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ABSTRACT The abiotic and biotic plant stress is a critical factor for the agriculture industry, considering that
plant stress increases production costs and reduces the quantity and quality of the output product. The early
detection of plant stress using new technologies and even more utilizing Internet of Things (IoT) sensors is
significant for the growers to act as early as a problem is in the nascent. Furthermore, the insights from the
early detection of plant stress can be used as actionable data for fertilization and pesticide optimization. Our
proposed state-of-the-art method uses Thermal Infrared (TIR) and high-resolution visible-spectrum (RGB)
images acquired by IoT sensors of Unmanned Aerial Vehicles (UAVs) from two experiment vineyards (Vitis
vinifera L.) for two years in a total of twelve flights. The OTSU method is used for the plants’ canopy
isolation from the soil. The k-Means clustering is used in the relative temperature values of the plant’s canopy
to detect the leaves’ stomatal closure. The clusters’ pixel coordinates of the TIR image, which represents
leaves’ stressed areas, are used, and a pseudo-coloring of yellow is assigned in the corresponding pixels of
the aligned RGB image. Finally, an RGB image is generated with yellow pseudo-coloring over the stressed
areas of the vineyards’ canopy. The stressed plants caused by abiotic and biotic factors were validated and
compared with the Triangular Greenness Index (TGI), which measures the leaf chlorophyll content like other
multispectral indexes. Finally, the proposed method shows significantly higher accuracy and precision than
TGI based on the two years of experimentation results, considering that the F1-score of the proposed method
is better than TGI in the cumulative of the two years by 70.55%.

INDEX TERMS Internet of Things (IoT), thermal infrared (TIR), crop stress, precision viticulture, remote
sensing, temperature, transpiration.

I. INTRODUCTION
Due to the rapid technological development in recent years,
various sensors and the Internet of Things (IoT) have been
developed that can be used to collect data on crops. These
are visual cameras (RGB), spectral sensors, Light Detection
and Ranging (LiDAR), and thermal infrared cameras. Some
of their applications are plant height control, biomass, Leaf

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandro Pozzebon.

Area Index (LAI), and other essential physiological charac-
teristics, considering that plant diseases are the most common
cause of production and economic loss [1], [2]. Even more,
pathogens are the leading cause of yield losses of 20-40%
globally [3].

Furthermore, IoT sensors have more accuracy and higher
resolutionwhen referring to imaging spectrums than satellites
with low image resolution. However, Very Low Earth Orbit
(VLEO) satellites carrying high-resolution sensors are under
development.
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The use of visual cameras (RGB) is more common than
other sensors because they have low cost, are lightweight,
and have simple data processing. Their disadvantages are low
radiometric resolution and lack of proper calibration [4], [5].
They can be used in the rapid acquisition of color photographs
to calculate the height of the crop, the LAI, and the color
of the leaves so that through already developed algorithms
with the image processingmethod, the damaged ‘‘dry’’ leaves
can be detected. However, this method lags in obtaining
phenotype information and crop characteristics due to the
need for a visible camera to capture the invisible spectrum
[6], [7]. Hunt et al. [8] propose the Triangular Greenness
Index (TGI) method based on the visible spectrum, which
is affected only by leaf chlorophyll content. The TGI can
detect the leaf nitrogen content and other problems such as
plant disease or insect damage because of leaves’ chlorophyll
content reduction.

Multispectral sensors can receive radiation in the visible
and non-visible spectrum, which can be used to obtain a
crop’s phenotype [9]. Their main disadvantages are complex
data processing and sensitivity to weather conditions [10],
[11], [12], [13].

The determination of ranges by the LiDAR sensor is
accomplished through laser-based targeting of an object, uti-
lizing the photoelectric detection technique. It can be used to
measure biomass and plant height. Its advantage is the effec-
tive acquisition of high-precision horizontal and vertical veg-
etation structures. Its disadvantages are the high cost of acqui-
sition and the large amounts of data processing [14], [15].
The comprehensive development of remote sensing for

analyzing and controlling chlorophyll content, Leaf Area
Index (LAI), and leaf nitrogen content has been achieved [4],
[5]. Therefore, we can have accurate plant growth informa-
tion because the leaves’ spectral characteristics are directly
related to the above indices.

The TIR camera uses infrared radiation. Therefore, it can
be used to measure plants’ canopy temperature, the rate of
water vapor left from leaves, and the carbon dioxide (CO2)
entering leaves [16]. By employing this method, it becomes
feasible to assess the growth status of the crop indirectly.

Traditional methods using thermal infrared imaging have
constraints due to the sensitivity of the plants’ canopy tem-
perature to environmental factors, such as the soil’s effect,
ambient temperature, and wind [17], [18], [19], [20].
Comprehensive methods combining TIR and RGB images

with Machine Learning techniques are crucial for detecting
plant stress and overcoming environmental factor constraints
such as soil effects. The lack of research in this field
impedes the progress toward a dependable method for a
robust approach to efficient, precise, and early detection of
plant stress.

We propose a new Machine Learning-based method that
uses TIR and RGB images to cluster the canopy tempera-
tures of plants, excluding soil interference. The result is a
pseudo-color image with annotated plant areas with higher
temperatures indicating stress. Our study aims to evaluate

plant stress more accurately and efficiently using IoT sen-
sors like TIR and RGB cameras. The objectives of this
paper are the development of this innovative methodology,
its experimental validation, and its contribution to enhanc-
ing agricultural technology. Ultimately, it will enable more
accurate stress detection and informed decision-making,
improving crop management practices based on actionable
data.

This paper is organized as follows. Section II describes
the definition of plant stress and the biotic and abiotic fac-
tors causing it. In Section III, we discuss related work, and
in Section IV, we describe our experimental methodology.
In Section V, we present the results of the proposed method.
We conclude in Section VI, summarizing ourmain results and
future work.

II. ABIOTIC AND BIOTIC STRESS IN PLANTS
The genetic potential of plants to achieve their maximum
yield is often impeded by various factors such as inadequate
water or nutrient supply, unfavorable climatic conditions,
plant pathologies, and insect infestations, which ultimately
hamper growth at some point. These biotic and abiotic con-
straints induce stress on the plants, elevating their canopy
temperature compared to healthy ones. Physiological and
anatomical changes occur in plants due to biotic-abiotic
stress. If there is a scarcity of water or the presence of vascular
diseases such as plant diseases and insect damage, the transpi-
ration of leaf stomata will be constrained. Consequently, there
will be a reduction in the cooling effect of the evaporating
water on the leaf surfaces, causing a consequent increase in
the temperatures of the leaves [21].
Historically, plant stress detection has relied on the visual

inspection skills of experienced growers and agronomists
who can discern subtle color changes or leaf drooping as
stress indicators. However, these methods are limited by
the subjective nature of visual interpretation and the diffi-
culty of assessing large crops. Additionally, when visual or
tactile signs of stress are evident, irreversible damage may
have already occurred. Nonetheless, stress-induced changes
in plant radiation can be detected through remote sensing
techniques, specifically using a TIR camera, which quantifies
plant stress resulting from biotic and abiotic factors [21].
The plants’ infection with diseases and deficiencies

changes the leaves’ stomatal conductance. Also, the leaf
temperature increase is a very early symptom of a stressed
plant before the appearance of visible symptoms [22], [23].
Different environmental stresses such as salinity, nutrient
deficiency, and biotic factors lead to a leaves’ stomatal clo-
sure, which the thermal infrared spectrum band can detect
[24]. Furthermore, TIR sensors are more effective than hyper-
spectral, multispectral, and visible sensors for the early
detection of changes caused by diseases [23].
Due to the stomatal closure, the transpiration rates of

the leaves decrease, and the leaves’ surface temperature
increases. A consequence of the stomatal closure is reduc-
ing the photosynthetic rate, which decreases the chlorophyll
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content, which can be detected using the multispectral band
[25]. Finally, the last stage of a stressed plant is reducing the
leaves’ surface due to foliage’s necrosis.

As described above in the definition of plant stress, the
factors that cause it can be biotic, abiotic, or a combination.
Therefore, below is a detailed description of each factor that
can be detected in the longwave infrared (LWIR) range of 8 -
14µm (Thermal Infrared - TIR) and how it affects the radiant
temperature of the leaf. Also, below is a reference to research
that proves plant leaves’ temperature increases if biotic and
abiotic factors are present.

A. ABIOTIC FACTORS
Abiotic stress factors impacting plant health include high
temperatures, low temperatures, excess moisture, water
scarcity, nutrient imbalances, and saline conditions.

1) WATER STRESS
The methodology applied on the whole crop and not on each
plant is the Crop Water Stress Index (CWSI), which deter-
mines a crop’s water availability using infrared temperature
measurements of the plant’s canopy. The plant’s crown’s tem-
perature indicates the culture’s aqueous condition because the
foliage’s stomata close in response to the water’s depletion,
causing a decrease in transpiration and increasing the tem-
perature of the leaf. On the contrary, the adequacy of water in
the soil keeps the stomata open and a strong respiration rate,
resulting in a decrease in the foliage’s temperature compared
to the atmospheric temperature above the crop [26]. Studies
have demonstrated that plants experiencing biotic or abiotic
stress display elevated canopy temperatures compared to their
healthy counterparts [27], [28].
Following four days of flooding, the cotton crop’s crown

experienced a minor increase in air temperature, despite sub-
merging 60% of its root system. However, signs of stress were
observed on the eighth day when the flooded plants exhibited
dome temperatures of 4-6 degrees Celsius higher than those
of plants with roots in drained soil [21].

2) TEMPERATURE STRESS
Plants can be negatively impacted by temperatures falling
outside their preferred growth range. Heat stress can occur
when plants are exposed to higher temperatures than usual,
causing protein denaturation and reduced photosynthesis due
to dehydration. Cold stress can also occur when temperatures
drop below the optimal range for growth, leading to the
development of ice crystals within cells, which can cause
cellular damage.

Fuller and Wisniewski [29] conducted a study using a
thermal camera to record ice nucleation in potatoes and
cauliflower. The thermal imaging revealed that the average
temperature of the leaves of both species increased during
freezing.

Stenger et al. [30] utilized infrared thermography to study
the relationship between ice formation and frost injury in

potato leaves. The results indicate an increase in leaf tem-
perature, as ice nucleation is an exothermic process.

Costa et al. [31] presented a study using a thermal camera
to measure vineyards’ canopy and soil temperature for better
water and heat stress management. The findings revealed that
the canopy temperature can indicate grapevine performance,
and the soil temperature can be used as a potential variable
for managing heat and drought stress in the vineyard.

3) NUTRIENT STRESS
The nutrients are necessary for the growth and development
of the plants.When the plants lack nutrients such as Nitrogen,
Calcium, or Iron, they can exhibit various symptoms, such as
an increase in the leaf’s temperature, which indicates nutrient
stress.

Pan et al. [32] presented a study that compared the growth
and photosynthetic characteristics of cotton varieties under
hypoxia stress. The TIR imaging showed that the plants under
hypoxia stress had low stomatal conductance and increased
leaves’ temperature.

Chaerle et al. [33] used visible, fluorescence, and thermal
imaging to detect early nutrient magnesium deficiency in
bean plants. The results show that the thermal infrared camera
found a necrotic lesion due to magnesium deficiency at the
7-day time point.

4) SALINITY STRESS
In arid regions, the augmented salinity of soil can be
attributed to the frequent irrigation of crops. Timely identi-
fication of salt-affected regions can facilitate the implemen-
tation of preventive measures prior to extensive harm being
incurred upon the crop [21].

According to Myers et al. [34], an elevation in salinity
equivalent to 16 dS mI (= mMho / cm) resulted in a rise of
approximately 11 ◦C in the temperature differential between
the crop dome and the ambient air. Additionally, under ele-
vated salinity and vapor deficits typical of irrigated regions,
vegetation exhibited stress symptoms, despite an absence of
constraints on soil moisture.

Siddiqui et al. [35] measured the response of rice in dif-
ferent treatments of salt stress environments using a TIR
camera with constant temperature and humidity. The results
show that the plant’s temperature also increased as the salinity
increased.

Sirault et al. [36] presented a study of automated image
analysis using a TIR camera to quantify the osmotic stress
response of barley and wheat to salinity. The results show
that as the osmotic stress increases due to salt treatment,
the leaf’s latent heat flux and transpiration decrease, conse-
quently increasing the plant’s canopy temperature.

B. BIOTIC FACTORS
The main entry point for pathogens into plants is through the
stomata of leaves, leading to the usual defense response of
stomatal closure. Additionally, herbivore insects can cause
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direct damage to leaves and stems, resulting in stomatal
closure. Thus, biotic stress factors like insects and pathogens
(viruses, bacteria, fungi, oomycetes, and nematodes) signifi-
cantly impact plant health.

1) DISEASES’ STRESS
The disruption of its vascular permeability can increase the
resistance and temperature of a plant’s dome due to diseases
or insects. Pinter et al. [37] employed a thermal-infrared
radiometer to determine the temperatures of sugar beet leaves
contaminated with Pythium aphanidermatum. Their findings
revealed that the leaf temperatures of diseased plants were
approximately 2.6-3.6 ◦C higher than those of healthy plants,
even though the disease was not visibly noticeable without
root examination. Furthermore, diseased plants maintained
higher leaf temperatures under Water Stress conditions than
healthy plants.

Similar results were obtained for infected cotton by Pyma-
totrichum omnivorum, where plants with moderate disease
intensity had sunlit leaves that were 3.3-5.3 ◦C warmer than
those without any fungal infection. One day after watering,
the temperature difference between diseased and healthy
plants was noticeable, and as soil moisture decreased, dis-
eased plants withered first [21].

In a greenhouse study, Nilsson [38] found that rapeseed
leaves infected with Verticillium dahliae had leaf tempera-
tures that were 5-8 ◦C higher than uninfected plants due to
the disease’s induction of stomatal closure.

Wang et al. [39] used chlorophyll fluorescence (ChlF) and
TIR non-destructive imaging in sweet potatoes to detect virus
diseases that caused the Sweetpotato feathery mottle virus
(SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) co-
infection. After 29 days of monitoring of viral infection in
Sweetpotato, the results show that the TIR imaging can be
used as an indicator for the severity of viral infection after
the first week of growth.

2) INSECT STRESS
Insects cause plant stress by interrupting stomatal transpira-
tion due to damage to the leaves and stems. As the leaves’
structure is destroyed and the stomata close, the temperature
of the leaves increases [21].
Joalland et al. [40] presented a study using visible light

imaging, thermography, and spectrometry to evaluate the
effect of the disease pressure of Beet Cyst Nematodes (BCN)
on sugar beets. The results of the thermography used to
evaluate the plants’ canopy temperature show that the canopy
temperature of the plants infected with nematode was higher
than that of healthy plants.

Ortiz-Bustos et al. [41] used blue-green fluorescence
(BGF) and thermal imaging to detect the root parasitic weed
of Orobanche cumana Wallr on sunflowers. The thermal
imaging results show that the parasite-infected sunflowers
had warmer leaves due to stomatal closure and transpiration
reduction.

As described above, the plant will be stressed if there is a
biotic or abiotic factor. When a plant is stressed, some leaves
or the whole canopy will increase the temperature, depending
on the stress factor. For example, if an insect contaminates a
leaf initially, it will cause stress on that leaf and, consequently,
a temperature increase.

III. RELATED WORK
In the literature, there has been much work on using thermal
infrared and visible imaging to monitor the crop’s growth
and detect the water stress of the plants [18], [42]. Thermal
imaging can be used for the crop’s stress monitoring consid-
ering the relation between the canopy temperature, stomatal
conductance, and leaf transpiration rate [16].
In later years is known that a conventional method of

using a handheld TIR camera has the limitation of capturing
images of the whole crop in a small-time amount. On the
other hand, using UAVs equipped with a TIR camera can
quickly capture the crop canopy temperature, identifying the
temperature differences between the plants.

Berni et al. [43] proposed a model based on olive trees’
canopy temperature from airborne thermal infrared imaging
to calculate tree canopy conductance (Gc) and the CWSI.
They validated that Gc and CWSI are directly related to the
stomata transpiration of the olive trees, which are affected by
water deficiency.

Gonzalez-Dugo et al. [18] presented a study using the
thermal index CWSI on experimental wheat fields, which
validates that thermal infrared imaging can be used for crop
growth monitoring and water stress.

Berni et al. [44] presented a study using high-resolution
thermal infrared images acquired from a UAV of a peach
orchard field. They found a thermal variation in the plants due
to variations in irrigation levels of the field, which validate
the water stress detection in plants using airborne thermal
infrared imaging.

Jones et al. [19] measured the leaf temperature of vineyards
using a TIR camera carried by a UAV. They used three irriga-
tion treatments in three vineyard areas and validated the mean
canopy temperature and the plants’ stomatal conductance
response according to water deficiency.

Falkenberg et al. [45] presented a remote sensing method
of biotic and abiotic stress using a TIR camera in cotton
fields. The results show that the thermal infrared camera
detected biotic stress before visible symptoms on cotton and
can discriminate the abiotic from biotic stress.

Cohen et al. [46] presented a study using thermal infrared
imaging for the early detection of Downy Mildew (Per-
onospora) in Grapevine (Vitis vinifera L.). They collected
TIR images of infected and healthy plants at different day
hours. The results show that downy mildew can be detected
before visible symptoms using thermal infrared imaging.

Smigaj et al. [47] investigated the potential use of UAVs
with a TIR camera to detect Dothistroma septosporum dis-
ease on pines. The authors found a significant correlation
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between canopy temperature and disease levels, especially
during morning flights with peak photosynthetic activity.

Wang et al. [48] used thermography in wheat infected by
the fungus Zymoseptoria triciti to predict the disease before
symptoms expressed on the plants. The results show a sig-
nificant correlation between the canopy temperature and the
disease level, which means the ability to predict the early
stages of the fungal infection in wheat.

Park and Kim [49] conducted a study using infrared ther-
mography to compare the temperatures of healthy leaves and
those with necrotic spots on oriental cherry, Japanese cornel,
and sawtooth oak. The results indicate a significant difference
in temperature between healthy and diseased leaves.

López-López et al. [50] presented a study using thermal
and hyperspectral airborne imagery for the early detection
of red leaf blotch in almond orchards. The authors used
classification methods such as linear discriminant analysis
and support vector machine in a combination of vegetation
indices to classify the disease severity of the red leaf blotch.
The results show that the proposed method can detect and
quantify the red leaf blotch.

Zhang et al. [51] presented a study using thermal and
high-resolution RGB images captured by a UAV to extract the
canopy temperature of maize. The authors proposed amethod
of red-green ratio index (RGRI)-Otsu for the extraction of
the canopy temperature. The results show a high correlation
between themaize’s canopy temperature and the ground-truth
temperatures captured by a handheld infrared thermometer.

The Triangular Greenness Index (TGI) is based on chloro-
phyll spectral features, and it canmeasure the leaf chlorophyll
content related to low leaf nitrogen content, plant diseases,
or other deficiencies [8]. The TGI was selected as a compar-
ison index of our proposed method because of the constraint
of the hardware (TIR and visual camera) used for image
acquisition. Compared with other indexes, one more advan-
tage of the TGI method is that it needs only a visible camera
because the bands used in the TGI’s equation are in the visible
spectrum. Furthermore, TGI is calculated by three points
of the visible wavelength, which are 480 nm, 550 nm, and
670 nm. The equation of TGI is: TGI = −0.5[190(R670–
R550) − 120(R670–R480)], where R is the reflectance at
wavelength.

In the results section, except for our proposed method’s
output images with stressed plants, TGI is used as a com-
parison index measuring the chlorophyll content like other
multispectral indexes.

IV. METHODOLOGY
Our work is focused on thermal infrared and RGB images
captured from remote sensing using Unmanned Aerial Vehi-
cles. The proposed solution aims to eliminate the soil’s pixels
from the TIR image and find the leaves’ pixels under stress
considering the relative pixels’ temperatures of the plant’s
canopy. However, our empirical results validate the relation-
ship between leaves’ high temperatures and stomatal closure,
resulting from an abiotic, biotic stress factor.

A. FIELD SELECTION
Two grapevines (Vitis vinifera L.) were selected for the
experiments in Askri, Viotia, Greece, of the Muses Estate.
Both grapevines, Vitis vinifera (L.) cv. Mouhtaro vineyard
(38.325104 N, 23.093501 E, Altitude: 480 m), and Vitis
vinifera (L.) cv. Merlot vineyard (38.325817 N, 23.092826 E,
Altitude: 480 m) were eleven years old on the date of the first
coverage. The images were captured starting from 2021 until
2022. Every year, each vineyard is surveyed three times in the
stages of flowering, fruit set, and veraison of the grapevine
lifecycle. Each vineyard was surveyed six times in two years.
Both vineyards received the same fertilization, pest, and dis-
ease management treatment.

B. IMAGES ACQUISITION
Two types of multi-rotor UAVs were used for field surveying
during the two years. In the first year, the DJI Matrice 200
(SZ DJI Technology Co., Ltd., China) was used with the dual
camera FLIR Duo Pro R 640 (Teledyne FLIR LLC., USA).
The DJI Mavic 2 Enterprise Advanced (SZ DJI Technology
Co., Ltd., China) was used in the second year.

The drones’ cameras mentioned above can capture two (2)
images simultaneously, an RGB image with an embedded
thermal infrared image and one TIR and one RGB image with
metadata, respectively. The TIR cameras’ spectrum (Thermal
Infrared Spectral Band) is 8 - 14 µm. In two years of surveys
and twelve flights, a total of 4660 images were captured,
where 2330 are RGB images and the other 2330 are TIR
images.

A boustrophedon Coverage Path Planning (CPP) method
was used for surveying vineyards by everymulti-rotor UAV to
capture the same vines with the same sequence in every flight.
The flying altitude is computed according to Ground Sam-
ple Distance (GSD), considering the UAVs’ thermal infrared
sensors’ resolution. The GSD pertains to the measurement
between centers of pixels on the ground, and a smaller GSD
value corresponds to a more excellent spatial resolution of
the image. The entire dataset of TIR images obtained for
two years was preserved at an approximate GSD of 3 cm,
translating to a resolution of 3 cm per pixel.

C. DATA SPECIFIC PARAMETERS
The multi-rotor UAVs surveyed the fields according to the
GSD of the TIR camera; the flight altitude was approximately
20 meters, and the front and side overlapped, which used
75%. The specific parameters of the TIR and RGB images
of both cameras, such as focal length, resolution, bit depth,
megapixels, field of view, and compression, are presented in
Table 3.

D. IMAGES PRE-PROCESSING
Prior to utilizing the TIR and RGB images alongside
their accompanying metadata, it is imperative to undergo
pre-processing procedures that involve alignment and soil
elimination.
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1) IMAGES ALIGNMENT
For the alignment of the TIR and RGB images, some meta-
data variables were used, specifically:

• The Real2Ir variable is the factor by which we need to
multiply the TIR image to be the same size as the RGB
image.

• The offsetX and offsetY variables are the offset pixels
between TIR and RGB images on the X and Y axis.

• The width and the height of the RGB and TIR images.
Initially, to determine the resize percentage of the RGB

image according to the TIR image size, the variable of
Real2Ir, the Width of the RGB image, and the Width of the
TIR image are used as shown in (1).

Resize_percentage= 100×
RGBImageWidth

Real2Ir
ThermalImageWidth

(1)

The next step before the crop of the RGB image is to offset
according to the values of the metadata variables OffsetX and
OffsetY, which presents the pixels’ offset between the RGB
and TIR images.

After offsetting, the RGB image is cropped based on
Resize_Percentage and TIR Image Width and Height. The
cropped values for X-axis and Y-axis are computed as shown
in (2) and (3).

CropX = Resize_Percentage×
Thermal_Image_Width

100
(2)

CropY =Resize_Percentage×
Thermal_Image_Height

100
(3)

Finally, the pixels of the cropped RGB image are equiva-
lent (spatially - exact coordinates) to each pixel of the TIR
image.

2) SOIL ISOLATION
Considering that the pixels of the thermal infrared images
used in our method are only vegetation, specifically the
canopy leaves of the vineyards, a surface emissivity of
0.98 was set and used in TIR images [52], [53].

One of the most known problems is eliminating the soil in
the TIR image. Giuliani and Flore [54], proposed a method
using a sheet background that heats up above the plant’s
temperature and can exclude it from the image considering
the TIR image’s histogram.

Another approach for soil elimination is identifying
leaves’ pixels from an RGB image and extracting only
the temperatures from the corresponding pixels of the TIR
image [55], [56].
Gonzalez-Dugo et al. [42] used the OTSU method to

extract the canopy temperature automatically. However,
a constraint of the OTSU method is that the threshold pixels
usually contain soil pixels. Furthermore, it is difficult to
extract the class of pixels which represents plants’ canopy
automatically, considering that in some cases, the soil is
colder than the plants’ canopy and vice versa.

This constraint overcame using the OTSU method in TIR
images and then comparing of the corresponding two classes

FIGURE 1. Grayscale TIR image.

of pixels of the RGB image used for the canopy’s pixels
class finding. TheOTSUmethodwas chosen because it aligns
seamlessly with the challenges of thermal vineyard imagery.
The natural thermal contrast between canopy leaves and soil
creates a distinct difference in pixel values, resulting in a
bimodal distribution that aligns with the assumptions of the
OTSU method.

Moreover, the automatic nature of the OTSU method is
crucial in our approach since manual parameter setting for
methods like Fuzzy C-means (FCM) is often challenging due
to dynamic and variable temperature ranges. OTSU’s auto-
mated threshold determination method uses data distribution
to simplify parameter tuning. The method’s computational
efficiency and simplicity make it highly relevant to our study,
especially in vineyard analysis, where soil isolation is the
primary objective and resource constraints may apply.

The OTSU method’s robustness makes it suitable for sce-
narios with well-defined pixel clusters and minimal overlap.
On the other hand, FCM’s consideration of membership
degrees across multiple clusters may need revision when
dealing with overlapping clusters. Ultimately, we opted for
the OTSU method due to its compatibility with our data’s
unique attributes, adaptability to varying temperature pro-
files, computational efficiency, and resilience to scenarios
with distinctive pixel clusters.

The proposed soil isolation method initially converted the
TIR image to grayscale Fig. 1. Then, the OTSU method was
applied to the grayscale TIR image. The OTSU algorithm
assumes that the image contains two classes of pixels
that follow the bimodal histogram (foreground pixels and
background pixels). Then calculates the optimal threshold
separating the two classes so that their combined spread
(minimum variability) is minimal or equivalent (because the
sum of the pairs of square distances is constant) so that their
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variability is maximal [57]. This method aligns with our goal
of accurately isolating soil by utilizing TIR images and the
capabilities of the OTSU method.

After applying the OTSU method to the TIR images, there
are two classes of pixels. However, to establish an automatic
methodology for the finding of the class of pixels representing
the plants’ canopy was found by comparing the two classes
computed by the OTSU algorithm with the corresponding
classes of pixels of the cropped and aligned RGB image,
which converted to Hue-Saturation-Value (HSV) color model
for more precise color control than the RGB model.

E. PLANT’S CANOPY PIXELS SELECTION
The class of pixels representing the plant canopy in the TIR
image was determined by selecting the corresponding class of
pixels in the HSV image with the most shades of green. The
class of TIR pixels representing the plant canopy is converted
into a 2-D arraywith the temperature and coordinates of every
class pixel representing the plants’ canopy.

F. DATA CLUSTERING
The k-Means clustering method is used to the values of the
2-D array to group the temperatures into a specific number of
groups. The k-Means method aims to optimize the manipula-
tion of the temperatures according to the clusters where they
belong, for example, a cluster of temperatures representing
threshold and soil signals pixels. The most crucial part of data
clustering is determining the optimum number of clusters.

1) OPTIMAL NUMBER OF CLUSTERS (k)
The elbow and Silhouette methods were used to find the most
efficient number of groups (k) of the leaves’ temperatures,
which were retrieved from the pixels of the TIR images.

The corresponding leaves’ TIR data used in the Elbow
and Silhouette method was extracted from all the images of
each field and flight because the absolute temperatures of the
leaves differ from flight to flight. Still, there are differences
between the temperatures of healthy and stressed leaves.

Furthermore, the optimum number of clusters (k) resulting
from Elbow (Fig. 2) and Silhouette (Fig. 3) was the same
between the different TIR data of each flight, as was expected
considering the temperature differences between stressed or
healthy plants.

2) ELBOW METHOD
To determine the optimal number (k) of clusters, the Elbow
method uses the loss function (4) of the k-Means method.
As varying the number (k) of clusters, the value of the loss
function changes, and the optimal number of the clusters (k)
is when the decrease of the loss function changes rapidly.

L =

∑k

j=1

∑n

i=1

∥∥∥x(j)i − cj
∥∥∥2 (4)

3) SILHOUETTE METHOD
The silhouette method was used to find the specific number
of groups during the research coefficient. Silhouette refers to

FIGURE 2. Elbow method analysis for k-Means clustering.

interpreting and validating consistency within datasets, and
the technique provides a brief graphic representation of how
well each item is sorted. The s(i) silhouette value (5) ranges
between [1,−1], where the highest value indicates howmuch
an object is similar to its cluster compared to neighboring
clusters. The a(i) measures the similarity of point i to its
cluster according to the average distance of i from all other
points in the cluster. The b(i) measures the dissimilarity of
point i from the points of the other clusters according to the
average distance of i from the points of the closest cluster to
its cluster.

s (i) =
b (i) − a(i)

max{a (i) , b (i)}
(5)

The number of clusters (k) chosen for the method, consid-
ering the Elbow and Silhouette method, was the number six
(k=6). Therefore, the values of temperatures clustered into
six groups.

G. CLUSTERS VISUALIZATION
Depending on the temperature value of the cluster, each
pixel’s temperature value is assigned a specific color at
the corresponding pixel. The colors dark green, green, light
green, yellow, orange, and red are chosen and assigned hier-
archically from the lowest to the highest value of each cluster
and assigned in each pixel, considering the corresponding
temperature value to which its cluster belongs. The purpose
of standard pseudo-coloring in temperature values depending
on the cluster which belongs is the standardization of every
plant canopy thermal infrared footprint. Fig. 4 represents
the thermal infrared footprint of a vineyard after clustering
thermal values.

H. FUSION OF CLUSTERS AND RGB IMAGE
The clusters which are above the mean average temperature
and represent the most significant areas of stress in the vine-
yards are the fourth and fifth clusters. The sixth cluster has the
highest temperature values, representing the threshold pixels,
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FIGURE 3. Silhouette analysis for k-Means clustering, (a) silhouette plot
for the various clusters, and (b) visualization of the clustered data.

and pixels, which are signals of soil between leaves and some
weeds close to the soil, so the sixth cluster’s temperature
values do not depict any pixel of the vineyards’ canopy leaves.

The fourth and fifth clusters’ pixel coordinates are used,
and a pseudo-coloring of yellow is assigned in the corre-
sponding pixels of the aligned RGB image. Finally, an RGB
image is generated with yellow pseudo-coloring over the
stressed areas of the vineyards’ canopy, shown in Fig. 5.

I. TGI METHOD
The TGI method was applied to all RGB images used in
our proposed method for comparison. The TGI result of the

FIGURE 4. K-Means clustering of the TIR footprint.

FIGURE 5. Stressed plants pseudo-coloring visual (RGB) image.

vineyards’ image, which is used as an example in the above
methodology, is shown in Fig. 6.
Our proposed method is intended for something other than

real-time application due to certain limitations and considera-
tions regarding completion time. These constraints primarily
stem from data acquisition, image processing, and analysis.
The image processing steps are quite complex, particularly
regarding canopy isolation and clustering, and require precise
alignment between TIR and RGB images, which naturally
extends the processing time. Furthermore, an end-to-end
approach involving seamless image capture, data processing,
and decision-making integration would streamline the solu-
tion and reduce time lag. However, implementing an end-to-
end system requires further sensor technology development
and computing capabilities advancements, which will involve
developing real-time image analysis and decision-making
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FIGURE 6. TGI pseudo-coloring of RGB image.

algorithms that operate efficiently on UAVs or edge devices.
It is also essential to deploy 5G or low-latency communica-
tion infrastructure to transmit data and receive instructions in
near real-time.

V. RESULTS
Our method found stressed areas in plants caused by abiotic
factors, such as water stress, and biotic stress factors, such
as pathogens. The dataset of the 4660 captured images was
analyzed using the proposed method as well as the TGI
methodology as a comparison index to reveal whether the
stressed areas found by our method could be found by TGI.

The total percentage of stress area compared to the plants’
canopy coverage was computed, as shown in Table 1, in the
results of each flight survey. The stress percentage is com-
puted based on the total pixels of the plant’s canopy compared
to the pseudo-coloring pixels, which indicate the stress area
of the plant.

The proposed method found 1886 plants’ stressed areas,
where the TGI found 315 of them with low chlorophyll,
which confirms that the first symptom in a stressed plant is
stomatal closure, which proves that it needs time, depending
on the abiotic or biotic factor, for the chlorophyll content
decrement or the visible expression of the symptomatology.

Abiotic factors, such as water stress, constitute the reason
for the most plant-stressed areas. All the stressed areas were
annotated in the field after each flight for the agronomist to
classify the kind of stress, abiotic or biotic, according to the
plant’s symptomatology expression.

One abiotic stress that is very common and the TGI was
unable to identify was toxicity (Fig. 7), which is caused due

TABLE 1. Stress and plants’ canopy coverage.

FIGURE 7. Images of a stressed plant caused by Toxicity (a) Stressed
plant pseudo-coloring, (b) TGI, (c) RGB, and (d) Leaf level image.

to sulfur spraying at temperatures of approximately 30 oC
degrees.

The most interesting part of the results is that the pro-
posed method found stressed plants from 2021 without any
symptom expression, and the same plants in 2022 contin-
ued to be stressed without any symptoms. In 2022 before
harvest, the same plants expressed the symptoms of trunk
diseases (Fig. 8). This is attributed to the fact that the trunk
diseases affect the transparency of the leaves’ stomata, but
may express the symptoms 2-3 years after the affected day
[58]. Another stressed plant with Phomopsis was found in
the nascent symptomatology (Fig. 9). TGI could not identify
the plants’ stressed by pathogens, because the chlorophyll
content decreased slightly before the symptoms’ expression.

Through visual inspection, an agronomist verified the
proposed method and the TGI’s outcomes and categorized
the stress factor type. The accuracy, precision, recall, and
F1-score of both methods for each year and their overall
performance are presented in Table 2. Additionally, Fig. 10
compares the evaluation metrics between the proposed
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FIGURE 8. Images of the same stressed plant caused by Esca in 2021
(a) Stressed plant pseudo-coloring, (b) TGI, (c) RGB, in 2022 (d) Stressed
plant pseudo-coloring, (e) TGI, (f) RGB, and (g) Leaf level image.

TABLE 2. Stress and plants’ canopy coverage.

method and TGI for each year and their cumulative perfor-
mance.

In conclusion, based on the metrics outcomes, the pri-
mary variation between the proposed approach and TGI is
most prominent in the recall metric for the years 2021 and
2022, and the cumulative results for both years, which were
recorded as 55.73%, 86.87%, and 87.22%, respectively. Fur-
thermore, as a consequence of the recall, the F1-score of the
proposed method is better in 2021 by 36.22%, in 2022 by
77%, and in the cumulative of the two years by 70.55%.

FIGURE 9. Images of a stressed plant caused by Phomopsis (a) Stressed
plant pseudo-coloring, (b) TGI, (c) RGB, and (d) Leaf level image.

TABLE 3. Data specific parameters.

Moreover, as per the literature review and the findings of this
study, stomatal closure is the first symptom of stress in plants
that are caused by biotic or abiotic factors. The proposed
method can effectively identify infections in the initial stages
of some pathogens, which typically takemonths or even years
to express their symptomatology.

VI. DISCUSSION
It is known from the literature that the early symptom
of a stressed plant is stomatal closure. Plants under stress
may have different temperatures than healthy plants due to
changes in their metabolic rate or leaf transpiration. Our
method makes detecting plant stress in the early stages
possible by measuring these temperature differences. Our
proposed method can be used to determine and annotate
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FIGURE 10. Evaluation metrics of the proposed method and TGI (a) 2021,
(b) 2022, and (c) 2021-2022.

stressed areas in plants, considering that the k-means clus-
tering is based on the relative temperatures of the leaves.

The most important conclusion of the drawn results is
the early detection of the plant stress and, at most times,
before the symptoms expression and with higher accuracy
compared to other indexes such as TGI, which measures the
chlorophyll content of the leaves. According to the results
of the experimental vineyards, the proposed method found a
mean of 2.07% stressed plants compared to 0.35% of plants
with low chlorophyll found by the TGI method. Like all other
methods and vegetation indexes, an essential constraint of the
proposed method is the inability to classify the kind of stress,
such as abiotic or biotic.

On the other hand, the multispectral IoT sensors measure
the reflected light from the plant in multiple wavelengths,
which can provide information about the plant’s chlorophyll
content, water content, and other factors. The indexes based
on multispectral bands can detect changes in the plant’s phys-

iology that may indicate stress. However, they are often not
sensitive enough to detect stress in its early stages.

Further comprehensive comparative assessments to other
agricultural settings, including vertical farming and green-
houses in the future, will be conducted. The proposed method
will be compared in these controlled environments with IoT
matrices and different camera types, such asmultispectral and
hyperspectral cameras. This future work will allow the per-
formance of our proposed method to be assessed in a broader
spectrum of agricultural scenarios and facilitate meaning-
ful comparisons with alternative techniques. Enhancing the
robustness of the proposed approach through rigorous testing
and validation in diverse agricultural contexts will ensure its
practical applicability and effectiveness.

Future research should consider combining methods and
sensors tomonitor plant stress, including thermal infrared and
multispectral imaging, as well as other techniques, such as
monitoring the plant’s growth and observing visual signs of
stress, to classify the type of plant stress.

VII. CONCLUSION
We proposed a method for the early detection of plant stress
according to the leaves’ stomata transpiration based on TIR
and RGB images which can be acquired from IoT sensors.
The TIR image is the detection baseline for the stomata
closure according to the relative temperatures of the plant’s
canopy and elimination based on the OTSU method of the
soil. The RGB image was used to discriminate the plant’s
canopy and visualize the plant’s stressed areas by pseudo-
coloring. The thermal data of the TIR image are clustered
according to the k-Means method, where the clusters of the
plant’s canopy pixels are used, excluding the soil signal or
other noise.

The results of the proposed method indicate that it is highly
effective to detect stressed plants before the symptoms’
expression, especially when compared to methods such as
TGI, which measures the leaf chlorophyll content. According
to the results, abiotic factors were the most common causes of
plant stress, such as water stress and toxicity caused by sulfur
spraying.

In addition, biotic factors that cause plant stress were
found, such as pathogens like trunk diseases that are not
visible by the naked eye or other methods that measure
chlorophyll content in the early stages of infection. Our
method detected the plant stress caused by trunk diseases
in the nascent of the infection, especially two years before
symptoms expression. In this stage, the proposed method
cannot classify the factors that cause plant stress, such as
abiotic or biotic.

Future research should focus on combining the proposed
method with other methods, such as multispectral imaging or
other IoT sensors, to classify the type of stress at the time of
detection. The capability of the proposed method on the early
detection of stressed plants is vital to prevent further damage
and improve crop yields.
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