
Received 4 August 2023, accepted 21 September 2023, date of publication 27 September 2023, date of current version 5 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3320053

PhyMER: Physiological Dataset for
Multimodal Emotion Recognition With
Personality as a Context
SUDARSHAN PANT , HYUNG-JEONG YANG , EUNCHAE LIM , SOO-HYUNG KIM ,
AND SEOK-BONG YOO
Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, South Korea

Corresponding author: Hyung-Jeong Yang (hjyang@jnu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government
[Ministry of Science and ICT (MSIT)] under Grant RS-2023-00219107, in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) through the Artificial Intelligence Convergence Innovation Human Resources Development
grant funded by the Korea Government (MSIT) under Grant IITP-2023-RS-2023-00256629, and in part by the Regional Innovation
Strategy (RIS) through NRF funded by the Ministry of Education (MOE) under Grant 2021RIS-002.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Review Board, Chonnam National University under Application No. 1040198-210401-HR-045-02.

ABSTRACT Physiological signals are widely used in the recognition of affective status. Recording
of such physiological signals involves elicitation of emotions through different stimuli including video-
based stimulus. Considering that the same stimulus videos often induce different emotions in different
individuals, emotion recognition in such a scenario requires consideration of the individual differences in the
consumption of the stimulus content.With this as our goal, we present a Physiological dataset forMultimodal
Emotion Recognition (PhyMER) for studying emotion through physiological response with personality as a
context. The PhyMER dataset consists of electroencephalogram (EEG), electrodermal activity (EDA), blood
volume pulse (BVP), and skin temperature along with the personality traits of 30 participants. We collected
the video-based stimulus dataset for emotion elicitation and developed a web-based annotation tool for
labeling felt emotions. We compared the stimulus labels and the self-annotation of felt emotions labeled
during physiological data recording. Correlation among personalities was analyzed to study the impact of
personality on the intensity of emotions in arousal and valence dimensions. Finally, we proposed a baseline
model for the classification of emotions using physiological signals. The dataset is publicly available to the
academic community for analysis of affective states and the development of emotion recognition models.

INDEX TERMS Physiological signals, EEG, emotion classification, personality traits.

I. INTRODUCTION
Emotions are behavioral phenomena that occur in response
to an event or stimulus and are expressed through various
behavioral and physiological changes. Emotions have been
studied as discrete categories, continuous values in various
dimensions such as arousal, valence, and dominance, and
in terms of changes in a set of components based on
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different subjective qualities. Ekman [1] introduced seven
basic emotions which are widely accepted as emotions
independent of race, culture, or geography [2], [3]. Similarly,
Parrot’s [4] tree structure of emotions is a popular example
of a discrete representation of emotions where emotions are
hierarchically organized as primary, secondary, and tertiary
emotions. Plutchick [5] organized the discrete emotions in a
wheel, known as Plutchick’s wheel of emotion, with 8 basic
emotions towards the center and fine-grained sub-categories
towards the edge of the wheel. On the other hand, the
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dimensional view of emotions refers to the organization
of emotions as continuous values across dimensions such
as arousal, valence, and dominance, where the emotional
states are interrelated systematically. For instance, Russel’s
Circumplex Model of Affect [6] includes emotions in the
dimensions of arousal and valence. Arousal represents the
degree of an individual’s excitement while valence indicates
the level of pleasant or unpleasant feelings. The component
process model [7] is based on the coordinated changes in
the individual in terms of components such as appraisal,
motivation, physiology, and expression. Several studies such
as [8], [9], and [10] demonstrated the multi-componential
emotions in different scenarios.Mohammadi andVuilleumier
[10] used a component model to show the role of personality
in the recognition of discrete emotions. The theory of
constructed emotion [11] states that emotions are invisibly
constructed by the brain based on the situation. The body-
budgeting regions in the brain predict the experienced world
by tweaking the neurons based on past experiences and such
predictions are sent to the rest of the body controlling the
physiological processes such as heart beats and respiratory
rate [12].
Emotions are felt and expressed in a significantly different

manner among individuals [13]. Similarly, electroencephalo-
gram (EEG) signals, one of the physiological signals used
in emotion recognition, are variable across individuals [14],
[15], [16]. Therefore, physiological datasets with precise
and fine-grained labels of such emotions in consideration of
individual differences are essential for the accurate analysis
of human emotions.

One way to take individual differences into account is
through personality. However, only a few studies have
considered personality during emotion recognition. Emotions
generate both behavioral and physiological changes which
include variations in facial expression, posture, or alterations
in physiological activities such as heartbeat, neural acti-
vations, perspiration, and body temperature. Unfortunately,
among the existing physiological emotion datasets, only a
few consider individual personality as a crucial factor in
identifying emotions [17], [18], [19]. Most of the existing
datasets either use one of the categorical or dimensional
emotions or have coarse annotation for different levels of
emotion dimensions. The annotations from both categorical
and dimensional perspectives are important for emotion
recognition research. Moreover, to study individuals’ emo-
tions more precisely, a multimodal dataset labeled with
fine-grained emotions is required.

In this paper, we present a Physiological dataset for
Multimodal Emotion Recognition (PhyMER) that encom-
passes a wide range of physiological signals recorded during
video viewing as emotional stimulus. Physiological signals
are not only obtained from visual or physical evaluation
but can also be obtained through off-the-shelf non-invasive
consumer-grade devices which offer a convenient and cost-
effective means of acquiring physiological data. Although
basic emotions are considered universal, the observation

and consumption of the stimulus video content may differ
among individuals. Therefore, we include personality traits
in the dataset to provide individual context for emotion
recognition.

The PhyMER dataset consists of physiological sig-
nals obtained from 30 Korean participants (15 male and
15 female) using two different wearable devices. To avoid
the bias due to the stimulus comprehension the participants
with similar age group were selected. The participants were
university students aged between 20 and 30 years. The dataset
was collected with video-based emotion stimuli, where the
participants watched 23 stimulus videos of varying lengths
(1 to 3 minutes). The modalities collected include EEG,
blood pulse volume (BVP), electrodermal activity (EDA),
and skin temperature (TEMP). A custom annotation tool
was developed for self-assessment of the felt emotions and
for recording the experiment times and emotion annotations
to synchronize the signals collected from different devices.
To ensure the quality of the dataset, two annotation exper-
iments were conducted. Firstly 28 evaluators labeled the
stimulus videos to verify if the stimulus videos collected by
the experimenters could induce the expected emotions in the
participants. Secondly, the participants of the physiological
data collection experiment labeled their felt emotions while
they watched the stimulus videos. The physiological signals
collected using commercial equipment as well as personality
traits are publicly available for academic research. The main
contributions proposed by this paper are as follows.

• We present a physiological signal dataset with multiple
physiological signals collected from 30 participants.
We recorded EEG, EDA, BVP, and temperature
information with annotations in both categorical and
dimensional views along with the individual personality
traits of the participants for the study of emotions in
presence of individual personality differences.

• We present the analysis of the emotion elicitation
following a video-based stimulus. We conducted experi-
ments to analyze both stimulus and physiological signal
annotations using two similar experiments involving
participants of similar age groups. The video stimulus
data based on Korean movies were collected and eval-
uated using inter-rater agreement analysis. Moreover,
we analyzed the correlation between the felt emotions
and personality traits to see how different personality
traits affect emotion elicitation.

• We present an emotion recognition framework as a
baseline method for the classification of seven basic
emotions and the prediction of arousal and valence val-
ues. In this case, we performed both subject-dependent
and subject-independent experiments for classification
and prediction.

The rest of the paper is organized as follows; in section II,
we discuss the existing studies on multimodal emotion
recognition, emotion recognition datasets, and personality
as a context. Section III describes the overall dataset-
building process, including criteria for participant selection,
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experiment scenario, the stimulus video selection process,
and devices used for the data collection. Section IV provides
an overview of the dataset and the statistical analysis of
the dataset. In section V, we explain the classification and
regression experiments for basic emotions and dimensional
emotion values respectively. In section VI, we discuss the
contribution and potential applications of the dataset, limi-
tations, and future research directions. Finally, we conclude
the paper in section VII.

II. RELATED WORK
Several research studies on emotion recognition using bio-
signal data have been conducted over the past few years.
In this section, we have summarized related studies involving
physiological datasets and personality as a context.

The publicly available datasets have enabled rapid
advancement in emotion recognition research. Over the past
few years, several datasets based on a variety of modalities
have been published. In this section, we review emotion
recognition datasets involving the use of physiological
signals, which are relevant to this study.

SJTU emotion EEG dataset (SEED) [20] dataset includes
EEG recordings collected from 15 subjects while they
watched movie clips for emotion elicitation. It includes 64-
channel EEG data annotated for negative (−1), neutral (0),
and positive (+1) emotions. MAHNOB-HCI [21] is a multi-
modal dataset with EEG, Electrocardiogram (ECG), Galvanic
Skin Response (GSR), Respiration Amplitude (RA), and
Skin Temperature collected from 27 participants stimulated
using video clips and images. It includes self-annotated
labels for arousal, valence, and dominance dimensions on
a 5-point scale, and 20 emotional categories. DEAP dataset
[22] includes physiological signals including EEG, ECG,
electrooculogram (EOG), RA, GSR, blood volume, skin
temperature, and electromyogram (EMG) of 32 participants
stimulated by watching music videos. The annotations
include 4 categorical emotions (neutral, sad, fear, happy)
and 5-dimensional (arousal, valence, liking, dominance,
familiarity) emotion labels.

Similarly, DREAMER [23] dataset consists of EEG
and ECG signals collected from 23 participants stimu-
lated by 18 stimulus videos. It is labeled for arousal,
valence, and dominance dimensions on the 5-point scale.
The DECAF database [24] includes multiple modalities
including, ECG, EOG, EMG, MEG, and near-infrared (NIR)
video. It includes self-reported scores for valence, arousal,
and dominance. Multimodal Spontaneous Emotion Corpus
for Human Behavior Analysis (BP4D+) [25] consists of
multiple modalities, including 2D and 3D videos, thermal
scans, Respiration, Blood pressure, GSR, and heart rate.
It was collected from 140 participants who self-reported
felt emotions of 10 discrete emotions elicited using various
tasks such as interviews, watching videos, pain induction
using ice, and smelly odor. KEmoCon [26] includes audio,
video, and physiological signals including EEG, ECG, EDA,
BVP, and TEMP during paired debates on a political topic.

Emotions were labeled with 20 discrete emotions and arousal
and valence dimensions on a 5-point scale.

Different studies have interpreted the context in diverse
manners, encompassing aspects such as multimodality, inter-
agent relationships within the scene, socio-cultural dynamics,
and personality [19], [27]. Emotion expression is different
in individuals as it is affected by several factors, including
personality [28]. Personality refers to human characteristics
which explain or predict individuals’ behavior [29]. The
relationship of personality with various emotional states
has been studied in the past, for example, the use of
the personality model with a textual modality for emotion
reasoning [30], [31]. Considering the potential variations
in psychophysiological changes among individuals, incorpo-
rating personality into the analysis of physiological signals
for emotion recognition can offer supplementary contextual
information. Personality traits have been found to have
an impact on perception, causing different reactions to
emotional perception [10]. It is essential to examine the
connection between personality and emotions to understand
how personality traits influence emotional experiences.
The widely used Big-5 personality trait model offers a
valuable approach for identifying and characterizing human
personality, comprising five key qualities: extraversion, neu-
roticism, conscientiousness, agreeableness, and openness.
The commonly used personality assessment method includes
Neuroticism, Extraversion, and Openness Five-Factor Inven-
tory (NEO-FFI) [32], the Goldberg Adjectives Scale [33], and
Newcastle Personality Assessment (NPA) [34].
AMIGOS [18] dataset uses personality and mood infor-

mation for emotion recognition of individuals and groups.
It was collected from 40 participants while they watched
16 emotional video clips from several movies. It consists
of 7 discrete emotions, 5-point annotations of arousal,
valence, and dominance, and binary labels for Liking and
familiarity. The results showed weak linear correlations
between emotions and personality. Personality has been used
for behavior analysis in Mission Survival II corpus dataset
[35], which consists of video and audio data labeled with task
area functional roles and socio-emotional functional roles.
The data was collected during meetings of 4 participants.
The personality information was obtained using the Ten
Item Personality Inventory [36]. The analysis showed the
correlation between extraversion and audio features such as
pitch and energy, indicating the need for further research
in emotion recognition in presence of personality traits.
Similarly, ASCERTAIN [17] includes multiple physiological
signals such as EEG, ECG,GSR, and facial videos. It was col-
lected from 58 participants while they watched short movie
clips. Personality information was recorded through a big-
5 marker scale personality questionnaire. The study showed
there is a weak correlation between emotions and personality.
MEmoR [19] dataset includes personality information of
TV characters to reason the emotions. It is a multimodal
dataset with video, audio, and text modalities focusing on
emotion reasoning based on contextual information. This

107640 VOLUME 11, 2023



S. Pant et al.: PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality

TABLE 1. Summary of the existing emotion recognition datasets based on physiological signals.

dataset consists of categorical labels (8 primary emotions and
24 fine-grained emotions), labeled by multiple annotators.

While several datasets use physiological signals and
personality as a context, the existing datasets either deal
with categorical emotions or provide coarse annotations in
dimensional space. Therefore, in the present study, we present
the physiological dataset with both discrete emotions and
9-point ratings on arousal and valence dimensions for
increased precision of measurement unit and consideration
of sensitivity towards the changes in physiological signals.
A 9-point scale not only measures more precise levels of
emotions but also allows for finer distinctions between small
changes in physiological signals. Moreover, in this study,
we focus on emotion recognition of Koreans as induced by
the video content in native language of the participants which
ensures the better elicitation of the emotions. We collected
physiological data set after evaluation of the stimulus dataset
by the evaluators from same culture and age group. The
characteristics of the existing databases related to this paper
have been summarized in Table 1.

III. DATASET BUILDING
The dataset construction was approved by ChonnamNational
University Institutional Review Board (IRB); a dataset
construction protocol and consent form containing the
information on the data collection procedure, the purpose
of data collection, and the type of data to be collected
was approved by IRB. The participants were briefed on the
overall experiment both in verbal and written form before
signing the consent documents. The participants provided
written consent for the disclosure of the physiological
signals as a public dataset. However, the data did not
include any Personally Identifiable Information (PII) such
as audio-visual information. For statistical purposes, only
the age and gender of candidates are published along
with the anonymized dataset. The overall experiment was
conducted in three steps; selection of the stimulus video
by two experimenters, annotation of the stimulus videos
by 28 evaluators, and collection of physiological data from
30 participants as discussed in the following sections as
shown in Fig 1.
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FIGURE 1. Overall data collection process for physiological data collection.

A. STIMULUS DATA
As the reliability of the dataset depends primarily on the
elicitation of emotions, the selection of the stimulus is a
crucial step in dataset building. In this work, we prepared a
stimulus video dataset for emotion stimulation and evaluated
it using a multi-rater annotation. We choose movie clips
as the emotional stimuli as they are highly effective in
evoking emotions [17], [24], [37]. As the experiment was
conducted on Korean subjects, we decided to use Korean
videos as a stimulus for emotion elicitation to avoid any
issues in perceiving the content due to linguistic and cultural
differences. Initially, we acquired the video clips from
Korean Video Dataset for Emotion Recognition in the Wild
(KVDERW) [38] based on 7 basic emotions (Happy, Sad,
Angry, Surprise, Fear, Neutral, and Disgust). The KVDERW
dataset is designed for emotion recognition using facial
expressions in the scene, and the length of the stimulus videos
is less than 10 seconds. Despite their brevity, we chose the
KVDERW dataset for two main reasons. Firstly, the videos
were in the Korean language, which is the native language
of our study participants. Secondly, the dataset allowed
us to extend the video clips to our desired duration since
they were sourced from movies. As the KVDERW dataset
was constructed using Korean movie clips, we searched
on the web for the extended video clips for those clips
and collected 25 video clips based on the availability of
clearly distinguishable target segments with a single emotion.
To complement the stimulus video set, five additional video
clips were obtained from YouTube based on emotion-related
tags on the video clips. The emotion-related keywords were
prepared based on the basic emotion labels and were searched

on YouTube. Five movie clips tagged with such emotion-
related keywords were selected based on the observation
of two researchers. We trimmed the clips to approximately
2 minutes each to ensure they contained a single emotion.
The trimming process was determined by identifying the start
and end of the target scene, and initially confirmed to have
a single emotion by two experimenters through observation.
Consequently, the clip durations varied, ranging from 61 to
122 seconds.

Two researchers selected the initial video sets with 30 clips
through visual observation, and the clips were further
validated throughmulti-rater validation. To ensure the quality
and appropriateness of the clips, we sought validation from
28 evaluators, comprising 15 males and 13 females, with
ages ranging between 20 and 26 years, and a mean age of
23.18 years. To maintain consistency in emotion perception,
we specifically recruited evaluators from the same age
group (20-30 years) as the participants involved in recording
physiological data for the stimulus video evaluation. This
approach aimed to ensure that emotions were perceived in
a similar manner across both sets of evaluators. Out of the
30 videos, five videos were randomly selected and held out
to demonstrate the process and familiarize the evaluators with
the annotation task. For the evaluation of the videos, 28 eval-
uators watched the videos in a group. The stimulus videos
were displayed on a 60-inch screen in an auditorium where
the evaluators were seated with enough spacing to prevent
any interaction among the evaluators. Each of the 30 videos,
including 5 test videos, were annotated by evaluators for
7 basic emotions and the arousal and valence dimensions
using a 9-point continuous scale. The SAM interface was
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used to annotate the dimensional emotions on a scale of
1-9. The evaluators were asked to label 5 test videos at the
start of the annotation process to familiarize themselves with
the annotation interface. During the annotation of these test
videos, the evaluators interacted with the experimenter and
asked questions, and the videos were frequently paused. This
interaction helped the evaluators understand the annotation
process and ensured that the annotation of the remaining
25 videos was smooth and uninterrupted. As our goal is to
collect the physiological signals labeled with the emotions
felt by the participants, we instructed the evaluators to
annotate with the emotions felt by themselves rather than the
emotions exhibited by the actors in the clips. Fig. 2 shows the
screenshots from the randomly selected clips from each cat-
egory to illustrate the type of content present in the stimulus
videos.

Finally, the labels provided by the evaluators on 25 videos
were checked for agreement by calculating the percentage
of evaluators who agreed on a single emotion. Based on
this agreement, as well as the agreement with the original
labels in the KVDERW dataset, 23 out of the 25 clips
were selected as emotion stimulus videos. Table 2. shows
the average arousal and valence labels for stimulus videos
grouped by corresponding basic emotions. The percentage
of the agreement was observed to verify how well the
emotions were labeled for the expected emotions. For videos
with highly contrasting views among the evaluators, the
video labels were compared with the original labels in
KVDERW dataset, as the selection of the emotions based
only on the percentage of the agreement would lead to the
inclusion of the videos which are likely to have content
with multiple emotions. It is possible that the same video
clip can evoke slightly different emotions in different
people, due to the influence of their personality traits.
As shown in Table 2., the videos marked with an asterisk
(∗) were not included in the stimulus dataset for emotion
elicitation due to a lack of dominant consensus among
evaluators. The clips needed to have agreement on non-
contrasting emotions. For instance, although the VID06
had 50% agreement for sad, 39.3% of evaluators voted
for anger which was the expected emotion. Similarly,
VID22 (Introduction) was selected by the experimenters
as a stimulus for ‘happy’ which was labeled as happy by
46.43% of the evaluators, while 53.57% of the evaluators
labeled it as neutral. In such a case, the stimulus videos were
excluded for having the possibility of eliciting contrasting
emotions which are not close in arousal and valence space.
Contrary to this, the videos with emotions closely situated
in arousal-valence space, for example, anger and fear,
were not excluded. For example, VID21 was not excluded
despite having a low agreement percentage of 32.1% for
anger because the second most highly annotated emotion
was fear with 28.6%. Videos such as VID12 and VID23,
despite having conflicting emotion labels, were included
in the study based on majority voting with agreement
of 42.86%.

B. PARTICIPANT SELECTION
Thirty participants between 20 to 30 years of age, (mean
23.56 years; 15 males, 15 females) were recruited two weeks
before the beginning of the data acquisition experiments.
All the participants were students from Chonnam National
University. To determine the number of participants, we cal-
culated the required sample size using GPower [39] for
windows for one sample t-test with the smallest effect size
(d) of 0.5, an alpha risk of 0.05, and a power of 0.80.
A priori power analysis with one tail t-test suggested 28 as the
minimum number of samples required, 30 participants were
recruited for the experiments through an online advertisement
on the university web portal and the participant was provided
with remuneration of approximately $15 per hour for their
time. To avoid the impact of abnormal emotion elicitation,
the participants were inquired about their medical condition
to ensure the absence of mental illness in the recent
past. Other criteria included the absence of any signs and
symptoms of common illness such as a minor headache
or common cold. The Beck Depression Inventory (BDI)
[40] test was conducted during the recruitment process to
confirm that the participants did not have any psychological
abnormalities. Due to the pandemic situation, further special
precautions were taken such as screening for fever or
headache before the study and wearing face masks during the
experiments.

C. EXPERIMENT SCENARIO
After signing the consent form, the participants sat in front
of a 22-inch screen with a resolution of 1920 × 1080 pixels.
Stereo speakers were switched used for audio output, and
the volume level was adjusted based on the participant’s
preference before the experiments. The participants were
asked to position themselves comfortably in front of the
screen and watch the stimulus video as shown in Fig. 3.
An experimenter assisted them to wear an Emotiv Epoc
X [41] EEG headset and an Empatica E4 [42] wristband.
The EEG headset includes movable electrodes with wet
saline terminals. The experimenter applied saline water to the
contact points of the headset and placed the electrodes on
the scalp. Similarly, the wristband was positioned correctly
and connected to the experimenter’s smartphone using
a Bluetooth connection for recording. The EEG signals
were wirelessly recorded at 256Hz using a vendor-provided
USB dongle attached to the experimenter’s machine. The
impedance of the electrodes was maintained by saline-based
felts attached to the electrodes, and the signal quality was con-
firmed on the recording software. EEG quality was verified
using vendor-provided recording software which indicated
contact quality and EEG signal quality. The participants were
asked to avoid any movements to maintain the EEG quality.
The experimenter commenced the experiment using a web-
based annotation tool that we developed for the experiments.
Each participant contributed to about 44 minutes of recording
divided into three sessions of about 15 minutes each with at
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TABLE 2. Stimulus video clips with corresponding emotions labeled by evaluators.

least 10-15 minutes of break to avoid emotional fatigue or
possible discomfort due to the prolonged wearing of the EEG
headset. Participants wore the EEG headset for a maximum
of 15 minutes during each session. However, due to the
time needed for remounting the EEG headset after each
break, the total time contribution per participant was about
3 hours.

The stimulus videos were not fully randomized to avoid
having the same basic emotions in subsequent videos.
To determine the order, we shuffled the videos with a
constraint that no two consecutive videos contain the same
emotion. Two sets of predefined orders were used alternately
for the subjects. After each video, a color bars video
containing calm music was displayed for 1 minute to
neutralize the emotion; a color bars video is considered to
have a soothing effect [26], [37]. Three test videos were used
to familiarize the participants with the experiment process
and annotation tool. During the annotation of these test
videos, the participants occasionally adjusted their posture

and interacted with the experimenters to ask about the
annotation tool. It was observed that the annotators were
able to annotate the third test video without movement
and without disturbing the EEG signals. Using the test
videos before the annotation of the stimulus videos was
found to be effective in reducing potential noise in the
signals due to lack of familiarity with the annotation
tool.

An annotation interface was shown on the video player
at the end of each video to report the emotions that they
felt while watching the video. The participants were asked
to report their emotions immediately; however, no time
limit was imposed for labeling the emotions. Self-assessment
Manikin (SAM) [43] was used for annotation as shown
in Fig. 4. SAM-based annotation interface was displayed
only after the stimulus video and recording of physiological
signals were stopped. Participants selected a discrete emotion
from a list of 7 basic emotions displayed in the first row of
the annotation tool. Similarly, for a dimensional view of the
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FIGURE 2. Example clips for seven basic emotions.

FIGURE 3. A participant watching a stimulus video during the experiment.
The participant wore an EEG headset and a wristband for data recording.

emotions, the participants rated their felt emotions on a Likert
scale of 1-9 represented by SAM icons on the annotation
interface.

D. PHYSIOLOGICAL SIGNALS
We recorded 4 types of physiological signals: EEG, EDA,
BVP, and TEMP. Electroencephalograms (EEG) capture
electrical activity in the brain through electrodes placed
on the scalp while EDA, BVP, HR, and TEMP were
recorded using a wrist-worn sensor. Although various
physiological can be used for emotion recognition, these
modalities were selected based on their unobtrusiveness
and ease of availability as consumer products. The analysis
of emotions using consumer-grade devices leads to the

FIGURE 4. The Emotion annotation interface based on Self-Assessment
Manikin (SAM) for labeling 7 basic emotions and two emotion
dimensions on a 9-point scale.

implementation of emotion recognition wider application
domain.

In EEG, the electrodes capture signals generated due to
the movement of ions during the activation of neurons. Such
activations are directly related to cognitive processes and
various emotions [44]. EDA, also known as Galvanic Skin
Response (GSR), refers to the change in electric potential in
the skin in response to perspiration; it measures the effect of
neural activities on the permeability of the sweat glands. The
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TABLE 3. Wearable devices used in the experiments.

EDA signal represents the activity of the synthetic nerve on
eccrine sweat glands [45]. It is a non-invasive measurement
of skin conductance as it uses a constant supply of low
voltage [46]. Due to this non-invasiveness, affordability, and
convenient way of acquisition, EDA has been used widely for
several applications in affective computing, including smart
and intelligent wearable devices.

Blood Volume Pulse (BVP) recorded using photoplethys-
mography is useful in emotion recognition studies as the
change in heart rate affects arousal and valence [47]; heart
rate has been found to have a positive correlation with valence
[48]. Several features, including heart rate variability (HRV),
IBI, and spectral features of the BVP, can be used for emotion
recognition.

Peripheral skin temperature fluctuates with the change
in emotional states and is used for emotion recognition
studies [21], [26]. Notably, the Skin temperature can be
recorded continuously in a non-intrusive way using wrist-
worn sensors.

E. DEVICES
To record the EEG data, we used Emotiv Epoc X, a wireless
EEG headset with 14 electrodes (AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and two reference
electrodes located at the left and right mastoid process.
Emotiv X includes the saline-based wet electrodes with a
10/20 international system arrangement as shown in Fig. 5.
Epoc X allows the recording of EEG signals with a frequency
of 128Hz or 256 Hz.

To collect EDA, BVP, and temperature, we used the
Empatica E4 wristband, a wrist-worn wearable device with
multiple sensors. The E4 device captures various signals
including EDA at 4Hz, BVP at 64Hz, and peripheral
skin temperature at 4Hz as listed in Table 3. The device
is also equipped with an accelerometer and gyroscope
sensors. However, movement information is not included
in the dataset because the movement of the body parts
was prohibited during the experiment to avoid mechanical
disturbances during EEG recording. Physiological signals
from the E4 device were recorded using a mobile device
(Galaxy Z Flip 5G, 256GB, 6.7 inches, 1080× 2636) through
a Bluetooth connection. Fig. 6 illustrates the devices used for
data collection.

FIGURE 5. Position of EEG channels on the scalp.

FIGURE 6. Devices used for data collection.

IV. DATASET CHARACTERISTICS
The data gathered from multiple sensors in the experiment
was associated with UTC timestamps, ensuring accurate
time reference. To align the sensor signals with the actual
duration of the experiment, the timestamps recorded using
the annotation tool were used to clip the signals appropriately.
The details of the collected dataset are presented in Table 4,
providing an overview of the data acquired. In order to
evaluate the stimulus data, a group of 28 individuals, referred
to as evaluators, participated in the assessment process. These
evaluators were responsible for reviewing and analyzing the
stimulus videos.

Additionally, the physiological data and corresponding
emotion labels were collected from a separate group of
30 participants, referred to as annotators. These individuals
were involved in providing annotations and labeling the
emotions exhibited in the stimulus videos. By involving
both evaluators and annotators, the study aimed to gather
comprehensive insights into the stimulus data and its
impact on physiological responses and emotional states. The
utilization of multiple participants ensures a diverse range of
perspectives and enhances the reliability and validity of the
collected data.
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FIGURE 7. Heatmap showing the agreement percentage during (a) stimulus evaluation and (b) annotation during physiological data collection.

TABLE 4. Dataset characteristics.

A. STIMULUS DATASET
We constructed a stimulus dataset using video clips from
various sources and further evaluated it through multiple
annotations. A group of 28 evaluators labeled the videos

with 7 basic emotions and dimensional emotions. To assess
the relative accuracy of the annotations, we calculated the
agreement among the evaluators. The selection of stimulus
videos was based on the agreement among the evaluators
and two videos with low agreement were removed from the
stimulus set. We adopted Cronbach’s Alpha [49] statistic as
a measure of agreement among the evaluators. Cronbach’s
alpha is a commonly used interobserver agreement measure
for continuous labels. For stimulus labeling the Cronbach’s
alpha of 0.97 and 0.96 were observed for valence and arousal
respectively. Similarly, for the categorical annotations we
used Fleiss Kapa [50] as a metric for inter-rater agreement
and a moderate inter-rater agreement of 0.40 was observed.

B. INTER-OBSERVER AGREEMENT IN THE DATASET
As the same stimulus videos were shown to all the
participants, the annotations were validated through inter-
annotator agreement analysis. Cronbach’s alpha of 0.84 for
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arousal and 0.89 for valence was observed, indicating strong
inter-annotator reliability among 30 participants for arousal
and valence.

For categorical annotations of seven emotions, a moderate
inter-rater agreement was observed with a Fleiss Kappa value
of 0.50. We also analyzed the agreement of the categorical
annotations based on the number of annotators agreeing
on one of the seven basic emotions. As shown in Fig. 7,
we computed percentage scores for each stimulus video. The
results showed a high agreement among the annotators for
most of the videos; 19 videos had an agreement of over
50%. The VID05 video had the highest agreement; a 100%
agreement among the annotators. Videos VID23 and VID03
had the lowest agreement, with an agreement of 36.67 and
40 percent, respectively. Such low agreement might be due to
conflicting emotions resulting from participants’ personality
differences; the same stimulus video may impart slightly
different emotions to different individuals. For example,
in the case of the stimulus VID23, the video contains a
conversation between two characters which caused 36.67%
of the annotators to feel sad which was the expected
emotion, while 30 percent felt neutral and 16.67% felt angry
as seen in Fig. 7 (b). Similarly, VID03(scary principal),
where a school principal shows abusive behavior towards
a female student, may induce fear if the subjects perceive
the video from the student’s perspective, while based on
the general observation of his abusing behavior towards a
female student, the subject may get angry. These differences
in viewers’ perspectives and the manner in which video
content is consumed by the individuals suggest that individual
differences among the participants may have influenced their
focus on different characters in the scene, indicating the need
for personality-based profiling in video-based stimuli for
eliciting emotions.

C. DISTRIBUTION OF EMOTIONS IN AROUSAL-VALENCE
SPACE
Stimulus videos were evaluated by 28 evaluators. Both
the evaluators and the participants of the data collection
experiments labeled the videos in both categorical and
dimensional views. Based on the inter-rater agreement of
annotations by stimulus evaluators, we selected 23 video clips
for the experiments for data collection experiment.

As shown in Fig. 8 (a) and (b), both stimulus video
evaluators and physiological data annotators were labeled
similarly for arousal and valence. Fig. 8 (a) shows the
distribution of the average values of annotations in arousal
and valence space as annotated by 28 evaluators for the
stimulus videos. The majority of the videos were labeled as
high arousal and low valence. This is due to the selection of
stimuli based on the categorical labels. Fig. 8(b) shows the
average values of the annotations during the physiological
data acquisition experiment while watching the stimulus
videos. The videos for happy and surprise can be seen on the
positive valence quadrants while videos with surprise were
found to be labeled both positive and slightly negative. It can

FIGURE 8. Distribution of the mean arousal and valence in stimulus
dataset (a) and those labeled by annotators during the physiological data
collection experiment (b).

be concluded that the videos were labeled following a similar
trend and the participants of the data acquisition experiment
expectedly annotated the felt emotions.

D. COMPARISON OF LABELS WITH THE STIMULUS VIDEO
ANNOTATIONS
To evaluate the annotations, we calculated Spearman’s
correlation coefficient between the mean of the participants’
annotations from the physiological data collection experi-
ment and the annotations made by the evaluators for each
video. As the videos were labeled by a different set of
annotators with different numbers, we calculated the arousal
and valence for each video. We observed a high correlation
of 0.9708 for valence and 0.8702 for arousal. A strong
linear correlation was observed between the annotations
and the stimulus labels. This shows that the participants
annotated the videos in the same way as the stimulus video
dataset. The strong linear correlation between the 9-point
labels of arousal and valence indicates that the participants
in the data acquisition experiment voted in the same way
as the participants of the stimulus labeling experiment.
The participants were provided with proper information on
the annotation process and rating scales, and the selected
stimulus video set is appropriate for emotion stimulation.
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FIGURE 9. The overall framework for emotion recognition using physiological signal. The feature extraction part includes extraction of the
features from each channel of EEG and other modalities. The emotion recognition module includes classification of seven basic emotions and
prediction of 9-point labels for arousal and valence.

The results show that valence is more consistent across
participants than arousal.

E. PERSONALITY CORRELATION
For personality information, we use Big5 personality traits,
namely extraversion, neuroticism, conscientiousness, agree-
ableness, and openness using the Newcastle Personality
Assessor (NPA) questionnaire [34]. NPA is a short ques-
tionnaire with 12 questions to be answered on a Likert
scale of 1-5, representing very uncharacteristic to very
characteristic. We obtained the personality scores on a 4-
point scale representing low, low-medium, medium-high, and
high based on the NPA questionnaire interpretation [34].
We calculated the average Spearman’s correlation coefficient
of the personality scores and the annotated values in valence
and Arousal annotated for emotions felt while watching
23 videos. Table 5 shows the correlation coefficients between
the personality traits and levels of emotional dimensions.
Valence was found to have weak negative significant
(p < 0.05) correlation with openness while the correlation
of valence with other personality traits was not significant.
This implies that the personality traits do not necessarily
affect the level of valence. However, arousal had a significant
negative correlation with neuroticism and agreeableness,
while Conscientiousness had a positive correlation with
arousal. Among the personality traits, a negative significant

TABLE 5. Correlation among personality traits and emotion dimensions
annotated for 23 videos.

correlation was found between neuroticism and conscien-
tiousness indicating and inverse relationship between the two
personalities. The correlations between the personality traits
and emotions in arousal and valence were not significant
for all personality traits, suggesting that personality does not
necessarily play a significant role in the intensity of felt
emotions.

In general, the analysis of all stimulus videos did not
show a significant correlation, however, there was an anomaly
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in the annotation as seen in Fig. 7. in the interrelated
emotions such as sadness and anger in a conversational
context. As seen in VID23, the conversation between two
characters may have two different aspects imparting distinct
emotions to the viewer. To investigate the role of personality
in such a scenario we calculated Spearman’s correlation of
the personality traits and the annotations on VID23 and
VID03 by all the participants. For VID23 and VID03, which
potentially could induce low valence, a negative significant
correlation of -0.447 between valence and openness was
found. Such an inverse relationship between openness and
valence suggests that the participants with low openness
experienced higher valence. Moreover, in case of VID23
and VID03, which were labeled as anger and fear by
most participants, a negative correlation was found between
arousal and personality traits, was seen while for the
overall dataset, neuroticism showed a negative correlation
with arousal. In addition, both openness showed a negative
correlation with both arousal and valence, suggesting a lower
level of emotion elicitation for the subjects having high scores
in openness. These observations were found to agree with the
existing studies [12].

F. DATA AVAILABILITY
The dataset is publicly available for academic research
at https://sites.google.com/view/phymer-dataset. The data
presented in this study were also available as a part of the
Third Korean Emotion Recognition Challenge (KERC) 2021.
The preprocessed data, divided into training, validation, and
the test set was open to the participants of the competition
on Kaggle during the com-petition duration (from Aug 30 to
Oct 31, 2021). (https://www.kaggle.com/c/kerc2021). The
baseline model for the competition was an LSTM-based
classification model, achieving an f1-score of 0.55.

V. BASELINE EXPERIMENTS
In this section, we present the implementation of the base-
line method for multimodal emotion recognition. We also
evaluate the performance of the proposed baseline model
in a subject-independent and subject-dependent manner.
As the range of physiological data such as heart rate, blood
pulse volume, or electrodermal activity may differ among
individuals, within-subject normalization was performed for
subject-independent emotion analysis. We normalized the
extracted features using Robust Scalar [59] which scales the
data based on quantile range and is suitable for small data
sizes.

A. PREPROCESSING
EEG data is highly susceptible to noise due to its sensitivity
towards minor physiological and physical activities such as
blinking of eyes, heartbeats, and muscular movements [53].
We applied a band-pass filter of 4Hz-40Hz to include only
the frequencies in the range of 4 bands (Theta, Alpha, Beta,
and Gamma) of EEG signals as the Delta band is not relevant
to this study as it is observed only during sleep. Although

TABLE 6. Features extracted from physiological signals.

the band-pass filter of this range eliminates certain noise
components, it is impossible to get rid of the noise using
frequency alone as some artifacts may lie within the same
frequency range as the EEG signals. We applied AWICA [54]
to eliminate such noise.

AWICA is a threshold-based automatic artifact removal
technique involving wavelet analysis and Independent Com-
ponent Analysis (ICA). In this method, each channel of the
EEG signal is partitioned into 4 bands of EEG through Dis-
crete Wavelet Transform (DWT). The artifactual components
in the WT components are selected quantitatively based on
thresholds of Kurtosis and Reny’s Entropy [55]. Then ICA is
performed on the wavelet components for automatic rejection
of the artefactual components. ICA is a commonly used blind
source separation technique used for isolating the source
signals from the recorded signals. Finally, artifact-free EEG
channels are reconstructed through inverse ICA followed and
subsequent inverse DWT operation. Noise removal in EDA
signals is done using a low pass filter with a 2Hz cutoff
frequency [56].

Blood Pulse Volume (BVP) signals recorded using pho-
toplethysmography are susceptible to motion artifacts (MA)
[57]. However, in our experiments, we minimized the wrist
motion with the sensor to avoid motion artifacts. As the
dataset did not include motion information, the preprocessing
of BVP signals mainly involved removing out-of-band noise
through the fourth-order Butterworth band-pass filter (BPF)
between 0.4Hz and 4.0 Hz. For temperature (TEMP), only
normalization was performed as the experiment process
did not involve activities that could produce significant
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TABLE 7. Classification results of seven emotions.

noise in temperature data. Eight samples for Subject
SUB10 (SUB10VID09-SUB10VID16) were excluded from
the experiments due to the device malfunctioning during the
data collection experiment.

B. EMOTION RECOGNITION
To evaluate the dataset, we conducted subject-dependent
and subject-independent experiments and compared the
performance using different combinations of the fea-
tures. For subject dependent method we performed a
5-fold cross-validation on the whole dataset split into
training and validation sets at the ratio of 80 and
20 percent respectively and compared it with the subject-
independent method where the leave-one-subject-out
cross-validation, where one subject’s data was used for
validation.

For the baseline experiments, we extracted various hand-
crafted features for different modalities. Inspired by the high
performance of features based on Toolbox for Emotional
feature extraction from Physiological signals (TEAP) [58]
features, we followed [26] for feature extraction. For each of
the 14 channels of EEG samples, we calculated the power
spectrum for theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz),
and gamma (30-40Hz) bands, and obtained 56 features
(14 channels × 4 bands). In addition to the band power,
we included two statistical features (mean and standard
deviation) for each channel. Similarly, for EDA and BVP,
and skin temperature (TEMP) we extracted various features
as shown in Table 6.

We performed experiments involving the classification of
the seven basic emotions and the prediction of arousal and
valence values labeled by the participants. Following feature
extraction, we employed the Extreme Gradient Boosting
(XGBoost) [56] based classifier and regressormodels, chosen
for their demonstrated effectiveness in various classification
and regression tasks [26]. Different combinations of EDA
and BVP features (Table 6) extracted in the preprocessing
step were concatenated with the personality feature to
perform the classification and prediction in the presence
and the absence of personality features. The proposed
emotion recognition framework is illustrated in Fig. 9. The
baseline system consists of handcrafted feature extraction and

emotion recognition modules. The feature extraction module
involves the preprocessing of different physiological signals
where statistical, and signal features are extracted. In the
classification module, the extracted features are fused and
used for the recognition of both categorical and dimensional
emotion labels.

We evaluated the classification results using F1-score
and Mathews Correlation Coefficient (MCC) to evaluate
the classification task considering the imbalance in the
dataset. F1-score is a commonly used evaluation metric
for classification tasks representing a harmonic mean of
precision and recall. As F1-score does not consider the
true negatives, MCC can better represent the classification
accuracy [57]. The best MCC score was obtained with the
combination of EEG and EDA,where therewas no significant
improvement while using the personality.

To assess the influence of multimodality on emotion
recognition, we conducted a comparison of classifications
using different modalities. The results, presented in Table 7,
indicate that the incorporation of BVP and TEMP does not
necessarily lead to performance improvement. Furthermore,
when combining personality features with physiological
signals, we observed only a slight increase in perfor-
mance, suggesting a weak or low impact of personality
on emotion labeling. As the use of multiple modalities
resulted in an increase in performance, it appears that
further research on the effective fusion of the modalities
needs to be performed. As the EEG signals are highly
subjective there was a huge difference in subject-dependent
and subject-independent classification results. Arousal and
Valence prediction was evaluated using mean absolute error
(MAE) and concordance correlation coefficient (CCC) as
shown in Table 8, which shows the inclusion of person-
ality features improves the prediction of both arousal and
valence.

Table 9 presents the F1-scores for each categorical emotion
comparing the performance when a different combination of
modalities is used in the presence and absence of personality
features. We can see from Table 9 and Table 10 that the use of
all modalities improved the performance for some emotions
in some cases. Disgust, happiness, and anger showed higher
performance when personality information was used, while
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TABLE 8. Subject-dependent and subject-independent prediction of arousal and valence.

TABLE 9. Subject-dependent classification performance for each class in the presence of personality features.

the performance was not improved in the case of neutral,
sad, fear, and surprise. All the experiments were on Nvidia
GeForce RTX 3080Ti GPU with 12 GB of memory. The
experiment codes were implemented in Python, and to ensure
the reproducibility of the experiment results, a fixed random
seed of 42 was set for all the experiments.

We believe that performance improvement can be achieved
through different feature engineering and multimodal feature
fusion techniques. Moreover, this dataset can provide value
to multimodal emotion recognition research through further
analysis of personality as a context. The dataset contains
annotations for both categorical and continuous affects,
enabling its utilization in the development of multitask
models. The diverse range of annotations within the dataset
provides an opportunity to enhance the complexity of models
and further improve the performance of multitask models in
future studies.

VI. DISCUSSION
This paper primarily focuses on dataset acquisition and anno-
tation protocol. We generated a stimulus dataset, designed a
data collection experiment, and developed a web-based data
annotation tool for physiological data generation. Moreover,
a baseline method for emotion classification was developed
to evaluate the dataset.

The experiment protocol was meticulously crafted to sim-
ulate the real-world scenario to the greatest extent possible.
Although the ideal data acquisition procedure required signal
recording while the participants were consciously unaware of
the collection process, it is practically impossible for EEG-
based datasets as certain restrictions are required to avoid
signal noise. Despite having been conducted in laboratory
settings, comfortable posture for watching stimulus videos,
use of consumer-grade commercial equipment, and personal-
ized audio levels make the data collection natural and close
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TABLE 10. Subject-independent classification performance for each class in presence of personality features.

to a real-world situation. A key feature that sets our dataset
apart from existing ones is the inclusion of fine-grained
emotion annotation, which utilizes a 9-point scale to provide
a dimensional perspective of emotions. This enhances the
richness and granularity of emotional information captured in
the dataset, offering a more comprehensive view of emotional
states compared to other available datasets.

Context plays an important role in emotional representa-
tion. The context in emotion recognition can be represented
by environmental and socio-cultural factors. As this dataset
focuses on the bio-signal data collected in a uniform envi-
ronment, only the personality traits have been included in the
dataset to provide the individual nature of the participants as
a context for emotion recognition. The individual differences
and their impact on emotion recognition can be studied in
the context of various other factors such as age, gender,
and ethnicity. However, this dataset focuses on adults from
homogenous populations.

With the increasing use of consumer-grade wearable
sensors, the collection and analysis of physiological data
has become more convenient and non-obtrusive. Several
accessories such as wristbands and headsets have beenwidely
accepted as they can provide personalized information.
However, behavioral differences among individuals also
need to be considered during the analysis of different
types of emotions. Individuals with reserved or introverted
personalities may not respond to the same stimuli as actively
as extroverts. In other words, the degree of emotional
expression may not be the same for individuals with different
personalities, therefore analysis of fine-grained continuous
values in different dimensions is essential.

Therefore, the same stimulus videos often induce different
emotions in different individuals. Such differences may
arise when the stimulus contains interrelated emotions and
participants watch the videos with a focus on a different
character. For example, a video with a character showing
anger at another character may induce either anger or

sadness based on which character the participant focuses on.
Therefore, the role of personality in distinguishing closely
related emotions requires further exploration, although there
is no significant correlation between personality traits and felt
emotions in general.

While the dataset’s primary intended use is for study-
ing emotions during video content consumption, it holds
potential for broader applications concerning the analysis
of physiological signal variations among individuals in
different emotional scenarios. The dataset, collected using
consumer-grade portable headsets in response to video-
based stimuli, offers multichannel EEG data that could
contribute to advancements in brain-computer interfaces
(BCI) by exploring temporal and spatial information. This
physiological signal-based emotion recognition method also
has potential for application in the analysis of emotions
in immersive environments such as virtual reality (VR)
based games. We also conducted experiments with VR
devices with 360-degree videos as emotion stimuli to study
the application of physiological signals in an immersive
environment. However, our preliminary experiments showed
that both mechanical and electronic noise affect the data
collection process due to the simultaneous use of VR and
EEG devices. Thus, the application domain of physiological
datasets is limited to situations with minimal movement.

The dataset compilation has certain limitations, primarily
related to noise interference in EEG sensors. Unavoidable
sources of noise, such as blinking of eyes and subtle
muscular movements during data collection, may have
affected the dataset. To ensure effective utilization of the
datasets, appropriate noise removal techniques are crucial.
Another limitation is the potential bias arising from the
possible elicitation of multiple emotions. Efforts were made
to mitigate this bias through careful stimulus video selection
and labeling before the experiments. The chosen stimulus
video clips were intended to depict a single emotion,
and 28 evaluators of the same age group verified this.
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However, the personalities of these evaluators might differ
from the 30 annotators participating in the physiological
data collection experiments. Despite the thorough selection
process, one video (VID21) was found to induce both anger
and fear emotions, both being negative valence emotions.
Considering individual differences, this videowas included in
the dataset. Consequently, the inclusion of samples recorded
through stimulation using such videos is a limitation that
may hinder the distinction between emotions like anger
and fear. Additionally, the stimulus data collection process
involved partial use of an existing emotion recognition
dataset. Although the reconstructed stimulus dataset was
evaluated by 28 evaluators, the final selection was made
by the experimenters based on evaluator agreement. Videos
with different emotion labels from the original dataset were
excluded, which might conflict with the purpose of the
evaluation experiment. However, as the videos in the source
dataset were labeled bymultiple annotators, it is expected that
any decision bias would be minimal.

Similarly, the familiarity with stimulus videos, human
limitations in identifying own emotions, and homogenous
demography are some of the limitations to be considered
during the use of this dataset. The order of the stimulus
videos was predefined by conditionally randomizing the
order, where the order was changed if the consecutive videos
had the same emotion labels. Although the order was made
different for two consecutive subjects, the order was the
same for alternate subjects. Such partial randomization may
have induced order bias in the dataset. Another limitation
of the present study is the use of the NPA questionnaire
for personality data collection. A short questionnaire might
have limited the reliability to some extent in the case of
a small sample size. Although multiple modalities were
considered in this study, we explicitly excluded the video
modalities which are common in multimodal emotion
recognition.

VII. CONCLUSION
In this paper, we presented amultimodal bio-signal dataset for
emotion recognition with both categorical and dimensional
perspectives and analyzed the importance of personality
as a context. The datasets include various physiological
signals obtained from 30 participants, where the emotions
were induced through stimulus videos. We observed strong
inter-observer agreement among the annotators. To evaluate
the dataset quality, we performed baseline experiments
using a multimodal classification model which achieved
an F1-score of up to 0.73 with multiple physiological
modalities.

We plan to continue our research work in multimodal
emotion recognition using physiological signals. We will
improve the baseline classification and prediction models
through improved feature extraction using deep learning
techniques. As a further study, the stimulus dataset will be
investigated with multiple emotion labels.

The database is publicly available for academic research in
the field of emotion recognition with the hope that this dataset
would be beneficial in the development of new emotion
recognition methods and algorithms.
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