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ABSTRACT Convolutional neural networks have demonstrated impressive results in many computer vision
tasks. However, the increasing size of these networks raises concerns about the information overload resulting
from the large number of network parameters. In this paper, we propose Frequency Regularization to restrict
the non-zero elements of the network parameters in the frequency domain. The proposed approach operates at
the tensor level, and can be applied to almost all network architectures. Specifically, the tensors of parameters
are maintained in the frequency domain, where high-frequency components can be eliminated by zigzag
setting tensor elements to zero. Then, the inverse discrete cosine transform (IDCT) is used to reconstruct the
spatial tensors for matrix operations during network training. Since high-frequency components of images
are known to be less critical, a large proportion of these parameters can be set to zero when networks are
trained with the proposed frequency regularization. Comprehensive evaluations on various state-of-the-art
network architectures, including LeNet, Alexnet, VGG, Resnet, ViT, UNet, GAN, and VAE, demonstrate the
effectiveness of the proposed frequency regularization. For a very small accuracy decrease (less than 2%),
a LeNet5 with 0.4M parameters can be represented by only 776 float16 numbers (over 1100× reduction),
and a UNet with 34M parameters can be represented by only 759 float16 numbers (over 80000× reduction).
In particular, the original size of the UNet model is reduced from 366 Mb to 4.5 Kb.

INDEX TERMS Frequency domain, information redundancy, network regularization, convolutional neural
network.

I. INTRODUCTION
Convolutional neural networks have become increasingly
popular in computer vision applications, such as image
classification, image segmentation, and so on. However,
as the learning ability of these networks has improved, so has
their size, growing from a few megabytes to hundreds of
gigabytes [1]. This leads to challenges such as enormous
storage space or long transmission time on the Internet.
After conducting a thorough literature review, we found
that although larger networks tend to perform better, the
accuracy improvement is not always directly proportional to
the network size. In some cases, doubling the network size
may not result in a significant accuracy improvement. From
this observation we conclude that there may be information
redundancy within various network architectures, leading
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to the question: ‘‘How can we reduce network information
redundancy?’’

It is commonly accepted that the performance of networks
comes from the features learned by their parameters. For
example, when a convolutional neural network such as
Alexnet [2] is applied to an image classification task, the fea-
tures learned by its convolutional kernels are closely related
to the training images. Under this condition, features learned
by a network are expected to have properties similar to the
training images in which the high-frequency components are
known to be less important. Thus, it is reasonable to apply
the frequency domain transforms, such as the discrete cosine
transform, to the network parameters. Unfortunately, given
the poor interpretability of complex network architectures,
even a small change in a few key parameters can significantly
affect the network performance. Based on this insight, the
potential of frequency domain transforms for compressing or
pruning networks may not be well-developed on pre-trained
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models, which has been the focus of previous approaches
[3], [4], [5], [6]. Instead, we focus on using the frequency
domain transform for network regularization to restrict
information redundancy during the training process and
introduce Frequency Regularization (FR) as shown in Fig. 1.

The proposed frequency regularization can be divided
into two steps: dynamic tail-truncation and inverse discrete
cosine transform (IDCT). During network training, parameter
tensors are maintained in the frequency domain, with the
tail parts representing high-frequency information zigzag
truncated. The truncation process is implemented through a
dot product with a zigzag mask matrix to ensure differen-
tiability. After dynamic tail-truncation, tensors are input into
the IDCT to reconstruct the spatial tensors that are then used
as regular learning kernels in networks. Since the IDCT is
a differentiable process, the actual tensors in the frequency
domain can be updated through backpropagation algorithms.
Moreover, as the reconstructed spatial tensors have the
same size as those maintained in the frequency domain,
the proposed frequency regularization can be easily applied
to almost any type of network architecture. Furthermore,
as features related to computer vision tasks are closely
correlated to images, many parameters (from 90% to 99.99%)
in the frequency domain can be set to 0 without an obvious
decrease in network performance. The proposed frequency
regularization has a few desirable properties:

• Generality: The proposed frequency regularization can
be applied to almost any type of network architecture,
as it is designed for tensors. Given this, we are able
to evaluate the proposed frequency regularization on
various state-of-the-art network architectures including
LeNet, AlexNet, VGG, ResNet, ViT, UNet, GAN and
VAE.

• Effectiveness: A large number of parameters can be
truncated in the networks trained with the proposed
frequency regularization, since it is widely recognized
that high-frequency information is unimportant for
image data and the features learned by networks are
closely correlated to images.

• Lossless property: There is no need to worry that
the proposed frequency regularization will decrease
network performance, since the inverse discrete cosine
transform (IDCT) is usually considered as a lossless
transformation. When no parameter is truncated, the
proposed frequency regularization has almost no effect
on the network performance.

II. RELATED WORK
Frequency information has been widely used in convolutional
neural networks for improving performance [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] pruning
and network compression [4], [5], [6], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], or increasing
the detection accuracy [31], [32], [33]. For instance, Wang
et al. [18] represented object edges and smooth structures
using high and low-frequency information, respectively.

FIGURE 1. Illustration of the proposed frequency regularization. The tail
elements of tensors in the frequency domain are truncated first, then
input into the inverse of the discrete cosine transform to reconstruct the
spatial tensor for learning features.

Mi et al. [17] split channel recognition networks into
frequency domains, while Rippel et al. [34] proposed a fully
spectral representation of network parameters. Buckler et al.
[35] introduced a similar idea with learnable parameters
to determine the importance of different channels. Besides
this, Han et al. [36] compressed the networks with pruning,
quantization, and Huffman coding to achieve excellent
results for network compression. Similarly, Wang et al. [6],
[5] combined DCT, k-means, quantization, and Huffman
coding to compress the network parameters. Chen et al.
[37] utilized DCT and hashing to assign high-frequency to
less hash buckets to achieve compression. Wang et al. [1]
compressed the vision transformer by removing the low-
frequency components. Additionally, several works have
proposed using the frequency representation of convolution
kernels to prune less important channels [3], [38], [39].
Most of these previous works have primarily focused on the
frequency domain representation of the input image, feature
maps, or network parameters, but ignored the learning ability
of the network parameters during the training process. Since
the network performance is usually sensitive to changes in a
few key parameters, it cannot be guaranteed that these key
parameters are located in the low-frequency domain. As a
result, these methods have only dropped 30% to 95% of
the parameters with minimal accuracy loss. In particular,
although a few methods [6], [36] claimed around 50×
compression rate, the rate is improved by quantization
and entropy coding. The actual proportion of dropped
parameters still ranged from 30% to 95%. In contrast, the
proposed frequency regularization approach restricts network
parameters to the frequency domain, and high-frequency
elements are dynamically truncated during network train-
ing. This allows us to have much higher drop rates
of 90% to 99.99%.

The proposed frequency regularization approach is some-
what related to the DCT-Conv method proposed in [40],
as both approaches maintain parameters in the frequency
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domain and utilize IDCT. However, there are several key
differences between the two methods. First, the proposed
frequency regularization can be applied to any layer with
learnable parameters, including but not limited to convolution
layers, fully connected layers, and transposed convolution
layers. Therefore, we are able to evaluate the proposed
frequency regularization on various network architectures
including Alexnet, VGG, Resnet, ViT, UNet, GAN, and VAE.
In contrast, DCT-Conv is a convolution layer with DCT,
which is only evaluated on VGG and Resnet. Second, DCT-
Conv randomly drops parameters in the frequency domain,
which is not ideal since the components in low-frequency and
high-frequency are considered equally important. The ability
to drop parameters of DCT-Conv is thus limited. A similar
limitation is also shown in the BA-FDNP method [3] in
which the coefficients in the frequency domain are used for
pruning. Instead, in our approach, we truncate the tail parts of
the parameters, as the high-frequency components have been
shown to be non-critical for features related to images. This is
themost important difference between the proposed approach
and previous methods in [3], [6], [38], [39], and [40], and
also enables that the proposed approach to achieve promising
compression rates on various of network architectures.

III. FREQUENCY REGULARIZATION AND
TAIL-TRUNCATION
A. METHODOLOGY
When convolutional neural networks are applied to computer
vision applications, the features learned are closely related
to the training images. In fact, as shown by the visualized
filters in AlexNet [2], the learned features actually look
like real images. Based on this insight, it is reasonable
to assume that the low-frequency components of network
parameters are more important than the high-frequency com-
ponents. Unfortunately, because of the poor interpretability
of convolutional neural networks, a network’s performance
may be highly sensitive to changes in the values of a
few key parameters, which are not always located in
the low-frequency domain. This limits the proportion of
dropped parameters in pre-trained models. Thus, we focus
on restricting the number of non-zero parameters during
the training process, and propose frequency regularization.
Note that network regularizations are typically introduced
to prevent overfitting in neural networks [41]. In this paper,
however, the definition of regularization is extended to
include modifications or restrictions applied to networks with
a particular purpose, such as restricting the number of non-
zero parameters.

The idea behind the proposed frequency regularization is
quite straightforward. Instead of maintaining the tensors of
network parameters in the spatial domain, they are main-
tained in the frequency domain. This allows the tail elements
of tensors to be truncated by a dot product with a zigzag
mask matrix. During network training, the frequency tensors
are input into the inverse discrete cosine transform (IDCT) to

reconstruct the spatial tensors. Then, these spatial tensors are
used as the regular learning kernels of convolutional neural
networks for learning features. Since the IDCT process is
differentiable, the parameters maintained in the frequency
domain can be correctly updated during backpropagation.
Moreover, as the IDCT can be used for tensors with
any dimension without changing their size, the proposed
frequency regularization can be implemented for any layer
involving tensor operations, including convolution layers,
fully connected layers, and transposed convolution layers.
We first introduce the proposed frequency regularization
for 1D tensors, and then discuss the implementation of
regularization in higher dimensions.

Assume the 1D tensors of learning kernels to be T (x) ∈

R1×D where x is the index. T (x) represents the learnable
parameters in the frequency domain which have been updated
during training. T (x) is first computed with a zigzag mask
1x<ϵ(x) for tail-truncation, then input into the IDCT to
reconstruct the spatial tensor W (y) ∈ R1×D which can
be the regular learning kernel in a 1D convolution layer.
Mathematically:

W (y) = Fϵ(T (x)) = IDCT

 ⋃
x∈Gx

T (x) · 1x<ϵ(x)


=

∑
x∈Gx

T (x) · 1x<ϵ(x) · cos
[

π

D

(
y+

1
2

)
x
]

=

∑
x<ϵ

T (x) · cos
[

π

D

(
y+

1
2

)
x
]

, (1)

where x, y ∈ [0 D−1]∩N = Gx are the indices of tensor T (x)
and W (y) respectively. T (X ) is the actual tensor in the fre-
quency domain and W (y) is the corresponding reconstructed
tensor in the spatial domain. IDCT(·) is the inverse discrete
cosine transform. During the implementation, DCT-III which
is the inverse of the widely used DCT-II is used. ϵ is the
threshold value to control the truncation ratio. 1x<ϵ(x) is a
binary mask to make the truncation process differentiable.
Note that we removed the T (0)

2 in the above DCT-III since
the learnable parameters can adaptively adjust this constant
component.

Since the high dimensional IDCT can be decomposed
into several 1D IDCTs, so high dimensional frequency
regularization can also be expressed by several 1D frequency
regularizations. Assume the two N-dimensional tensors in the
frequency domain and spatial domain to be T (x⃗),W (y⃗) ∈

RD1×D2,··· ,DN where x⃗ = {x1, x2, · · · , xN } and y⃗ =

{y1, y2, · · · , yN } are index vectors, xi, yi ∈ [0,Di−1] ∩ N.
Then, high dimensional frequency regularization FN

ϵ is:

W (y⃗) = FN
ϵ (T (x⃗)) = IDCTN

 ⋃
x⃗∈Gx⃗

T (x⃗) · 1|x⃗|1<ϵ(x⃗)


=

∑
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T (x⃗) · 1|x⃗|1<ϵ(x⃗)
N∏
i=1
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[

π
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]
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=

∑
|x⃗|1<ϵ

T (x⃗)
N∏
i=1

cos
[

π

Di

(
yi +

1
2

)
xi

]
(2)

where IDCTN is the N-dimensional inverse discrete cosine
transform, which can be easily implemented by N IDCTs
in different dimensions. ϵ is the threshold value to control
the truncation ratio. |x⃗|1 =

∑N
x=1 |xi| is the L1 norm of

the index vector |x⃗|. The indicator function 1|x⃗|1<ϵ(x⃗) is
used to approximate the zigzag binary mask for truncating
parameters.

Frequency regularization is proposed for tensors. Thus,
it can be applied to any layer of a convolutional neural
network, such as the convolution layer or fully connected
layer. After applying the proposed frequency regularization,
the formula of the convolution process can be re-expressed
as:

Z = WX + B ⇒ Z = FN
ϵ (TW )X + Fϵ(TB), (3)

where TW and TB are the tensors representing the weight
and bias of the convolution layer. Usually, the size of
the tensor in the convolution layer is 4D, representing the
number of kernels, input channel, and kernel size. Based
on the requirements of different applications, the proposed
frequency can be 1D, 2D, 3D, or 4D which can be controlled
by users. In particular, 4D frequency regularization gives us
the highest compression rate, which has been used in the
proposed evaluation experiments.

B. DYNAMIC TAIL-TRUNCATION:
According to the evaluation experiments we propose in
Section IV, usually over 99% of parameters in convolutional
neural networks can be truncatedwithout an obvious decrease
in accuracy. However, there is also a serious issue that the
remaining parameters may not have suitable gradients for
backpropagation. In this condition, the training loss of the
network restricted by the proposed frequency regularization
sometimes may not change for hundreds of training epochs.
This issue has occurred many times in our evaluation
experiments. To address this problem, we propose the
dynamic tail-truncation strategy. Instead of directly setting
over 99% of the parameters to 0, this strategy continuously
sets a few tail elements to 0 in every training epoch.
In particular, as the total number of truncated parameters
increases, the number of parameters truncated in each training
epoch decreases. Mathematically, the ratio of truncated
parameters is controlled by the following function:

βn = βn−1 − γ (βn−1 − ϵ)

where n is the index of training epochs. βn−1, βn ∈ [0, 1]
is the ratio of non-zeros parameters in epoch n − 1 and n.
γ is the user parameter to control the speed of truncating
parameters. During our evaluation experiment, γ = 0.01 is
used. ϵ is the user parameter to control the minimum ratio of
non-zero parameters in the network. By changing the value
of ϵ, we can control the percentage of parameters that will

be truncated in a network. For example, ϵ = 0.01 means
that around 1 − ϵ = 99% of parameters will be truncated.
Although the dynamic tail-truncation strategy requires extra
training epochs, it results in amore stable training result when
theminimum ratio ϵ is very small. This strategy has been used
for all the evaluation experiments in this paper.

C. IMPLEMENTATION DETAILS:
The proposed approach is implemented in PyTorch, the
source will be available at https://github.com/guanfangdong/
pytorch-frequency-regularization.git. Since the proposed
approach is devised at the tensor level, it can be easily
implemented for different network layers including but
not limited to linear layer, convolution, and transposed
convolution in 1d, 2d, and 3d. We pack our implementation
into a PyTorch Module, so it can be used as regular PyTorch
layers. Please check our source code for more details. It is
also because of the same reason, we are able to evaluate the
proposed approach on diverse network architectures.

IV. EXPERIMENTS
In this section, we evaluate the proposed frequency regular-
ization on several classical state-of-the-art network architec-
tures including LeNet, Alexnet, VGG, ResNet, ViT, UNet,
GAN and VAE on several standard datasets. During the eval-
uation, we first capture the accuracy of the original networks
which are used as the reference accuracy to compare with
the ones of networks restricted by the proposed frequency
regularization. In particular, the implementation provided
by authors or popular Github repositories are used. Then,
these networks are re-trained with the proposed frequency
regularization to compare the with original networks. Since
the parameters of networks are zigzag truncated in the
proposed frequency regularization, we only need to save the
location of the boundary between non-zero elements and zero
elements as well as the size of tensors. Thus, the compression
rate can be easily computed by dividing the number of
non-zero parameters by the total number of parameters. Note
that we did not consider the bias in the convolution layers,
fully connected layers and transposed convolution layers
during our evaluation, since the bias only represents a small
portion of network parameters and most of the previous
researchers have also ignored them. Similarly, the parameters
in batchnorm layers are also ignored for the same reason.
Given the page limitation, we only demonstrate the total
number of non-zero parameters in networks. More details are
given in the supplementary material. All the experiments are
performed on GTX A4000 with 16 GB of video memory.

A. COMPARISON WITH STATE-OF-THE-ART METHODS
To the best of our knowledge, there is no work that is
directly related to the proposed approach on restricting the
information redundancy during network training. The closest
work we could find was proposed for network compression
by pruning, such as DeepCompress [36], DynSurgery [42]
or BA-FDNP [3]. Although there are a few newer methods
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TABLE 1. Comparison between the proposed approach and state-of-the-art methods including DeepCompress [36], DynSurgery [42], BA-FDNP [3] on the
MNIST dataset [43].

TABLE 2. Evaluation of the proposed frequency regularization on Alexnet
[2], VGG [44], ResNet [45] and ViT [1] using CIFAR10 dataset [46].

proposed in [3], [6], [26], [27], [30], [40], [47], and [48], their
advantage on compression rate is not very obvious and almost
all of them work on networks pre-trained on large datasets.
which makes the comparisons become very expensive
considering computational resources. Besides, among all
these previous approaches, BA-FDNP [3] claimed the highest
compression rate which is 150×. Thus, we compare the
proposed approach with DeepCompress [36], DynSurgery
[42], and BA-FDNP [3]. The comparison results are shown
in Table 1. In particular, the top-1 accuracy [2] is used as
the evaluation metric. MNIST dataset is used for evaluation.
In the MNIST dataset, 60000 images are used for training,
and another 6000 images are used for testing. As shown in
Table 1, since previous approaches are based on pre-trained
models, they have a 1-2% advantage in top-1 accuracy.
Actually, due to the limitation of our computational resources,
we are unable to achieve over 99% of top-1 accuracy
even without dropping any parameters. However, the top-1
accuracy achieved by our model is very close to the pre-
trained model. There is less than a 1% difference in accuracy.
Therefore, we trained our own LeNet300-ref and LeNet5-ref
for reader references.

The proposed approach achieves a much higher compres-
sion rate without an obvious decrease in top-1 accuracy. For
example, in LeNet300-v1, the proposed approach achieves
112× the compression rate with less than 1% of cost in
top1-accuracy. Furthermore, it achieves 1110 × compression
rate in LeNet5-v2 with only 2% of top1-accuracy decrease,
which is much higher than DeepCompress [36], DynSurgery
[42], BA-FDNP [3] as well as strategies in [3], [6], [26],
[27], [30], [40], [47], and [48]. Note that the BA-FDNP
[3] applied quantization, entropy coding, and pruning in
the frequency domain which are related to the proposed
approach. However, as we mentioned in Section II, instead
of truncating the tail parts of the tensor, BA-FDNP [3]
utilized the coefficient matrix for pruning which limits
its compression rate. As a result, BA-FDNP only has
150× compression rate on LeNet5-v2, but the proposed
approach can achieve around 1110 × reduction with less
than 2% of top-1 accuracy decrease. Note that BA-FDNP
[3] utilized data argumentation to improve top-1 accuracy.
It also applied the pre-trained model for initialization and
retrained their model for 20k iterations for searching the
highest top-1 accuracy model. In contrast, none of these
techniques for accuracy improvement are applied in the
proposed approach, considering limitations on computational
resources. Consequently, the proposed approach has no
advantage in top1-accuracy. However, compared with these
previous approaches, the compression rate of the proposed
approach is quite promising. Besides, since the proposed
approach is devised at the tensor level, it can be applied to
almost any network architecture. In contrast, since previous
approaches are devised based on specific pre-trained models,
they were not evaluated on diverse network architectures.
In order to demonstrate the generality of the proposed
approach, we also apply the proposed frequency regulariza-
tion on various state-of-the-art network architectures in the
remaining sections.

B. IMAGE CLASSIFICATION
Image classification has been studied for decades in computer
vision. There are many excellent architectures that have been
proposed in this field. Thus, we evaluate the performance
of the proposed frequency regularization on Alexnet [2],
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VGG16 [44], ResNet18 [45] and ViT [1]. During the
evaluation, the cifar10 dataset [46] is used for training and
testing and top1-accuracy is used as the evaluation metric.
In the cifar10 dataset, 50000 images are used for training and
another 10000 are used for testing. Note that we did not apply
tuning techniques or pre-trained models during the evaluation
considering training time. The accuracy scores can be higher
once some training techniques such as dynamic learning rate
or data argumentation are utilized, which has been widely
used in previous approaches [3], [6], [26], [27], [30], [40],
[47], [48].

The evaluation results are shown in Table 2. AlexNet-
ref which is the original Alexnet [2] achieves 76.45% top-1
accuracy. After 99% of the parameters have been truncated,
AlexNet-v1 achieves 77.44% top-1 accuracy which is a little
bit higher than the original one. This improvement comes
from the fact that the tail-truncation can be considered as a
regularization to prevent a network from overfitting just like
the dropout layer. When only 0.1% of parameters are kept in
the frequency domain, AlexNet-v2 has 70.46% in top-1 accu-
racy, and the compression rate becomes 1000×. Furthermore,
in the extreme case where only 1408 non-zero parameters
are kept in AlexNet, AlexNet-v3 still achieves 59.22%.
We also applied the network on the half float condition,
and AlexNet-v4 consisting of 1408 float16 numbers achieves
58.55% with the compression rate increasing to 81018×,
which is a very interesting discovery. Similar results are also
observed in VGG16 and ResNet18. In particular, ResNet18-
v3with only 2688 parameters achieves 77.64%,which is even
higher than the original AlexNet-ref with 57M parameters.
We also evaluate the proposed frequency regularization on
ViT consisting of self-attention layers which are actually not
very suitable for frequency domain transformation. Previous
work [14], [30] related to transformer only achieves around
50% of pruning ratio. For the proposed approach, there
is around 75% top-1 accuracy in ViT-v2 in which over
98% of parameters are truncated. But when only 90%
of parameters are truncated, the ViT-v1 has no accuracy
decrease, which demonstrates the generality of the proposed
approach. The evaluation of the proposed approach on
these networks clearly demonstrates that the information
redundancy inside networks can be restricted well by the
proposed frequency regularization. However, the resolution
of images in CIFAR10 is not very high, which may raise
a concern that the proposed frequency regularization only
works well on small images. Thus, we evaluated the proposed
technique on UNet for high-resolution image segmentation.

C. IMAGE SEGMENTATION
After a comprehensive literature review, we found a limited
number of methods focussing on pruning or compressing
segmentation networks, even DepGraph [30], which is the
latest method proposed for any structural pruning, was not
evaluated on segmentation networks. One reason may be
the sense that the information redundancy for segmentation

TABLE 3. Evaluation of the proposed frequency regularization on UNet
for image segmentation tasks using Carvana Image Masking Challenge
Dataset [49].

FIGURE 2. The segmentation results of UNet parameters restricted by the
proposed frequency domain, with over 99.99% of parameters truncated,
for the Carvana Image Masking Challenge Dataset [49].

TABLE 4. Evaluation of the proposed frequency regularization on
generative adversarial network (GAN) and variational autoencoder (VAE).

networks should be lower than that for image classification
networks. However, the proposed frequency regularization
is supposed to work well on any features related to images
and segmentation networks should be one of them. We thus
evaluate the proposed frequency regularization onUNet using
the Carvana Image Masking Challenge Dataset [49], which
is a popular dataset for segmentation challenges in Kaggle
competitions. In particular, around 5000 high-resolution
images are used for training and another 508 images are
used for testing. The Dice Score is used for evaluation.
Actually, compared to image classification networks, the
UNet architecture usually consists of pure convolution layers
without bias which are more suitable for the proposed
frequency regularization. As shown in Table 3, the original
UNet containing 31M parameters achieves a 99.31% Dice
score. Once over 99% parameters have been truncated in
the frequency domain, UNet-v1 achieves a 99.51 % Dice
score. Moreover, UNet-v3 achieves promising results with
98.86% in the Dice score, in which only 2936 parameters
are kept. Finally, we tested the proposed approach for the
most extreme condition in which only 759 float16 parameters
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are kept in UNet-v4. In particular, we also disabled all the
bias in the networks and learning parameters in batchnorm,
which guaranteed UNet-v4 only has 759 non-zero float16
parameters. Surprisingly, the UNet-v4 still achieves 97.19%
in the Dice score. This is an unbelievable result, a UNet with
only 759 parameters can achieve around 97% in Dice score
for the Carvana Image Masking Challenge Dataset. Note that
there are over 5000 images with 959 × 460 resolution which
is much higher than the resolutions of images in CIFAR10
[46]. We double-checked the non-zero parameters in every
layer in UNet to make sure that this conclusion is correct, and
the visualized segmentation mask is shown in Fig. 2. We also
include this pre-trained UNet in the supplementary materials
as well as a few testing images. The original size of the
UNetmodel exceeds 366MB, but our frequency regularization
technique reduces it to 40kb. Additionally, using an entropy
compression tool on Ubuntu, we further reduce the size
to 4.5kb.

FIGURE 3. Comparisons between images generated by the orignal GAN
network and GAN with our frequency regularization in which over 99% of
parameters are truncated.

D. IMAGE GENERATION
Compared to classification or segmentation networks, image
generation networks such as the generative adversarial
network (GAN) or variational autoencoder (VAE) are not
very suitable for the proposed frequency regularization, since
what has been learned by these networks is claimed as
distribution information. However, these distributions are
still related to images. Thus, we also evaluate the proposed
approach for generative adversarial networks and variational
autoencoders. Since both networks usually require a long
time for training, we use the MNIST dataset for evaluation
and the Fid value [5] is used as the evaluation metric.
As shown in Table 4, the proposed approach achieves similar
results when 99% of the parameters are truncated compared
to the original GAN network. The generated images are also
demonstrated in Fig. 3, where the images generated by GAN
with the proposed frequency are similar to the original GAN.
We also evaluate the proposed approach regularization on
VAE. Since the VAE we used is the simplest version in which
there are only two fully connected layers in their encoder and
three fully connected layers in the decoder, we only truncate
90% of the parameters for VAE. The visual results are shown

in Fig. 4. During the training of VAE and GAN, with or
without the proposed frequency regularization, we stop the
training once the visual results look good. Actually, withmore
training epochs, the quality of the generated images can be
better.

FIGURE 4. Comparisons between images generated by the orignal VAE
network and VAE with our frequency regularization in which over 90% of
the parameters are truncated.

E. LIMITATION AND FUTURE WORK
1) LIMITATION
The proposed frequency regularization is based on the
assumption that the high-frequency component is unimpor-
tant. This may not work well on the tensors of parameters that
are not related to images. This disadvantage can be seen in
the comparison between evaluations on image segmentation
in Section IV-C and image generation in Section IV-D, where
the parameters in the generation networks cannot be truncated
toomuch. In addition, although the parameter of the proposed
approach is in the frequency domain, it still needs to be
converted into the spatial domain for convolution operations.
This leads to an extra memory cost during network training.
However, once the networks have been well-trained, a high
compression rate can be achieved, which is very useful
for network transmission on the Internet. The memory cost
does not exist during testing, since the networks need to be
unpacked only once.

2) COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed approach is
a worthy concern since IDCT will cost extra computation
resources. During the training process, the IDCT will be
done in every kernel of every training epoch. However,
such cost is not obvious since the most computationally
intensive computation in convolutional neural networks
happens between the data and network kernels. Consider the
UNet as an example. It takes around 1s to process 1 image.
In particular, the total time spent on IDCT is around 0.07s.
This cost is very small because of two reasons: a) First,
IDCT can be implemented by matrix operations, which is
very suitable for GPU computation. This can be easily run
on machines that can handle a convolutional neural network.
b) In addition, since many parameters in the frequency
domain are 0, it is easy to optimize. In addition, PyTorch
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also provides cuFFT library for GPU optimization which is
utilized in our implementation.

Moreover, since the proposed approach has already been
encapsulated into a PyTorch module, it can also be run in
parallel with multiple GPUs. We evaluated the UNet on
different GPUs, the evaluation results are shown in Table 5.
The UNet takes 79s to process 508 images of dimension with
640 × 969 when only 1 GPU is used. Once we increase
the number of GPUs to 2, the total processing time is
reduced to 52s. When 3 GPUs are used, it only takes 39s
for processing. However, since the processing time includes
computer I/O, the UNet still takes 38s when 4 GPUs are
utilized. We included this evaluation in our supplementary
materials for readers to check.

TABLE 5. Running time evaluation of the proposed approach on multiple
GPUs using 508 images with 640 × 959.

3) FUTURE WORK
Currently, the proposed approach only allows for reducing
the memory required to store models. In order to run
the model during inference, it is necessary to unpack the
compressed network. However, since around 99% of the
parameters in networks restricted by the proposed frequency
regularization can be truncated, it is very much possible to
speed up the network inference. One potential solution is
doing the convolution on the frequency domain directly. For
example, the images can be converted into the frequency
domain to compute with the kernel, and the results will be
transformed back into the spatial domain before the output of
the networks.

V. CONCLUSION
In this paper we proposed frequency regularization to
reduce the information redundancy of convolutional neural
networks devised for computer vision tasks. The proposed
regularization maintains the tensors of parameters in the
frequency domain where the high-frequency component can
be truncated. During training, the tail part of tensors is trun-
cated first before being input into the inverse discrete cosine
transform to reconstruct the spatial tensors that are used for
tensor operations. In particular, the dynamic tail-truncation
strategy was proposed to improve the stability of network
training. We applied the proposed frequency regularization in
various state-of-the-art network architectures for evaluation.
Comprehensive experiments demonstrated that between 90%
to 99.99% of the parameters in the frequency domain can
be truncated. This demonstrates the promising ability of
the proposed frequency regularization to restrict information
redundancy in convolutional neural networks for computer
vision tasks.
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