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ABSTRACT To enhance the accuracy of robotic assembly planning by understanding the graphical
instruction manual, this paper proposes a novel two-step error correction method. While constructing the
Assembly Task Sequence Graph (ATSG) from the instruction manual, we performed an error correction
focusing on the component, symbol, speech bubble, and model number included in the manual. The
component and symbol information were used to check the correctness of the manipulated components,
the needed motion, and tool used in a single step of the assembly task. The speech bubble information
was used to remove the repeatedly drawn components on the instruction images. The model number was
recognized to distinguish components that have different models but were classified into the same class in
the object detection procedure. After constructing the ATSG, we additionally performed the error correction
by checking the total number of components used for the assembly task. The effectiveness of the proposed
method was verified by comparing the ATSG generated from four different error correction methods of
five different chairs. The results show that the proposed method decreased the influence of wrong detection
results to generate an ATSG with higher accuracy and generalized the previous ATSG for different types
of chairs. Finally, we built an extended ATSG from the graphical instruction manual of a kid chair, and the
chair assembly task was performed by a dual-arm robot.

INDEX TERMS Error correction, instruction manual, robotic assembly, task planning.

I. INTRODUCTION
Assembly tasks are one of the most universal manufacturing
tasks that are required in several industrial applications. For
the furniture industry, the graphical instruction manual is the
common way to give instructions to humans about how to
construct a product. The graphical instruction manual for
furniture is usually composed of several pages that depict the
assembly procedure from individual furniture components
into a complete and functional product. For most furniture
instruction manuals, only significant processes are shown,
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and they may contain several manipulation motions on
one page. For our human, we can use our knowledge and
experience to understand these images, such as determining
the proper motion and the appropriate task order. However,
it is still a challenge for robots to automatically understand
the details of the assembly task and accomplish it based on the
ambiguous knowledge obtained from the implicit instruction
images.

To enable robots to automatically accomplish the furniture
assembly task, the first but most important problem is how
to understand the instruction manual and extract accurate
information that is useful for generating an assembly plan
in a form that can be implemented directly by the robot.
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FIGURE 1. Framework of the proposed method.

In our previous study [1], we proposed a graph structure
for assembly task planning called the Assembly Task
Sequence Graph (ATSG), which expresses the assembly
task in a form that can be realized by a robot. This
method provides a simple and feasible scheme to generate
a robot-implenented assembly plan directly from the given
graphical instruction manual. However, it only extracted
components drawn on instruction images. Other information,
such as the appropriate motion and tool to implement one
task, was all decided by the detected components. Even
though it was a simpler method to generate the ATSG, the
assembly sequence graph heavily relied on the accuracy of
the component detection result. In other words, the wrong
detection result could have a high possibility of generating
a wrong ATSG that will mislead the robot. What’s more,
features of the furniture graphical instruction manual make
the part detection more difficult. This is because of the
overlapping between different components and repeatedly
drawn components (used to highlight some information or
show the details of manipulated motions). Therefore, only
using detected components to generate the ATSG has a high
risk of obtaining an inaccurate assembly sequence.

Errors in the ATSG generation come from wrong com-
ponent detection results, which include the excess and lack
of component numbers compared with the real component
numbers used in the assembly task for one product. The
excess of component numbers derives from two aspects.
The first condition of the excess is a general definition of
the wrong detection: the component is detected but classified
into a wrong class, or there does not exist a component in

any class but the result has detected and classified it into one
class. Another condition is the repeatedly drawn components
on instruction images. These repeatedly drawn components
are usually used to highlight somematters that need attention,
like the manipulated motion between two components. This
kind of repeatedly drawn component may be detected and
classified into the right class, but will not be used in the
assembly task. The lack of component numbers includes the
situation that the component in the image is not detected and
classified into any class. Besides the furniture components,
there are several other redundant visual elements drawn
on the assembly instruction images that will be useful for
generating robot assembly plans, such as text, symbols,
and speech bubbles. This paper proposes overcoming the
shortages of the previous research by using a two-step error
correction method to generate a more accurate ATSG from
an instruction manual. Fig.1 shows the framework of this
method.

The first part of this system is the Information Extraction.
We collected several graphical instruction manuals for
different chairs. In addition to the furniture components used
to generate ATSG, the symbol, speech bubble, and model
number information are extracted by using different methods.
The extracted elements are used to construct an ATSG with
error correction. The second part of the system is the Error
Correction for existing ATSG, which is realized by a two-step
method. In the first step, speech bubbles were used to remove
the repeatedly drawn components on instruction images.
Next, model numbers were used to distinguish components
that have different models but were classified into the
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same class during the component detection procedure. Then,
symbol information was used to determine the motion and the
tool to perform a task. ATSGwas generated first, according to
the above information. In the second step of error correction,
we detected components on the component list page, which
is usually the first page of the graphical instruction manual.
The number of components detected on the component list
page was used to compare it with the component number in
the generated ATSG.

Contributions of this paper are:
1. An information detection and recognition system was

proposed to extract the arrow, speech bubble, and model
number from the instruction images.

2. A two-step error correction method was proposed to
generate a more accurate assembly task sequence graph from
graphical instruction manuals.

The organization of this paper is as follows. Several
related studies for robot assembly task planning and graphical
instruction manual recognition are reviewed in section II.
Section III summarises the method proposed in our previous
study for constructing the ATSG. Section IV introduces
different methods we use to extract the needed information
from furniture graphical instruction manuals. Section V
introduces the details of the error correction strategies.
Section VI discusses the error correction results and shows
the experiment for a real robot to execute an assembly task
according to the extended ATSG.

II. RELATED WORKS
Assembly planning is a classical research topic in robotics.
The goal of assembly is to determine an order of operations
that brings individual components together to create a new
product [2]. The selection of the assembly sequence has a
great effect on assembly efficiency and complexity. A good
assembly plan can increase the efficiency and quality and
decrease the cost and time of the manufacturing process.
Takamatsu et al. [3] proposed a method for recognizing
assembly tasks as a sequence of movement primitives.
Gu et al. [4] developed a framework for robot skill learning
through human demonstration, which could automatically
recognize objects, actions, and assembly states using a RGB-
D camera. Thomas et al. [5] proposed amethod that combines
CAD-based motion planning with reinforcement learning.
Knepper et al. [6] proposed an automated assembly system
for the furniture. The geometry of individual components
was given in a table. Kiyokawa et al. [7] proposed a method
to generate easy-to-handle assembly sequences for robots
by considering two tradeoff objectives about the insertion
conditions and the degree of constraints among assembled
parts.

Task planning from implicit instruction manuals plays an
important role in automatic assembly tasks of furniture for
robots. A deeper and precise understanding of the instruction
manual can generate a proper and clear assembly sequence.
Nevertheless, the feature of the graphical instruction manual

brings some difficulties in using it. One problem is that
the instruction manual just gives a discrete description of a
continuous assembly task. Without having prior knowledge
of the assembly procedure and the product to be assembled,
it is hard to understand the instruction manual. Another
problem is the overlapping between different components,
which makes it difficult to recognize objects drawn on the
instruction image. To overcome the overlapping problem,
Shao et al. [8] presented a technique that took the input as
a multi-step assembly instruction in a vector graphic format
and grouped vector graphic primitives into semantic elements
like components, mechanical connectors, arrows, highlights,
and numbers. Park et al. [9] proposed a method to understand
assembly instructions in manuals by using both conventional
non-learning approaches and deep neural networks. They first
extracted components having strict geometric structures by
using conventional non-learning algorithms, and then used
deep neural networks to recognize the extracted components.
Lee et al. [10] proposed a method to recognize the speech
bubble area using Cascade Mask R-CNN and developed a
context-aware data augmentation scheme for speech bubble
segmentation.

In this paper, based on characteristics of different elements
on the instruction image, different detection and recognition
methods are used to extract components, symbols, speech
bubbles, and model numbers.

III. ATSG GENERATION FROM GRAPHICAL INSTRUCTION
MANUALS
To ensure the assembly plan can be executed by a robot with
a single manipulator, the plan must be sequential to make
sure there is only one subassembly at a time. The assembly
task sequence graph is a directed graph with nodes indicating
components, motions, and tools, and edges indicating the
direction [1]. The smallest unit structure of the ATSG is the
assembly unit, which consists of multiple input object nodes,
one motion node, and one output object node. The output
object node is divided into two kinds of components based on
the size of the components. One is the main child component,
which is the biggest component among the multiple input
object nodes. The remaining components are named as sub-
child components. The name of the output object node
is determined by the name of the main child component.
To ensure the generated assembly graph embodies the task
drawn on each instruction image in a particle size that the
robot can realize, one constraint is given to the input object
node: only two input object nodes can exist in one assembly
unit. If an assembly unit has three or more input object
nodes, the assembly unit is divided into numerous connected
assembly units in accordance with the appropriate task order
to guarantee that there are only two input object nodes in one
assembly unit.

The existing ATSG was generated from the detected
types of components drawn on instruction images. First,
components drawn on instruction images were extracted.
The extracted components were used to decide the motion,
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FIGURE 2. Visual elements excluded in instruction manuals. (a) is a series instruction images from Ikea of a kid chiar. (b) is one page of the
instruction manual from Nitori of an office chair. Elements in red, green, yellow, purple, and blue boxes are manipulated objects, symbols,
speech bubbles, numbers, and texts, respectively.

and the tool will be used in each assembly step. The
existing ATSG gives a graph structure that can decompose
the whole assembly task into several sub-tasks that can be
implemented by the robot directly based on the task order
obtained from the instruction manual. However, because all
of the information needed for the assembly task, like the
manipulated components and motions for manipulating these
components, was decided only by the type of components,
the wrong detection result of components has a great effect
on the generated ATSG.

Compared to the aforementioned studies, in this paper,
we extend the existing ATSG by adding the symbol, speech
bubble, and model number information extracted from the
graphical instruction manual to build an ATSG with high
precision. The symbol information is used to determine
the motion. The speech bubble information is used to
remove the repeatedly drawn components on the instruction
images. The model number information is used to distinguish
components with different models.

IV. GRAPHICAL INSTRUCTION MANUAL INFORMATION
EXTRACTION
Graphical instruction manuals are widely used in furniture
products. Besides furniture components, there are lots of
other visual elements in assembly instruction images that will

be useful for generating assembly sequences, as shown in
Fig.2 in boxes with different colors.

1. Furniture components depict shapes of parts that the user
needs to manipulate in each step.

2. Symbols, like arrows, usually indicate how components
are connected, which is the key to deciding the motion needed
to be manipulated in each step.

3. Numbers are always used to indicate the order of
assembly steps, the model numbers of each part, and the
numbers of different parts used in each step.

4. Speech Bubbles are always used to show the detailed
shape of some small components, model numbers, or high-
light the motion between two components at a specific step
and location.

5. Texts usually give detailed information or points that
need to be paid attention to about the motion.

Many researchers worked on finding domain-specific
design principles in order to create effective visualization
in graphical instructions. Agrawala et al. [11] identified
three main principles for the assembly instructions from
human-subject experiments. The first one was using a step-
by-step sequence of diagrams showing one primary action
in each diagram. Thus, only a few task procedures are
drawn, and it is necessary to understand the needed assembly
information from the discontinous scenes. The second one
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was using guidelines and arrows to depict actions required
to fit components together. The third one was to ensure
components added in each step were visible. These principles
give some guidelines for generating assembly task sequences
directly from instruction images.

In this paper, we extract the furniture component, symbol,
speech bubble, and model number information, and use
them to correct the existing ATSG to generate a new ATSG
with a higher accuracy. We use the furniture instruction
manual from Nitori1 and Ikea.2 While the instructions
of different companies differ slightly in the visualization
style, they all use similar diagrammatic elements, and
what we are concerned about, the furniture component,
arrow, and speech bubble, are expressed in a similar
form.

A. FURNITURE COMPONENT AND ARROW DETECTION
Arrows are one of the most commonly used graphical
elements, which are used to point out the order of sequences,
connect elements, and indicate motions [12]. Two kinds of
arrows are usually used in the furniture instruction manual
to indicate the action. One is the 2D arrow that is used to
point the direction, and the other is the 3D arrow with a curvy
path that is used to express the change of the orientation,
especially the rotation of screws. Therefore, we focus on these
two arrows in this paper. The arrow information is used to
decide the motion and the tool to connect two components.
We define three motions in the furniture assembly task,
as shown in TABLE 1. The first one is Insertion, which is
assigned when detecting 2D arrow in the instruction image.
The second one, Rotation, is assigned when detecting 3D
arrow. The last one is Placement. Placement is assigned
when there are three or more components that need to be
assembled on one page of the instruction manual, and there
are no arrows near the detected components. There may be
other motions that are also very important for the whole
assembly task, such as turning over the subassembly to
implement the next assembly motion. This kind of motion
is not for two different individual components, so it cannot
be expressed in the ATSG structure. However, this motion
is not the essential motion we are concerned about, and
fortunately, this motion is able to be handled in the motion
planning process as changing the pose of the manipulated
object.

TABLE 1. Three motions in the furniture assembly task.

YOLOv5 [13] is used to detect furniture components
and arrows. To construct a dataset of furniture assembly

1https://www.nitori-net.jp/ec/
2https://www.ikea.com/jp/ja/

instruction manuals, we collect instruction images of differ-
ent chairs from Nitori and Ikea. Each instruction manual is
segmented according to the step number. Segmented images
for one manual are saved in sequence to guarantee the order
of assembly steps. Three data augmentation methods are
performed. The first one is the horizonal flip. Because the
segmented images are of different sizes, we then implement
cropping. Cropping images is a practical processing step
for images with mixed height and width dimensions by
cropping a central patch of each image [14]. The last one is
the rotation. Finally, we obtain 2137 images. Among these
images, 1875 images are used to train the model, 87 images
for testing, and 175 images for validating. The mean average
precision of the trained model is 0.873.

B. SPEECH BUBBLE EXTRACTION
Speech bubble extraction is a common procedure in comics.
There are two methods for speech bubble extraction. One
method is based on the neural network. Dubray et al. [15]
developed a method to automatically detect and segment
speech bubbles, including the carrier and tails in comic
books based on a deep CNN. Another method is to perform
edge detection on the near surroundings of the text zones.
It is necessary to use the Optical Recognition System
(OCR) to recognize characters first when using this method.
Rigaud et al. [16] proposed a method in which the speech
bubbles were located first, and the text zones were only used
to give a confidence.

In furniture instruction manuals, the speech bubble is
usually used to highlight some important elements, such as
the indispensable motion to attach two components and the
model number of the manipulated component. In this paper,
we combine topological and spatial position relationships
to segment speech bubbles at the pixel level. First, speech
bubbles are distinguished by the connected components
labeling, which is an indispensable operation in computer
vision to detect connected regions in a binary image.
Connected components labeling groups pixels in an image
into components based on pixel connectivity. All pixels in
a connected component share similar pixel intensity values
and are connected with each other. After the connected
components labeling, we extract each speech bubble on the
segmented instruction image by its label. Then, the area of
the bounding box of the connected component is calculated.
The connected component, whose area occupies 5%∼30%
of the image area, is retained as the speech bubble that
needs to be checked later. After this, contours of speech
bubbles in connected components are found. Fig.3 shows the
detected speech bubbles of one image in a chair instruction
manual. Fig.3(a) shows the image after preprocessing, such
as adaptive thresholding and erosion. Fig.3(b) shows the
result of rough estimation of bounding boxes using connected
components. Fig.3(c) shows the contours of speech bubbles
in the original image. The speech bubble information is used
in the first step of the error correction.
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FIGURE 3. Speech bubbles extraction results.

FIGURE 4. Part list page in the furniture instruction manuals from Nitori
(a) and Ikea (b).

C. MODEL NUMBER RECOGNITION
A furniture instruction manual usually has one page to show
all the components used in this assembly task. Fig.4 show
two examples of part list page in the furniture instruction
manuals fromNitori and Ikea. There are two different models
of screws in these two assembly tasks. However, from the
component detection process, only ‘‘screw’’ class is defined.
Therefore, if the ATSG is constructed just using the detected
result from YOLOv5, it cannot decide which kind of screw
is used. Therefore, it is necessary to detect the model number
of the same class components.

We used the MMOCR [17]3 to recognize the model
number on the instruction images, which is an open-source
toolbox for text detection, text recognition, and the cor-
responding downstream tasks including key information
extraction. MMOCR supports a wide variety of state-of-the-
art models for text detection and recognition for different
expressions of the text.

We confirm components in one class but have different
model numbers by comparing the model number recognized
from the component list page with the model number recog-
nized from each frame image. Therefore, both text detection
and text recognition in MMOCR were used in this paper. The
FCENet [18] is used to detect the text on instruction images.

3https://github.com/open-mmlab/mmocr

TABLE 2. Text detection and recognition results.

The proposed Fourier Contour Embedding (FCE) method
enables us to approximate text contours with arbitrary closed
shapes. For text recognition, we use the SAR (Show, Attend
and Read) [19]method, which is an easy-to-implement strong
baseline for recognizing irregular text in images. The text
detection and recognition results for Fig.2(a) are shown in
TABLE 2.

There is a wrong detection and recognition result in Frame
1 as ’000’. This wrong result comes from the hole on the leg in
Frame 1. The shape of the hole is misrecognized as the ’000’.
However, this misrecognition will not affect the generation of
the ATSG by comparing the recognition result of each frame
with the recognition result of the component list page.

V. ERROR CORRECTION FOR ASSEMBLY SEQUENCE
In our previous research [1], the ATSG was generated just
according to the detected components on the instruction
images, which means the motion node and the tool node
are also decided by the detected components. Although
this method makes it easier to build the ATSG, it also
causes some problems, especially on the accuracy of the
generated ATSG. The inaccuracy mainly comes from two
aspects, the number of components and the motion for each
assembly step. Therefore, in this section, we first analyze the
wrong generation, which comes from the wrong number of
components and the wrong motion. Then, based on these two
aspects, we proposed our two-step error correction method.

A. NUMBER OF COMPONENTS
The influence of number of components on the generation
of ATSG includes two situations. The first source of errors
in the generated ATSG is the repeatedly drawn components
on the instruction images, as components Screws shown in
Fig.5. In the furniture instruction manual, the repeatedly
drawn components are usually located inside the speech
bubble. Speech bubbles in the instruction image are used
to show some small components and the model number of
the component, while these components are already drawn
outside of speech bubbles. Therefore, components drawn in
the speech bubble will not be used in the real assembly task.
If the repeatedly drawn components remain, a wrong ATSG
will be generated with an inaccurate number of manipulated
components.

Second is the existence of overlapping between different
components on the instruction images, which will cause
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FIGURE 5. Wrong detection for number of components. (a) and (b) are
detection results for two frames of two different chairs’ assembly
instructions. Both (a) and (b) show the first condition, in which
components in speech bubbles have also been detected and counted as
the manipulated components in this assembly step. (b) shows a case of
wrong detection, missing the Armrest in the dashed box, caused by
overlapping between the Seat and this Armrest.

wrong results in the component detection as shown in
Fig.5(b).

B. MOTION
The second is about the motion node in the ATSG. For the
existing ATSG, the motion node is decided by the main
child component based on the concept of action relationship
[20], which generates the possible assemblymotions from the
manipulated object. The output object node in the assembly
unit contains all components that were manipulated in and
before this step. Among all the components, the main child
component in the output object node is decided by the size
of the component. The motion for one assembly step in an
assembly unit is determined by the action relationship result
of the main child component. This motion decision method
will generate a wrong motion node when the attachment of
two assembled parts occurs at two components that are not
the main child components in the output object nodes in two
assembly units. Fig.6 shows one case of wrong estimation of
the motion node in ATSG of one step. Fig.6(a) is one page
from the instruction manual for a Nitori office chair. Fig.6(b)
shows part of the generated ATSG using the previous method.
This page shows one step of the assembly, which means
inserting the upper assembled part into the lower assembled
part. However, the motion node in the ATSG is ‘‘place’’. This
is because the main child component of the upper assembled
part is the ‘‘seat’’, and the main child component of the
lower assembled part is the ‘‘base’’. Therefore, the motion
for the seat and base estimated by the action relationship is
Placement .

C. TWO-STEP ERROR CORRECTION METHOD
A two-step error correctionmethod is considered to overcome
problems mentioned above.

Theremay be an excess or a lack of the detected component
number compared with the real component number used in
the assembly task. The excess of the component number
comes from two cases. One case is caused by the repeatedly
drawn components located in speech bubbles. From the result

FIGURE 6. One case of wrong estimation of motion node in ATSG.

of speech bubble extraction, it is able to get the location of
speech bubbles in one instruction image. The locations of
detected components are expressed using the bounding box
obtained from the YOLOv5 detection result. If any vertex of
the bounding box of one component lies inside the extracted
speech bubbles, this component is removed. Another case
of excess comes from the wrong detection in YOLOv5. The
wrong detection in YOLOv5 has twomeanings. Onemeaning
is that a component is classified into a wrong class, which
can be farther divided into two situations by whether this
component is used in this assembly or not. If the detected
component in one step is not used in the whole assembly
task, this component is deleted directly. The error correction
is performed following the generation of the ATSG for the
component that is used in the assembly task but is classified
incorrectly.

Another meaning of wrong detection is that components
are drawn on the image but cannot be detected and
classified into any class, which causes the lack of some
components during generating ATSG. For components that
were recognized in the wrong classes and the lack of
components, we checkwhether the number of this component
in the final output object node of ATSG (the final product)
is equal to that in the component list page in the instruction
manual after generating the assembly sequence. If the number
of a component in the final product is greater than that in
the component list page, then assembly units containing the
unnecessary number of the component are removed from the
assembly sequence. Assembly units containing the missing
components are added to the assembly sequence.

For the second problem, instead of just using the detected
components to decide motion nodes, we use detected arrows
to estimate motions to avoid generating wrong motions
caused by the lack of information about components’
relationships in the output object node, which is composed
of several components. By using the arrow information, the
decision for the motion node is totally independent of the
output object node.
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TABLE 3. Error correction results for motion nodes.

VI. ANALYSIS AND EXPERIMENTS
A. ERROR CORRECTION RESULTS
To show the effectiveness of the proposed two-step error
correction method, we compared the error correction result
using the proposed method with other three methods.

A) Just using the arrow and speech bubble information to
correct the error during the assembly sequence generation
process;

B) Just checking for component number consistency;
C) Using the arrow and speech bubble information during

the assembly sequence generation process and checking for
component number consistency after generating the ATSG
(proposed method);

D) Nothing.
Five chairs are used to check the error correction results.

Three of them are from Nitori and two of them are from Ikea.
All instruction manuals are available for download from the
websites of Nitori and Ikea.
First, motion nodes in the generated ATSG are considered.

We first generate the assembly graph from graphical instruc-
tion manuals by human. Then, we compare motion nodes in
the ATSG generated by four different methods. We define a
parameter A to describe the error correction result of motion
nodes for different chairs using different methods.

A =
correct number of motion nodes
total number of motion nodes

(1)

TABLE 3 shows the result of motion nodes for five chairs
using four methods. For each instruction, parameter A is
calculated using four different error correction methods.
When the parameter A is equal to 1, motion nodes generated
from one of four different methods are totally the same as the
motion nodes generated by humans watching the instruction,
which means motions generated by this error correction
method can be used in the real assembly task.

From TABLE 3, the proposed method (Method C) can
generate the right motion for each assembly step for different
instructions from different companies. For motion node
generation, Method A has the same result as the proposed
method (Method C), both methods use the arrow information
to generate the motion node in each assembly step. Therefore,
the error correction result is also the same. The accuracy of
motion nodes for the assembly sequence generated from the
instruction Nitori_3 is 0.94, not 1. This is because in one
frame of this manual, without showing the motion, the arrow

TABLE 4. Component number in each frame from Yolov5 detection
results.

is used to show the direction of the component when it is
manipulated.

Second, we obtain the number of components in each
frame of five instruction manuals using Yolov5 detection
results, as shown in TABLE 4.
Then, we compare the total component number (compo-

nent number obtained from the final output object node)
of the ATSG generated by four different error correction
methods with the total component number shown on the
component list page in the graphical instruction manual.
TABLE 5 shows the error correction result of the total
component number. From TABLE 5, we can see that by
using the speech bubble information during generating the
assembly sequence and checking the total component number
after generating the assembly sequence, it is able to decrease
the effect of the incorrect object detection and the repeatedly
drawn object on the graphical instruction manual. In detail,
the component number in the final output object node of
the ATSG generated by Method C (the proposed method)
of all five instructions is the same as the component
number shown on the component list page. Comparing the
component number of the ATSG generated by Method D
(directly generating the ATSG from detected components on
instruction images) and the component number generated
by Method A (only using the speech bubble information to
remove repeated components) with the component number
from the list, we can see that by removing the repeatedly
drawn components in speech bubbles, it is possible to
construct an ATSG with the component number closer to the
right component number. This is because the wrong number
of components in the component detection result usually
comes from the repeatedly drawn components in speech
bubbles.

For the error correction method that only checks the
consistency of the component number between the generated
ATSG and the component list page (Method B), only using
the component number information makes it hard to know
which step needs to add or remove the excess or lacking
components, and how many components need to be added or
removed in this step. Therefore, it usually generates a totally
wrong ATSG with a wrong component number and a wrong
task sequence. The effect of checking the component number
consistency is to remove the component that is incorrectly
classified into a class that is not used in this assembly task. For
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TABLE 5. Error correction results for component number.

FIGURE 7. Components of a kid chair used to execute robot assembly
task according to generated ATSG with error correction.

example, in the instruction manuals Nitori_1 and Nitori_2,
there are two wrong detections in which the detection results
include a component that is not used in the assembly in Frame
2 and Frame 3, respectively.

B. ROBOT EXECUTION
The generated ATSG of Ikea_1, a kid chair, is executed by a
dual-arm UR3e robot. Fig.7 shows components used in this
chair assembly task. Two kinds of screws are used to fix
different components. The instruction manual of this chair
is shown in Fig.2(a). From the instruction manual shown in
Fig.2(a), in Frame 1, Frame 2, and Frame 3, 2D arrows were
detected, therefore, the motion for these assembly steps is
Insertion. In Frame 4 and Frame 5, 3D arrows and six screws
with the same model number, as ‘100219’ were detected,
motion shown in these two frame is Rotation. In Frame 6,
both 2D and 3D arrows were detected, therefore, motion in
this frame is, first, the Insertion, and second, the Rotation.
Only two of three motions introduced in IV will be used in
this chair’s assembly task.

The suited gripper and tool for these two motions are
shown in Fig.8. For the Rotation, the screw-tightening tool
designed by Hu et al. [21] is used. This tool is able to
convert the gripping motion of two-finger parallel grippers
into a rotation motion to realize the fastening screw task.
This screw-tightening tool is splendid for fastening a screw
in a narrow space, which is a condition that usually occurs
in furniture assembly tasks. The planning strategy is based
on the motion planning framework proposed by Wan et al.
[22]. When given the initial pose and the goal pose of the
objects, it is able to generate a sequence of grasps to pick up
the object, move the object to the goal pose, and orientate
the object. By using this system, it is able to plan the turning

FIGURE 8. Tools for different motions estimated by the detected arrows.
(a) is used to perform the Insertion and Placement . (b) is used to
perform the Rotation.

FIGURE 9. The result of the RRT connection for generating the assembly
path of picking a part and then moving it to the goal pose.

over motion automatically if necessary. The RRT-connection
[23] is used to generate the assembly path. Fig.9 shows the
RRT-connection result for the sub-task inserting the back rest
into the leg in the simulation environment.

Fig.10(a) shows the generated ATSG with the proposed
error correction method, and Fig.10(b) presents the chair
assembly experiment by the robot. All components shown
in Fig.7 are put on the pre-defined position as shown in
Fig.10(b)(i). Fig.10(b)(ix) shows the completed assembled
chair. Fig.10(b)(ii)-(viii) are several robot assembly phases
according to the generated ATSG. Fig.10(b)(ii)-(v) show the
Insertion between different components. Fig.10(b)(vi)-(viii)
show the screwing (Rotation) motion according to the ATSG
in the blue dotted box in Fig.10(a). From the experiment, the
generated ATSG is able to be executed by the robot.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel two-step error correction
method to enhance the accuracy of assembly task planning
for robots by automatically understanding the graphical
instruction manual. The inaccuracy of the existing assembly
sequence generation method principally comes from the
inaccurate object detection result. Therefore, to weaken the
serious dependence on the object detection result, other
visual elements in the graphical instruction manual, like the
symbol, speech bubble, and model number, are detected
and used to generate the assembly plan for robots with
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FIGURE 10. Generated ATSG and robot execution. (a) is the corresponding ATSG of the instruction manual shown in Fig.2(a). Fig.10(b) shows the
assembly experiment by the robot. Fig.10(b)(i) is the initial environment setting of the assembly task. Fig.10(b)(ix) shows the completed product.
Fig.10(b)(ii)-(viii) are several robot assembly phases.

a higher precision. Furniture components and arrows are
detected by YOLOv5. Speech bubbles are extracted based
on the connected components labeling. The model numbers
are recognized using the open-source toolbox MMOCR. The
extracted elements are used in the two-step error correction.
The first step is during the generation of the assembly
sequence. The appropriate motion is decided by the detected
arrow information. The speech bubble is used to remove
the repeatedly drawn components on instruction images. The
detected component is checked to see if it is included in the
component list page. The second step is after the generation.
By checking the number of each component in the final
output of the assembly sequence with the number of each
component in the component list page, the correct component
number is guaranteed. From the compared results of the
generated ATSG in four different error correction methods,
we can see that the proposed two-step error correctionmethod
is effective. Finally, a robot experiment assembling a kid’s
chair is executed based on the generated assembly sequence.

In the future, we will look at two major issues that
remain in this topic. One is the detection of components.
Even though we have obtained reasonable accuracy using
YOLOv5 in this study for different kinds of chairs, for other
furniture, the detection result may not be good because of the
overlapping of different components. Another is focusing on
the robot execution phase. Because the furniture is always big
and heavy, it is difficult to accomplish the whole assembly
task just by the robot itself. It is expected to find some
methods to increase the assembly efficiency by human-robot
collaboration.
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