained from CT images wherein the
organs are manually segmented and labeled, which is further
used as a reference for implementing different segmentation
algorithms. A pre-existing atlas or template of the pancreas
can be used further to guide the segmentation process.

During the segmentation stage, the atlas or template is
matched with the target CT scan using image registration
techniques. The labeled information is transferred to the
associated structures, such as the pancreas in the target image,
by registering the atlas with the target image.

The segmentation algorithm can precisely detect and
outline the pancreas in the target CT image with the help
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FIGURE 9. Atlas-based segmentation of pancreatic tumor.

of an atlas which provides valuable insights about the shape
and location of the pancreas. The algorithm may overcome
difficulties seen in CT scans, such as blurred borders and low
contrast, by making use of the atlas.

Overall, the use of an atlas in CT image analysis makes
it easier to segment anatomical structures automatically by
giving a reference template and prior knowledge of the
predicted appearance and spatial connections of organs, such
as the pancreas. A variety of therapeutic applications, such as
the identification and planning of pancreatic cancer, are made
possible by this method’s improved precision and efficacy
in pancreas segmentation in CT scans. The multiorgan
atlas-based segmentation method offers the benefit of low
training time. The atlas-based segmentation approach is
represented in FIGURE 9.

Shen et al. [13] proposed an automated segmentation
method for various organs in the abdomen and adipose
tissue compartments. Their approach utilized a multi-atlas
registration technique, involving the manual creation of
19 atlases, followed by registration-based segmentation.
The method was evaluated on data from 26 obese patients
pre- and post-weight-loss intervention, demonstrating good
agreement with manual segmentation.

In a separate study by Tong et al. [14], a technique
for multiple organ segmentation using CT scans was
developed. They employed two DDLS (discrimination-based
dictionary learning) methods. In the first, called global DDLS
(G-DDLS), a set of atlases was chosen depending on how
closely they resembled the target image within the global
mask. The second, local DDLS (L-DLS), used voxel-wise
atlas selection to choose similar atlases locally at various
locations inside the target image.

Wolz et al. [15] developed a fully automated multi-organ
segmentation that involves a hierarchical atlas generation step
and a refinement step. The atlas labels generated during this
step are used to describe and define anatomical structures
at different scales - global (entire image), organ (individual
organ), and voxel level(pixels). The most suitable atlases
are selected based on the global image appearance, aligned
with the target image, and weighted locally on an individual

organ. Subsequently, a patch-based segmentation refinement
is performed at the voxel level. To enhance the segmentation,
a graph-cuts based refinement step is conducted, incorpo-
rating constraints related to local smoothness and high-level
spatial relationships.

In order to choose atlases with a high degree of pancreatic
similarity to the unlabeled volume, Karasawa et al. [16]
implemented a structure specific atlas generation that used
structural information in the generation of the atlas. Chu et al.
[17] generated probabilistic atlases to segment the pancreas
and other abdominal organs using maximum a posterior
(MAP) estimation and a graph cut method. Saito et al. [18]
use a statistical shape model to consider all possible shapes
and a search algorithm to select the best shape for pancreas
segmentation. This approach does not require predefined
shapes or complex hierarchies. The algorithm optimizes both
the shape model and the segmentation labeling, resulting
in more precise and efficient segmentation. A regression
forest technique was implemented by Oda et al. [19] to
evaluate the size of the pancreas, position of the pancreas,
and a patient specific atlas generation wherein a new
similar atlas was generated based on information related
to blood vessel characteristics. The segmentation process
employed a combination of the expectation maximization
(EM) algorithm, utilizing atlases as priors, and the graph-cut
optimization method. The utilization of the multi-organ
atlas-based method can significantly enhance the results of
pancreas segmentation, playing a vital role in applications
like diagnosis and pancreatic cancer treatment.

2) SUPERVISED MACHINE LEARNING & DEEP LEARNING
BASED SEGMENTATION OF PANCREAS
Machine learning based techniques are classified into two
major techniques supervised and unsupervised learning.
Supervised machine learning based pancreas segmentation
techniques have recently come to light as potential alterna-
tives to the challenges faced by the traditional segmentation
approach. These methods use huge of annotated medical
image data to train the models that accurately identify
and segment the pancreas. Figure 10 shows the evolution
of pancreatic cancer segmentation from the 1950s using
machine learning and deep learning.

Deep learning usesmultiple layer artificial neural networks
(hence ‘‘deep’’) to learn complex patterns and representations
directly from the data. The training of the neural network
involves a vast collection of labeled medical images, where
the ground truth segmentation of the target structures is
provided for training purposes. The network learns to
autonomously extract pertinent features and patterns from the
input image and maps them to their respective segmentation
masks. Convolutional neural networks (CNNs) play a pivotal
role in deep learning by directly extracting features from
the images. Recently deep learning techniques can achieve
state-of-the-art results in pancreas segmentation tasks. These
methods have the potential to improve the accuracy and
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FIGURE 10. Evolution of machine learning and deep learning for pancreatic cancer segmentation.

efficiency of pancreas segmentation, which can lead to better
diagnosis, treatment, and patient outcomes. Convolutional
neural networks (CNNs) are widely employed to segment
the pancreas, due to their effective learning characteristics
that allow them to directly learn from imaging data. Several
CNN-based techniques like deep CNNs [20], VoxResNet
[21], SegNet [22], fully convolutional neural networks
(FCNs) [23], and U-Net [24] have shown promising results
in performing pixel-level labeling tasks for semantic seg-
mentation. These algorithms employ different architectures
and techniques such as skip connections, pooling, and
upsampling, to increase the segmentation accuracy and
efficiency. For instance, the U-Net employs a contracting path
and an expanding path for feature extraction and localization.
The VoxResNet architecture combines residual learning with
a 3D CNN to capture both spatial and temporal information.

Zhou et al. [25] proposed a ‘‘coarse to fine’’ model for
pancreas segmentation that involves the use of a coarse-scaled
and fine-scaled network. The framework is built upon the
observation that processing smaller input regions can achieve
more precise segmentation outcomes. Despite being trained
and tested independently, this approach has been shown to
deliver better accuracy.

Additionally, they showcased a saliency transformation
network [26], which includes the generation of spatial
weights using the score map obtained from the coarse-scaled
segmentation network and applying these weights to the
fine-scaled segmentation network. This method allows both
segmentation networks to be adjusted together, making them
more efficient.

The holistically nested network, initially developed for
edge detection using deep learning, was repurposed for image
segmentation and showed promising results in pancreatic
segmentation [27], [28]. It uses deep dense per pixel masking
to process different sequences of 2D image slices. However,
it did not explore explicitly applying a spatial consistency
requirement on slice segmentation.

Zhu et al. [29] implemented a ResNet architecture on
3D data for segmentation of the pancreas. This framework
takes advantage of extensive spatial information and all three
dimensions of data, leading to better segmentation results
than the 2D counterpart.

Roth et al. [30] implemented a cascaded dual stage
architecture that consists of pancreas localization and seg-
mentation. In the first stage, the pancreas is localized, and
a robust bounding box is produced for more comprehensive
segmentation in the second stage. To segment the pancreatic
tissue, a holistically nested convolutional network (HCNN)
is used, which takes into account three orthogonal views:
coronal, axial, and sagittal. The HCNN combines multiple
convolutional layers to capture multi-scale features, which
leads to improved segmentation results. Pooling is used to
concatenate the HCNN probability maps for every pixel,
which helps to generate a 3D bounding box of the pancreas
and improve recall. This approach is advantageous since it
reduces the likelihood of missing any part of the pancreas
during segmentation, which can be critical for the detection
of pancreatic diseases.

Attention U-Net was proposed by Oktay et al. [31] for
pancreas segmentation. The model combines the attention
mechanism and U-Net architecture to selectively highlight
regions of the input image that are relevant for pancreas
segmentation. This attention mechanism is learned from the
input image itself, which allows to focus on informative
regions and suppress irrelevant regions. The Attention
U-Net comprises an encoder and decoder layer with skip
connections between them. The attentionmechanism is added
in the decoder part of the network, where it performs
element-wise multiplication of the generated spatial attention
maps with the feature maps from the encoder layers. These
attention maps are learned by the model during training to
highlight the relevant features for pancreas segmentation.
On two distinct datasets, themodel was assessed and achieved
an exceptional outcome. A detailed analysis of the attention
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FIGURE 11. History of different pancreas and pancreatic tumor segmentation methods.

maps was performed, showing that the model indeed learns
to focus on the pancreas region and suppress irrelevant
background regions.

For pancreas segmentation, Man et al. [32] introduced
a novel approach based on deep reinforcement learning
in CT images using a geometry-aware deformable U-Net.
Their approach involves a two-stage process, with the first
stage focusing on, a single slice of the 3D CT volume
is selected, and a reinforcement learning agent is trained
to identify the optimal bounding box for the pancreas
in that slice. In the second stage, the identified pancreas
region is segmented using the deformable U-Net, which
utilizes the shape information of the pancreas in different
slices. The pixel-wise results from the three orthogonal axes
(coronal, axial, and sagittal) are combined to generate the
final segmentation. Their approach demonstrated superior
performance compared to other existingmethods for pancreas
segmentation.

Xue et al. [33] developed amethod of two cascaded phases,
where the first phase localizes the pancreatic region using a
shape-specific module that extracts shape-specific features
from the CT image. For precise pancreas segmentation,
the second phase uses a multitask 3D dense-U-Net. The
proposed method surpasses various advanced techniques,
such as U-Net, Attention U-Net, and Shape-aware U-Net,
in terms of segmentation performance and handles inter-slice
inconsistencies using a slice-to-slice fusion mechanism. The
suggested strategy is effective and accurate for the clinical use
of pancreas segmentation.

Farag et al. [34] introduced a novel bottom-up approach
for segmenting the pancreas consisting of two main stages.
In the first stage, the authors proposed a superpixel-based
segmentation method to generate an initial segmentation
mask, which is then refined using a cascaded framework.
In the second stage, the authors proposed a deep image patch

labeling method to classify each image patch as pancreas or
non-pancreas using a deep CNN.

Chen et al. [35] presented a method that incorporates
a multi-scale supervision approach and two-view feature
learning for pancreas segmentation using CT images. The
method effectively captures the multi-view complementary
information of the pancreas and combines features at different
scales to improve the segmentation accuracy.

A MobileNet-U-Net (MBU-Net) is proposed by fusing
MobileNet-V2 and U-Net architecture with repetitive dilated
convolutions for semantic pancreas segmentation [36].

Qiu et al. [37] introduced a novel framework called dual
enhancement module, that enhances fine-scale segmentation
input from the coarse-scaled segmentation mask. Segmen-
tation performance was improved using multi-scale feature
calibration U-Net (MFCUNet) architecture at the pixel level,
as directly fusing these features for recovering boundary
information can lead to redundancy and inaccuracies.
Additionally, a cascaded MFCUNet was implemented, that
combines the merits of both MFCUNet and dual enhance-
ment module, achieving the best pancreatic segmentation
performance possible. Overall, the proposed framework
demonstrates significant improvements in pancreatic seg-
mentation using medical images. He et al. [38] developed a
model combining U-Net with a transformer called U-Netmer
for the segmentation of medical images. The U-Netmer
model offers flexibility in segmenting input images with
various patch sizes while maintaining the same structure and
parameters. This unique design and clever training strategies
enable the U-Netmer to effectively integrate multi-scale
contextual knowledge during the learning process.

Wang et al. [39] implemented a two input approach for
pancreas segmentation, which includes a graph based visual
saliency (GBVS) algorithm and a v-mesh FCN which helps
to enhance feature extraction and reduces the semantic gap,
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an attention mechanism combines multiple feature maps to
emphasize ROIs.

Li et al. [40] implemented a probabilistic-map-guided bi-
directional recurrent UNet (PBR-UNet) for the segmentation
of the pancreas. It combines intra-slice information and
inter-slice probabilistic maps to create a local 3D hybrid regu-
larization strategy, and a bi-directional recurrent optimization
scheme is followed to improve the accuracy.

Quereshi et al. [41] implemented a multiphase deep
learning framework for precise pancreatic segmentation in
CT imaging. The pancreas is localised using the VGG-19
deep learning network, and then soft labels are created in the
localised area. A 3D volume template that depicts the overall
form of the pancreas is then combined with the soft labels.
This fusion process allows for the refinement of soft labels
and leads to improved segmentation results.

Giddwani et al. [42] proposed a multi-rate deep dilated
V-Net architecture, which demonstrated better segmentation
performance.Mo et al. [43] developed a 3D iterative enhance-
ment network that accurately segmented the pancreas. They
used a residual network for feature extraction and refined
individual features. Nishio et al. [44] used standard and deep
U-Nets for the segmentation of the pancreas. Zhu et al. [45]
integrated a neural architecture search to find the optimal
architecture between 2D, 3D, or pseudo 3D convolution at
each layer. They implemented neural architecture search on
NIH and MSD dataset.

Fan et al. [46] implemented a regularized U-Net architec-
ture to achieve regularized pancreas segmentation. Similarly,
other U-Net architectures, such as fully-convolutional U-
Net [47], attention U-Net [31], and automatic multi-organ
segmentation with adversarial loss [48], have been developed
to achieve better segmentation results. Dai et al. [49]
developed a Trans-Deformer network using a combination
of 2D U-Net at the coarse stage and added a deformable
convolution to the vision transformer at the fine stage. They
implemented the architecture on both the NIH and MSD
datasets. Thus application of supervised machine learning
and deep learning based algorithms is widely implemented
for the segmentation of the pancreas.

3) UNSUPERVISED MACHINE LEARNING BASED
SEGMENTATION
Unsupervised machine learning is the algorithm that learns
patterns and structures from unlabeled data without explicit
guidance or supervision. Examples of unsupervised learning
methods consist of K-means clustering [50], Principal
Component Analysis (PCA) [51], and Non-negative Matrix
Factorization (NMF) [52]. Very few papers represent the
segmentation of the pancreas and tumor using unsupervised
learning. Roy et al. [53] used an improvedK-means clustering
for tumor segmentation. Jain et al. [54] developed an
unsupervised approach that localizes the pancreas from
CT scans. Clustering-based methods evaluate the clustering
quality using the Clustering Validity Index (CVI). The

clustering index helps researchers to assess and compare
different clustering algorithms. There are different types of
CVIs, such as the Davies-Bouldin Index, Silhouette Score,
Dunn Index, etc. Tang et al. [55] developed a novel CVI
called the Triple Center Relation (TCR) index for fuzzy
clustering. It considers two factors, within-class compactness
and between-class separateness, which is a vital property
of the TCR index. This index is robust and can achieve
good results for high-dimensional datasets. The application of
unsupervised learning techniques is uncommon in pancreas
and pancreatic tumor segmentation research.

C. DEEP LEARNING BASED SEGMENTATION OF
PANCREATIC TUMOR
Segmentation of pancreatic tumor and cyst is quite chal-
lenging as compared to segmentation on the pancreas. Deep
learning has become a popular technique for pancreatic
tumor segmentation due to its ability to automatically
extract intricate patterns and features from extensive datasets.
Figure 11 shows the overall history of different pancreas
and pancreatic tumor segmentation methods. A detailed
illustration of machine learning and deep learning based
segmentation is represented in Figure 12. This section
presents a review of various methods used for pancreatic
tumor segmentation.

Du et al. [56] implemented a novel multi-scale channel
attention UNet architecture to segment pancreatic tumor.
The multi-scale network was embedded into the encoder
and decoder for semantic information extraction. This work
was implemented on the private dataset and focused on
segmenting small pancreatic tumors.

Li et al. [57] performed the segmentation with a 3D FCN.
To enhance tumor segmentation without compromising the
pancreatic information, they employed three different guided
modules for temperature. The balancing temperature loss
function was created with the specific purpose of dynam-
ically adjusting the learning points between the pancreas
and the tumor, ensuring a balanced selection of features.
Additionally, they implemented a rigid temperature optimizer
to probabilistically accept non-improving movements and
adaptively avoid local optima. Furthermore, they incorpo-
rated a soft temperature indicator that automatically guided
the network towards a fine-tuning phase as the model reached
stability. This approach led to improved segmentation
outcomes, ensuring both accuracy and efficiency in jointly
segmenting the pancreas and pancreatic tumors. Overall, their
methodology showcased promising results in this regard.

Zhu et al. [58] introduced a framework that combines
segmentation and classification for interpreting abnormality
in medical images. The framework involves training a
segmentation network to identify tumor voxels and then
performing classification based on the presence of these
voxels in testing volumes. Two important techniques were
employed to enhance classification accuracy: multi-scale
network training and coarse-to-fine testing. Significantly,
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FIGURE 12. Illustration of machine learning and deep learning-based segmentation techniques.

these strategies helped the classification process perform
better overall.

Chen et al. [59] developed a novel approach unified tumor
Transformer (UniT) model for the simultaneous diagnosis,
detection, and segmentation of eight common cancers from
3D CT scans. UniT leverages a query-based transformer
architecture and introduces a clinically inspired hierarchical
tumor representation. It incorporates a dual-task query
decoding stage to generate segmentation masks. Oh et al. [60]
introduced a method for the segmentation of pancreatic cystic
lesions from endoscopic ultrasonography (EUS) images.
They developed an attention U-Net architecture, which incor-
porates an attention mechanism that enables concentrating
on the informative regions of input images. This architecture
was assessed on both internal and external test datasets and a
comparison with other cutting-edge models like Basic U-Net,
Residual U-Net, and U-Net++.

Alves et al. [61] developed a nn-UNet for the detection
and segmentation of pancreas and pancreatic tumor. This
architecture is an extension of the 3D U-Net model which
also includes a deep supervision mechanism to enable better
training of the network. The nn-UNet architecture achieved
better performance for the pancreas and showcased better
results for tumor detection. This architecture is capable of
simultaneously segmenting multiple anatomical structures.

Si et al. [62] segmented pancreatic tumor using a
combination of three different architectures. The pancreas
was detected using ResNet-18, and U-Net32 was used
for the segmentation of the pancreas region from the

CT scan. Finally, ResNet-34 was implemented for tumor
detection. This approach demonstrated better accuracy for
both pancreas and tumor detection.

Mahmoudi et al. [63] developed a framework for pancreas
and tumor segmentation by combining the CNN architecture
with textured U-Net architecture. Initially, the pancreas was
localized by CNN and then segmentation of tumor was
performed using textured U-Net architecture. The framework
showed better results for the pancreas than the pancreatic
tumor segmentation.

Iwasa et al. [64] presented an automated system for the
segmentation of PDAC from contrast-enhanced endoscopic
ultrasound (CE-EUS) video images. The system utilized
a U-Net and performed training and evaluation using a
4-fold cross-validation. This method showed good results
in segmenting PDAC from CE-EUS images and has the
potential to aid in the early diagnosis and treatment of PDAC.
Li et al. [65] introduced an enhanced UNet framework called
Position Guided Deformable UNet (PGDUNet) architecture.
With regard to tumor segmentation, this architecture handles
issues including size and form variations and significant class
imbalance. PGDUNet consists of a deformable convolution
with a localization route and a focal loss function for the
suppression of noise. The study specifically focuses on both
the pancreas and pancreatic tumor segmentation.

Tureckova et al. [66] developed a novel approach to
improve the accuracy of pancreatic tumor segmentation.
Deep supervision and attentional gates were used in their
network architecture to enhance the segmentation accuracy.
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FIGURE 13. Example of abdominal CT scan of the pancreas and PDAC
segmentation. (A) A non-segmented CT scan of the abdomen
(B) Segmented pancreas in blue, tumor in red, and duct in green colour
[69].

The use of attentional gates helped to focus on the vital
regions, while deep supervision helped in better training of
the network.

Jiang et al. [67] implemented DLU-Net for the segmen-
tation of pancreatic tumor edges. The model is proposed of
a densely connected U-Net architecture combined with an
attention gate module and deep supervision mechanism. The
proposed method can assist clinicians in more accurate tumor
segmentation and treatment planning.

Liang et al. [68] developed an automated system for
pancreatic tumor segmentation using multi-parametric MRI
scans. The system consists of three different modules: feature
extraction, classification, and segmentation. This system was
implemented on a private dataset giving better results for the
segmentation of tumor. The sample abdominal CT scan of the
pancreas and pancreatic tumor segmentation is represented in
FIGURE 13.

Zheng et al. [70] developed a framework for the seg-
mentation of the pancreas using a squeeze and extraction
block in U-Net architecture. The uncertain regions were
also determined using shadowed sets. The framework was
implemented using MRI as well as CT scans. The MRI
dataset was used to segment the tumor and the CT scan dataset
segmented the pancreas. This makes the framework versatile
in clinical practice.

Guo et al. [71] segmented pancreatic tumor using com-
bination of U-Net and Layered Optimal Graph Image
Segmentation for Multiple Objects and Surfaces (LOGIS-
MOS) approach. The LOGISMOS approach incorporates the
geometric and spatial information in the segmentation. The
graph-based approach of LOGISMOS helps user to adjust
the segmentation by changing nodes and edges. This method
enables to precisely segment pancreatic tumor.

Zhou et al. [72] implemented Deep FCN for segmentation
of pancreas and cyst. This method was implemented on
private dataset of 131 CT scans. Deep FCN approach
demonstrated better results for pancreas segmentation and
quite good results for segmentation of cyst.

Thus precise and reliable segmentation of pancreatic
tumor is achieved using deep learning techniques. Table 3
summarizes the various deep learning based methods and its
performance for pancreatic tumor and cyst segmentation. The

majority methods have been evaluated on publicly available
as well as privately available datasets, demonstrating their
potential for clinical applications. Furthermore, the advance-
ment of deep learning-based segmentation techniques has
revolutionized the segmentation process by automating it,
thereby minimizing the requirement for manual intervention.
This automation facilitates early detection and treatment of
pancreatic cancer, offering significant benefits in terms of
timely medical interventions.

VI. EVALUATION METRICS
The evaluation of segmentation techniques typically involves
comparing the results obtained from the model with the
ground truth segmentation obtained through manual annota-
tions. The performance is evaluated using different evaluation
metrics. The most commonly used metrics are the Dice
similarity coefficient (DSC) and the Jaccard index (JI). DSC
and JI [44], [70], [72], [73] are the similarity metrics that
measures the similarity between ground truth and predicted
segmentation results. DSC is defined in equation 1 as:

DSC =
2 ∗ |A ∩ B|

|A| + |B|
(1)

Jaccard Index is defined in equation 2 as:

JI =
|A ∩ B|

|A ∪ B|
(2)

where A and B represent the ground truth mask and the
predicted mask, respectively. The numerator represents
the number of pixels that are correctly segmented in both
the ground truth and predicted masks, while the denominator
denotes the cumulative pixel count in both masks. Both DSC
and JI range from 0 to 1, with a value of 1 indicating perfect
segmentation accuracy or resemblance in the ground truth and
predicted masks. A low value of either metric indicates that
the predicted mask is significantly different from the ground
truth mask.

Accuracy [67] and [70] is also widely utilized for deep
learning-based segmentation techniques. It measures the
overall correctness of the segmentation results by calculating
the proportion of correct pixels classified in the predicted
segmentation. Accuracy is represented in equation 3

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

where TP (true positives) represents the count of pixels
correctly classified as positive, TN (true negatives) represents
the count of pixels correctly classified as negative, FP (false
positives) represents the count of pixels incorrectly classified
as positive, and FN (false negatives) represents the count of
pixels incorrectly classified as negative.

Sensitivity (SI) or true positive rate (TPR) or recall [39],
[60], is an evaluation metric used to measure the ability
of a deep learning-based segmentation model to correctly
detect positive samples. In the context of segmentation,
positive samples refer to pixels or regions that belong to the
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target structure being segmented. Sensitivity is defined in
equation 4 as:

Sensitivity =
TP

TP+ FN
(4)

Sensitivity ranges from 0 and 1, where 1 indicates the
detection of all positive samples. A low sensitivity value
indicates that the model is missing a significant number of
positive samples, which can result in incomplete or inaccurate
segmentation.

Specificity (SP) [45], [60] measures the ability of a
segmentation model to correctly identify negative samples,
which are samples that do not belong to the target structure
being segmented. Equation 5 represents specificity as:

Specificity =
TN

TN + FP
(5)

Specificity lies between 0 and 1, the 1 represents the
identification of all negative samples. A low specificity
value indicates that the model is misclassifying a significant
number of negative samples as positive, which can result in
incomplete or inaccurate segmentation.

Precision measures the accuracy of a segmentation model
in correctly identifying positive samples, which are samples
that belong to the target structure being segmented. Precision
is defined in equation 6 as:

Precision =
TP

TP+ FP
(6)

Higher the value of accuracy, precision, and recall, the
better the segmentation results [40], [73]. Hausdorff distance
measures the accuracy of segmentation by calculating the
maximum distance between the boundary points of the
ground truth and predicted segmentation masks. A smaller
Hausdorff distance indicates better segmentation accuracy,
as it means that the boundary points of the predicted
segmentation are near to those of the ground truth [68].
In pancreatic edge segmentation, for example, a smaller
Hausdorff distance indicates better accuracy of the segmented
pancreatic margin, as the predicted boundary points are closer
to those of the ground truth. The Hausdorff distance is a
valuable evaluation metric to complement other commonly
used metrics such as DSC, Jaccard Index.

Area under the receiver operating characteristics curve
(AUC) is used to evaluate the segmentation model by
measuring its ability to differentiate between healthy and
tumor tissues in medical images. The AUC is calculated as
the area under the ROC curve, which plots the TPR against
the FPR at different threshold values. A higher AUC value
indicates better performance of the segmentation model [5].

The example of segmentation of the pancreas and PDAC
mass is shown in FIGURE 14 with various DSC findings.

VII. EXPERIMENTAL DATASET
In pancreas and tumor segmentation, there is a limited
availability of publicly accessible datasets. National Institutes
of Health - The Cancer Imaging Archive (NIH-TCIA) dataset

FIGURE 14. Segmentation of PDAC and pancreas (a) Original CT image of
different patients (b)Ground Truth (red denotes PDAC and green denotes
pancreas) (c) Segmentation output (d) Visualization of PDAC in 3D with
DSC value for various patients [63].

[74] is widely recognized as the most commonly used dataset
for segmentation of the pancreas as it contains a sufficient
amount of labeled data. This dataset comprises 82 CT images
with contrast enhancement, each with a resolution of 512 ×

512 pixels. The slice thicknesses vary between 1.5 to 2.5 mm.
The CT scans were acquired using multi-detector computed
tomography (MDCT) scanners from Philips and Siemens,
with a tube voltage of 120 kVp.

Another dataset from John Hopkins Medical Institutions
(JHMI) [72] comprises 131 abdominal CT volumes with
contrast enhancement, and each volume contains annotated
pancreatic labels generated by human experts. The CT
volumes in the JHMI dataset have a resolution of 512 ×

512 pixels in the transverse plane, while the axial plane
thickness, denoted as D, varies between 358 and 1121,
providing a wider range of slice thickness compared to the
NIH dataset.

Another widely used dataset for pancreatic tumor seg-
mentation is the Medical Segmentation Decathlon (MSD)
challenge dataset, that comprises of 420 CT scans of
portal-venous phase patients with pancreatic tumors acquired
from Memorial Sloan Kettering Cancer Center, New York,
US.

There are also several private datasets used within
institutions, but publicly available datasets are crucial for
the researchers to evaluate the benefits and drawbacks of
various segmentation methods. Comparing the performance
of various methods using a similar dataset is moremeaningful
for the research community.

VIII. DISCUSSION
In this contemporary review, various pancreas and pancreatic
tumor segmentation techniques are explored. Deep learning
methods have emerged as a popular and promising approach,
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demonstrating superior performance in accurately segment-
ing the pancreas and pancreatic tumors than conventional
segmentation methods. These methods leverage the power
of neural networks to learn intricate patterns and features
from large datasets, enabling them to capture complex
anatomical structures and subtle tumor boundaries. The
evaluation of segmentation performance varies across studies,
with different metrics and benchmarks used for assessment.

Several segmentation techniques have been proposed for
segmenting the pancreas into distinct groups, catering to
different applications and imaging modalities.

The approaches for assessing segmentation performance
varies in different ways. DSC parameter and Jaccard
Index are largely adopted metrics to measure segmentation
accuracy. In the realm of pancreas segmentation, atlas based
method by Karasawa et al. [16] demonstrated superior
results in terms of Dice Similarity Coefficient and Jaccard
Index when compared to conventional multi-organ atlas-
based segmentation methods. Their study utilized a dataset
comprising 150 CT scans obtained from Nagoya University
Hospital. Table 1 represents conventional multi-organ atlas
based segmentation methods.

However, recent advancements are particularly utilizing
supervised machine learning and deep learning approaches
such as U-Net and hybrid architectures, have achieved
remarkable results for both pancreas and tumor segmentation.
Many of these methods have achieved DSC values exceeding
80%. Table 2 shows the various pancreas segmentation
methods and their performance using supervised machine
learning and deep learning.

Noteworthy achievements include the U-Net with Trans-
Deformer network proposed by Dai et al. [49], which
achieved remarkable DSC results of 89.89% for the
NIH dataset and 91% for the MSD challenge dataset
for pancreas segmentation. The other method multi-
phase morphology-guided deep learning framework by
Qureshi et al. [41], also which achieved a remarkable DSC
of approximately 88.53%. Qiu et al. [37] demonstrated
significant improvements in the Jaccard Index (JI) with a
value of 76.26± 5.01% for pancreas segmentation, achieving
better segmentation results for precision and recall as well.

The MBU-Net architecture [36] showcased exceptional
precision 89.29 ± 0.98% and specificity 99.95 ± 0.01%.
Man et al. [32] employed deep Q learning and deformable
U-Net, resulting in a higher recall of 86.93 ± 4.88%. The
V-Net architecture [42], achieving notable sensitivity 87.70%
and precision 97.07%. Table 3 focuses on various deep
learning based segmentation methods for pancreatic tumor
and cyst. Few methods have performed both pancreas and
pancreatic tumor/cyst segmentation [57], [58], [63], [65],
[66], [72].

It is imperative for future research to standardize evalu-
ation protocols and compare various segmentation methods
using diverse datasets, ultimately advancing the field of
pancreas and pancreatic tumor segmentation. However, it is
worth noting the challenges in comparing pancreatic tumor

TABLE 1. Conventional pancreas segmentation methods.

segmentation methods, as achieving high DSC values on
private datasets is feasible, but researchers face difficulties in
achieving comparable results on the MSD challenge dataset.

In a recent study by Du et al. [56], they achieved a
noteworthy DSC of 68.03% for pancreatic tumor segmen-
tation on a private dataset focusing on small size tumor.
Mahmoudi et al. [63] achieved a DSC of about 60. 6% on
the MSD challenge dataset. Furthermore, Alves et al. [61]
focused on tumor sizes smaller than 2cm obtaining better
results for Area Under the Curve (AUC) about 0. 876. The
scarcity of labeled pancreatic tumor datasets has impeded
the development of segmentation techniques, leading many
researchers to rely on privately available datasets and the
MSD challenge dataset for their studies.

In general, there has been a notable improvement in
the accuracy assessment of pancreas segmentation methods.
However, there remains significant variation in evaluation
criteria, and datasets used across different research articles,
leading to a lack of consistency. Deep learning methods
have gained substantial popularity in pancreas segmentation
research, while research specifically focused on pancreatic
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TABLE 2. Pancreas segmentation methods using supervised machine learning and deep learning.
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TABLE 3. Pancreatic tumor and cyst segmentation methods.

tumor segmentation is relatively limited. However, until
now, no method has obtained satisfactory performance,
specifically for tumor segmentation.

Nevertheless, it is worth noting that the segmentation
results have exhibited significant improvement over time.

This advancement is crucial for future progress in the field.
Moving forward, the focus of research will shift towards
the development of new or hybrid methods. The pancreas
is well known for its significant diversity in form, size, and
position while constituting just a tiny proportion of the total
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TABLE 4. Research gaps and future directions.

CT volume of 0. 5%. As a result, segmenting the pancreatic
tumor remains tough. Table 4 represents research gaps and
future directions in pancreatic cancer segmentation.

IX. SUMMARY
Automatic segmentation of pancreas and pancreatic tumor
is the crucial topic of this in-depth review, which highlights
the substantial improvements and difficulties in medical
imaging. The review aims to offer a precise overview of
segmentation methods and advancements made in the past
ten years. A systematic search across various databases and
sources is conducted using inclusion and exclusion criteria
to perform this detailed review. The segmentation methods
for the pancreas are divided into different approaches,
including conventional methods that emphasize traditional
registration and atlas-based segmentation techniques. Super-
vised machine learning and deep learning methods focus
on CNN, U-Net, and modifications to U-Net architec-
tures. Lastly, unsupervised machine learning concentrates
on clustering techniques. Pancreatic tumor segmentation
similarly centers around deep learning-based architectures,
including variations in the U-Net model. Advancement in
deep learning-based methods can overcome the challenges
and help to segment the pancreas and tumor segmentation
efficiently. The segmentation methods have shown substan-
tial improvement over the years. Though segmentation of
pancreatic tumors is quite difficult, the review also highlights
the current research gaps that can help researchers focus on
developing more effective and accurate segmentation.

X. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In conclusion, the review paper provides a detailed overview
and the advancements in pancreas and pancreatic tumor
segmentation. Significant progress can be observed in the
segmentation of the pancreas and tumor using deep learning
methods. Promising results are achieved in the segmentation
of the pancreas using deep learning-based methods. The
limiting factor is the publicly available labeled datasets
which has led researchers to use private datasets for the

implementation of pancreatic tumor segmentation. Pancreas
segmentation is more extensively explored than pancreatic
tumor segmentation due to the different forms and size
of tumor. Future research should focus on developing
new approaches and enhancing the performance of pan-
creas and pancreatic tumor segmentation. Standardizing
evaluation protocols and utilizing diverse datasets will be
crucial in further advancing the field of pancreas and
pancreatic tumor segmentation. Additionally, efforts should
be made to improve the accessibility of labeled datasets
to facilitate research and promote reproducibility. Overall,
the advancements made in pancreas and pancreatic tumor
segmentation hold great promise for improving diagnosis,
treatment planning, and monitoring of pancreatic diseases.
Continued research and collaboration in this field will lead
to further breakthroughs, ultimately benefiting patients and
advancing the medical imaging analysis field.
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