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ABSTRACT This study proposes a deep transfer learning method using a deep convolutional neural network
pre-trained with ImageNet for transient stability assessment. The procedure of deep transfer learning,
incorporating the role and considerations of the transient stability assessment system, is suggested. The
transient assessment system learns the relationship between the severity of disturbances and transient
stability in the power system through the proposed training method. The severity of a disturbance based
on the physical causal relationship of the angle stability is proposed to train and implement the transient
stability assessment model. The power system state variables obtained from the phasor measurement unit
are converted into the feature map described by the severity of a disturbance, enabling the training of transient
stability characteristics of the power system to the deep convolutional neural network. The training dataset
is constructed using the time-domain simulation on IEEE 39 and IEEE 118-bus benchmark power system
models configured in MATLAB/Simulink. As a result of deep transfer learning, which involves training
with freezing some of the convolutional layers of the pre-trained deep network, the most suitable model
for transient stability assessment is selected among the pre-trained deep networks. The effectiveness of the
proposed method is compared with other approaches using the confusion matrix, and the robustness against
noise interference is also investigated.

INDEX TERMS Transient stability assessment, deep transfer learning, pre-trained deep convolutional neural
network, VGG, power system stability, deep learning, ImageNet.

I. INTRODUCTION
In line with the global trend of carbon neutrality, the pro-
portion of renewable power generation in power systems
has continuously increased. However, the output fluctuation
of renewable power generation dependent on nature adds
to difficulties in power generation operation. Additionally,
although the continuous increase in the electricity demand
causes the need for additional generation reserves, power
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generation facilities are gradually becoming intensive owing
to the difficulty in securing new power generation sites, lead-
ing to the concentration of power flow. As changes in the
operating environment of power systems accelerate, various
uncertainties faced by power systems pose a major threat to
stability, and there is a growing need for appropriate counter-
measures to overcome the limitations of passive protection
and control technologies of existing sequential operations.
First of all, real-time analysis of the current state of the power
system is required to operate the power system securely. Real-
time stability assessment would improve stability by guiding
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power system operators to perform emergency control and
remedial actions at an early stage and resolve inefficiency
induced by stability constraints in power system operation.
In this regard, although the importance of power system sta-
bility assessment has been continuously recognized, the area
of real-time assessment remains a great challenge, primarily
due to limitations in computing resources.

A power system is a combination of various types of
dynamic systems to seek energy balance against contin-
uous changes and disturbances. Stability is the ability
to regain a state of operating equilibrium from various
disturbances [1], [2]. So as to assess transient stability, it is
necessary to interpret the complex dynamic characteristics
of the components in a power system. Until now, the most
accurate method to verify power system stability is to carry
out the time-domain simulation on a case-by-case basis for
various disturbances. However, given that requiring an accu-
rate model of the power system, including the control system,
the parameter of the component, and the network, and solving
high-dimensional nonlinear differential-algebraic equations
required considerable computer resources [1], the simulation
of all possible disturbances in real-time is unfeasible.

Based on the energy function, an approach to find the stable
region of the power system and assess the stability through
the state trajectory of the power system after a disturbance
was demonstrated [3]. In this regard, an accurate controlling
unstable equilibrium point for disturbance was attained for
stability analysis in [4] and [5]. State data acquisition using
the phasor measurement unit (PMU) was considered [6], and
a technique for constructing a lookup table for the real-time
application was also suggested [7]. However, when applied
to large power systems, energy functions are vulnerable to
numerical problems in some areas and are somewhat diffi-
cult to use in real-time due to modeling limitations and the
unreliability of computational techniques [8].

Deployment of the PMUs provides very high sampling and
accurate dynamic state variables with the power system oper-
ation system [9]. As a result, machine learning technology
began to be used for transient stability assessment (TSA)
in earnest. The stability classifications through the neural
network [10], support vector machine (SVM) [11], curve
fitting [12], and decision tree [13] were proposed. SVMs
have been widely used for classification problems with their
excellent learning speed and accuracy. In [14], a performance
comparison of SVM classifiers using multiple state variables
of the generator was conducted, andWang et al. utilized a core
vector machine that can solve the classification problem with
a higher dimension than the SVM for transient stability clas-
sification [15]. In addition, methods linking the SVM with
the Fuzzy analytical hierarchy process [16] and convolutional
neural network (CNN) [17] were also conducted. Although
SVMs exhibit excellent performance in a normal-size dataset,
the scalability of the classification model in the case of the
accumulation of datasets remains somewhat insufficient.

Further, Ma et al. suggested a hybrid technique of deter-
mining and quantifying stability by comparingwithmeasured

values based on simulation results based on the equal area
criterion [18]. An approach to predict transient stability based
on the maximal Lyapunov exponent estimated by a recur-
sive least squares-based method was proposed [19]. In [20],
a nonlinear semiparametric model obtained with the LASSO
algorithm was used for transient stability analysis. Besides,
Ashraf classified critical machines through one machine infi-
nite bus transformation and carried out rotor angle prediction
with the Kalman filter [21], and in [22], stability classi-
fication through networked shapelet learning based on the
inherent spatial-temporal correlations of power systems was
carried out.

Since the perceptron was introduced, approaches using
neural networks for the classification problem have been
continuously attempted. Research about constructing amodel
for classifying sequence data by organizing individual clas-
sification neural networks in parallel [23], assessing the
stability using the stacked sparse autoencoder as a feature
extractor [24], a training method of including a dimension
of time in the input state variables [25], an assessment model
stacked with restricted Boltzmann machines [26], and radial
basis function neural network-based model to determine the
criticality level of the generators [27] were suggested.

CNN [28] and long short-term memory (LSTM) [29] have
demonstrated excellent performance in image and sequence
data recognition, respectively, creating an opportunity for the
widespread use of artificial intelligence technology. Accord-
ingly, CNN and LSTM have been applied to TSA and
achieved high accuracy. Notably, a study on determining tran-
sient stability with LSTM specialized in processing sequence
data and methods of converting state data into an image
format to utilize CNNwere presented [30], [31], [32]. In [33],
[34], [35], and [36], the performance of classifying tran-
sient stability was further enhanced by combining CNN
with LSTM.

The significance of the approaches suggested so far is clear.
Nonetheless, considering the crucial role of TSA in power
systems, inconsistent assessment timing and relatively long
response time after the fault clearing should be supplemented.
To be considered for practical application, improving the
accuracy and response time of TSA is crucial to provide
sufficient time for emergency control or remedial action
immediately after the assessment. Most importantly, as train-
ing data accumulates persistently, designing the model with
the potential for advancement is necessary.

Given that time-domain simulation is the most accurate
method to assess transient stability of power systems, a deep
neural network-based TSA using the time-domain simulation
results can be an alternative to satisfy accuracy, feasibility,
and responsiveness. However, in order to learn numerous
hyperparameters to use a deep neural network, not only a
vast amount of dataset is required, but also an appropri-
ate design of the network structure should be premised so
that the gradient of the error can be effectively propagated
during the process of learning through the backpropagation
algorithm [37].
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In this study, in order to overcome these limitations
and build a high-performance stability assessment system,
a pre-trained deep convolutional neural network (PDCNN)
is applied to TSA. Deep transfer learning (DTL), which
brings the backbone of a neural network model trained
with a large-scale dataset and applies it to another field,
can overcome the insufficiency of the training dataset and
provide significant usefulness in designing neural networks
for TSA.

The contributions of this paper are:

1) As the first attempt at DTL of a deep CNN trained with
ImageNet for power system stability assessment, the
method and criterion of exploiting a PDCNN to TSA
are proposed.

2) The TSA system is constructed by learning the pro-
posed disturbance severity index, which possesses the
physical characteristics of angle stability. The dis-
turbance severity index synergizes with the excellent
classification competence of the deep CNN, result-
ing in fast response time and high accuracy in the
assessment.

3) In this study, an attempt to apply deep CNN pre-trained
with completely different tasks to transient stability
assessment through fine-tuning proves that DTL is a
way to alleviate the need for vast amounts of the train-
ing dataset, which is a prerequisite for training deep
neural networks.

The remainder of the paper is organized as follows.
Section II establishes the primary considerations and pro-
posed approach for constructing the TSA system using
the neural network. The background of DTL for TSA is
addressed in Section III. Section IV examines the theoreti-
cal basis for configuring the training dataset and processing
the PMU data. The detailed process of constructing the
TSA model through fine-tuning is addressed in Section V.
In Section VI, the performance of the proposed method is
verified and compared with previous studies.

TABLE 1. Details of the neural network-based transient stability
assessment systems proposed in previous studies.

II. CONSIDERATIONS FOR TRANSIENT STABILITY
ASSESSMENT USING NEURAL NETWORKS
In previous research, neural networks of various structures
have been applied, and in particular, studies using LSTM and
CNN constitute the majority. In implementing TSA using
artificial intelligence technology, there are essential options
that affect performance and feasibility. Because those options
are issues that still need to be resolved and cause various
difficulties in adopting the neural network-based TSA in an
actual power system, the following must be considered to
move forward from previous studies.

A. OBSERVATION WINDOW AND STABILITY DECISION
THRESHOLD
A compromise about the period of the observation window
(OW), which is the temporal range of input data, must be
found in the trade-off relationship between the accuracy and
the timing of the stability decision. Moreover, the OW deter-
mines the size of the input data of the neural network; thus,
it is a factor that significantly affects the structure of the
neural network. The setting of the stability decision threshold
(SDT) influences the performance of the TSA system due to
acting as a criterion for assessing stability from the infer-
ence result of the trained neural network. Notwithstanding
these two hyperparameters play a critical role in the neural
network-based stability assessment, the OW and SDT, whose
value was experimentally set depending on each case study
of the power system model and training data, as shown in
Table 1, make it challenging to exploit the TSA system to an
actual power system.

B. TRADE-OFF BETWEEN ACCURACY AND TIMING
Given that transient stability becomes apparent over time
after a power system is affected by a severe disturbance in
conformity with the physical nature of synchronous operation
between synchronous generators, the temporal feature (the
length of the OW) of input data significantly impacts the
accuracy and timing of a decision, i.e., tending to be less
accurate as it gets shorter. The inference timing, as well as
accuracy, is crucial in the TSA system because the prompt
assessment can provide sufficient time to perform emergency
control in power systems. Previous studies found a compro-
mise between the accuracy and the decision timing through
several attempts comparing simulation results. Still, it cannot
be asserted that the compromise is an appropriate point that
can be used as it is in other data (i.e., other power systems).

C. NEURAL NETWORK DEPTH AND STRUCTURES
The detailed structure of a network suitable for a specific
purpose can only be found by trial and error by referring to
various research [38]. Although the general characteristics
have been confirmed through a recent study on the corre-
lation of network depth and performance [39], the detailed
relationship between hyperparameters of a neural network is
like a black box, making it difficult to grasp the exact causal
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relationship [40]. The TSA systems composed of limited
training data in various studies face challenges in clearly
elucidating the detailed structural features of neural networks
and explaining why they exhibit good performance, as well
as in determining which of the proposed models possesses a
more efficient network structure. Moreover, it is very difficult
to compare, verify, and select the best network structure
that can be generalized because of differences in terms of
benchmark models, detailed data acquisition scenarios, and
data scales for each research.

D. TRAINING DATA INSUFFICIENCY AND VARIABILITY
In order to build a TSA system with a neural network,
a large number of training data consisting of state data
of power systems experiencing various disturbances, which
is enough to train a neural network, should be prepared.
However, in actual power systems, there are few unstable
cases due to tightly designed protection systems, reserve
allocation, and operational technologies that prevent the
blackout; thus, time-domain simulation results for vari-
ous disturbances are inevitably used for training a neural
network. Moreover, as operation data of the power sys-
tem will have been accumulated in the database and the
amount of the data gradually increases, model performance
improvement would be required through additional training.
As such, the TSA model should be able to fully gen-
eralize transient stability characteristics even with limited
training datasets and steadily expand the model through
additional training against the continuous accumulation of
operational data, although these two aspects may be in
conflict.

A neural network model can learn more complex phenom-
ena as it has a large number of hyperparameters, whereas
it also requires a large amount of data to be learned suffi-
ciently [38]. In the case of training a simple neural network
using the initially obtained small-scale training dataset, the
neural network exhibits good performance for the moment,
while the performance improvement is inevitably limited
when the training dataset is extended. On the other hand,
if a deep neural network is indiscriminately used, the neural
network cannot be sufficiently trained due to the amount
of the training dataset, and thus the expected performance
cannot be reached.

E. PROPOSED APPROACHES FOR ADDRESSING ISSUES
The main issues are summarized as follows:

1) Determination of the OW and the SDT.
2) The compromise between the accuracy and the decision

timing of TSA.
3) Design of a suitable neural network structure: A neural

networkmodel that can be trained with small-scale data
and grow by continuously learning about the increase
in the amount of training data.

The methods proposed in this paper to cope with the con-
siderations and issues are as follows:

1) Application of deep CNN through DTL: overcoming
the variability of the training dataset and securing a
neural network model possessing the finest perfor-
mance.

2) Construct an adequate training dataset so as to avoid
setting experimentally determined hyperparameters
such as the OW and the SDT and exert the capability of
a deep CNN on TSA.

III. DEEP TRANSFER LEARNING FOR TRANSIENT
STABILITY ASSESSMENT
As a neural network structure deepens, tasks to be learned
can be hierarchically decomposed, complex problems can
be replaced with simpler ones, and the feature information
in data is transmitted hierarchically, contributing to efficient
learning [38]. As the layer of CNN deepens, the extracted
information becomes more abstract, and the object to which
neurons respond changes from simple shape to advanced
information, which is the basis for the outstanding perfor-
mance of a deep CNN [41], [42]. Nevertheless, training a
deep neural network requires a vast amount of training data
and computing resources. Furthermore, the design of a deep
neural network is a significantly complicated task, and if it
is designed to possess a deep structure, problems such as
vanishing gradient and overfitting would frequently occur
during the training process. In this way, designing and ver-
ifying a deep neural network by considering various aspects,
including training availability, training time, performance,
efficiency, and the number of hyper-parameters, requires
much effort. Notwithstanding, through DTL, the deep neural
networks that are impossible to be trained with only the
moderate-scale training dataset (i.e., used in previous stud-
ies [30], [31], [32], [33], [34], [35], [36]) can be fine-tuned
and applied to TSA. DTL can be an excellent alternative when
training data is relatively small, such as in a power system,
and available computing resources are limited.

A. DEEP TRANSFER LEARNING
The ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge) is an image recognition competition that classi-
fies ImageNet [43], which comprises 1,200,000 images (see
Fig. 1) categorized into 1,000 classes. Because the same data
is used to comparatively analyze the overall performance of
the models, such as the training speed, the size, parameters,
and the top-1 and top-5 accuracy, the best-performing model
in the field of image recognition is identified. Since AlexNet
[44] won in 2012, CNN-based models have been winning
so far, and recently, top-ranked models tend to design the
structure of neural networks deeper based on deep learning
in earnest.

Transfer learning is motivated by the fact that people can
intelligently apply knowledge learned previously to solve
new problems faster or with better solutions [45]. It is a
valuable method in AI technology to overcome insufficient
training data. This method extracts the knowledge from the
source task (i.e., ImageNet classification) and applies it to a
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FIGURE 1. ImageNet dataset image samples.

target (new) task. Research in which PDCNNswith ImageNet
have been successfully deep transfer learned in various fields
such as medical image, mechanics, physics, and civil engi-
neering can be found [46]. Still, there has yet to be a case
where DTL has been used in power systems. Although some
studies have partially confirmed the applicability [35], [47],
it was limited to cases where transfer learning was performed
within a larger simulation model for the neural network
learned in the study. It is not an attempt to transfer-learn the
representative neural networks trained with ImageNet, such
as AlexNet, GoogLeNet [48], ResNet [49], and VGG [50],
and apply them to the field of power system stability. The
structures of CNNs for TSA used in previous studies are
mostly 2, 3, and 4 convolution layers, in contrast to having
5–81 convolution layers, which are representative deep CNN
models (see Table 2 ). While the depth of the layer cannot
be the sole criterion for the classification performance of
neural network models, it is evident that deep neural net-
works, in general, are capable of modeling more complex
features [38], [51]. DTL is simultaneously capable of solving
the insufficiency of training data and the difficulty of design-
ing an appropriate deep network in applying deep networks to
TSA. The expected merits of DTL for TSA are summarized
as follows:

1) Accurate and fast response assessment by the excellent
image recognition ability of the deep CNN.

2) Addressing the lack of training dataset, the need for
large-scale computing resources to train deep networks,
excessive training time, and concerns about overfitting.

3) Scalability to improve performance through additional
learning when the amount of training data enlarges
continuously due to the acquisition of training data in
the future.

4) The state-of-the-art high-performance deep CNNs that
have consistently been developed in the field of image
recognition can be applied to assess transient stability
through the process proposed in this paper. There is no
need for additional consideration of hyperparameters

related to network structure. As the image recognition
ability of the deep CNN improves, the performance of
TSA is also enhanced.

B. FINE-TUNING
Fine-tuning is re-training a deep neural network pre-trained
with a vast dataset (e.g., ImageNet) into a new dataset suitable
for other tasks. Given that the PDCNN is used as a backbone
and only a few layers are initialized and trained, the SGDM,
which generally carries out stable learning, is set at a very
small learning rate and used for fine-tuning. The initial layers
of a trained deep neural network preserve general features
applicable to other tasks, while the deep layers have features
that are more specialized for the target tasks [51], [52]. When
performing fine-tuning to apply a pre-trained deep network
to a new task, these characteristics are the foundation for
dividing networks into frozen or learnable layers. As shown
in Fig. 2, the depth of the learnable layer of a neural network
to be trained is generally determined by comparing the size
of the new training data and its similarity to the dataset used
for pre-training [53].

TABLE 2. Comparison of the stability assessment model structure.

FIGURE 2. Relationship between the property of the training dataset and
the depth of the frozen layer.

C. PRE-TRAINED DEEP CONVOLUTIONAL NEURAL
NETWORK SELECTION FOR TRANSIENT STABILITY
ASSESSMENT
The method of constructing the DTL-based TSA is illustrated
in Fig. 3. Candidate models are selected from the PDCNNs
on ImageNet (or other large-scale datasets), considering the
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FIGURE 3. Deep transfer learning for transient stability assessment.

system environment to implement the TSA system in real-
time (inference time within approximately 5ms). The most
crucial consideration for applying the PDCNN to TSA is
to select a suitable network that requires little time in the
inference process, as transient stability should be determined
in real-time from power system state variables. In general,
the forward propagation of neural networks takes little time,
but most of the deep CNN currently proposed for image
recognition and classification have very large hyperparam-
eters along with quite deep and complex structures; thus,
consideration of inference time should be preceded in select-
ing networks. In addition to this, the image classification
performance, the complexity of the structure, and the number
of hyperparameters are considered. The candidate models
that meet the priority criteria for real-time application are
fine-tuned using the training dataset, which consists of state
variables acquired from the power system model to be imple-
mented, and then the most suitable model is selected through
performance comparison. The networks arranged in Table 3
are selected as candidates for the real-time TSA model, con-
sidering inference speed and detailed specifications among
various deep networks trained with ImageNet. All selected
models are affirmed to achieve real-time performances from
the inference time (i.e., response speed).

IV. PROPOSED TRANSIENT STABILITY ASSESSMENT
SYSTEM
With the spread of PMUs, an environment where voltage
phasors can be acquired in 1 cycle with an error rate of
less than 1% has been established [55]. The PMU provides

TABLE 3. Pre-Trained deep convolutional neural networks: candidates for
deep transfer learning.

ease of real-time monitoring and data accumulation of the
power system and is a suitable signal for machine learning-
based real-time TSA. In this study, only these two types of
state variables are considered as inputs of the neural network
model, assuming that the PMU can acquire the magnitude
and phase of each bus voltage. In a neural network-based
model, the training dataset, data property, and pre-processing
of the input variable are essential options that determine
the performance of the neural network associated with the
characteristics of the task and type of the neural network.
In this section, the establishment of the training dataset that
maximizes the utility of the PDCNN model is proposed.

A. TRAINING DATASET
In supervised learning of a neural network, the composition of
input and its label, that is, the training dataset, is a process of
determining the expected inference results through the model
learned from the dataset and specifying the task of the model.
In order to interpret and learn an intricate system in which
various systems are organically combined, such as a power
system, the training dataset should be constructed circum-
spectly based on physical relevance in particular. Likewise,
given that the performance of the TSA system should be
improved through enduringly additional learning from the
operation data accumulated from the actual power system
and the time-domain simulation, the critical consideration for
building the neural network-based TSA system is that the
training dataset should be able to be constructed from the
state data of the actual power system as well. Considering
these aspects, PMU-based state variables that can be easily
accumulated and instantaneously acquired with high accu-
racy from the power system are most appropriate as input
data, and the transient stability index (TSI) (1) can classify
the stability from the input data and label whether stable or
not [23].

TSI =
360◦

− |δmax |

360◦ + |δmax |
×100 (1)
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where δmax is the maximum phase angle difference between
any synchronous generators. Transient stability can be clas-
sified (i.e., labeled) as stable in TSI > 0, and its class label is
tagged as 1; otherwise, as unstable in TSI ≤ 0, its class label
is tagged as -1.

Y =

{
1 (stable), TSI > 0
−1 (unstable), TSI ≤ 0

(2)

1) POWER SYSTEM TRANSIENT STABILITY
Mathematically, transient stability of a power system is
a problem to solve the following nonlinear differential
equation [1], [8]:

ẋ = f (x,V,t) (3)

0 = g (x,V,t)

x = {xi| i = 1, 2, · · · , n} , x (t0) =x0
V = {Vb| b = 1, 2, · · · ,m} , Vb= [|Vb| θb]T (4)

where x ∈Rn are the state variables, x0 is the initial values
of state variables, t∈ [t0,T ] is time, V ∈Rm are the algebraic
variables (i.e., bus voltages), f(x) is a nonlinear differential
equation, g(x) is a nonlinear algebraic equation, and the
number of the generator and bus are n and m, respectively.
Transient stability is identified from the maximum phase
angle difference, δmax , obtained from the state variable x. This
is because the state variable x and the algebraic variable V
are obtained through the solution of the nonlinear differential-
algebraic equation:

x (t0 + 1t) = x0 +

∫ t0+1t

t0
f (x,V,t)dt (5)

0 = g (x (t0 + 1t) ,V (t0 + 1t) , t) (6)

|δmax | = max
t0≤t<T

∣∣δi (t) − δj (t)
∣∣ i, j ∈ n (7)

where |δmax | represents the maximum phase angle difference
between any two generators. Connecting this behavior with
the equal area criterion (see Fig. 4), widely known as a
helpful method for an intuitive grasp of transient stability,
the imbalance energy (area abcd in Fig. 4) stored during the
fault period [tF , tC ] appears as an increase in power angle
(δmax), i.e., a release of the stored energy (area defg in Fig. 4).
On the other hand, if the fault is cleared at tC ′, the stability
limit is exceeded owing to the energy accumulated during
the difference of the fault clearing time (tC ′ − tC ). That is,
the imbalance energy stored in the power system during the
fault period (i.e., [tF , tC ] or [tF , tC ′]) appears as a change
in the state variable x in the differential algebraic equation,
and the trajectory of the algebraic variable V is obtained
by solving the nonlinear algebraic equation. Collectively,
concerning the physical aspect of energy accumulation and
dissipation through the equal area criterion and the relation-
ship between V and x of the nonlinear algebraic equation,
the training dataset is constructed to model the correlation
between the imbalance energy accumulated during the fault

FIGURE 4. Equal area criterion for transient stability assessment.

period expressed as V and the transient stability. The pro-
posed training dataset is

DTSA ≜ { (Xcase,Ycase)| case = 1, 2, · · · ,ND}{
X (input) : accumulated imbalance energy
Y (label) : transient stability index

(8)

where ND is the number of the fault case, Xcase is the input
of the training dataset, and Ycase is the classification label
of the dataset. In conclusion, through the training dataset
for constructing the TSA model that exerts the assessment
with input data solely during the fault period, the model
learns how severe the disturbance occurs in the power sys-
tem and the effects on generators (i.e., the angle stability).
This model targets to assess transient stability immediately
after the fault clearing in the power system, as provided in
Fig. 5. As depicted by the blue solid line box in Fig. 5,
the size of the observation window proposed in this study
varies depending on the duration of the fault. The TSAmodel
is trained using only the state data within the fault period,
allowing it to assess transient stability immediately after the
fault clears. In this method, it is possible to secure control
time for the power system operator to perform additional
countermeasures compared to other approaches due to the fast
response time being made at TC1 and TC2 for TSA. On the
other hand, in other approaches, as summarized in Table 1,
fixed observation windows of 5 to 20 cycles (i.e., the yellow
solid and dashed lines in Fig. 5) are used, and the inference
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FIGURE 5. Comparison of the observation window.

results of the model are delayed until the SDT is met. Other
approaches using CNN and LSTM require different waiting
periods (i.e., observation window) for each case to enhance
the accuracy of the assessment after fault clearing, leading
to delays and uncertainty in the assessment timing, making
it challenging to use the assessment result as an initiation
trigger for emergency control of the power system. Contrary
to the response time of previous studies (see Table 1), the
TSA model learned with the proposed dataset is built to infer
transient stability as soon as the fault clears in all cases and is
suitable for application in power system operation.

2) DISTURBANCE SEVERITY INDEX
So as to construct the training dataset, it is necessary to
quantify the effect of disturbance on transient stability of the
power system. Taken together, the disturbance severity index
(DSI), which includes the location of faults, the distribution
of power flows, acceleration energy, and the fault duration,
is defined. It can be obtained from time-series status variables
from the PMU. In (3) and (4), the algebraic variable V, the
voltage phasor acquired in real-time from the PMU, is

V
(
tp

)
=

[
|V |

(
tp

)
θ

(
tp

)]T
|V |

(
tp

)
= {|Vb|| b = 1, 2, · · · ,m}

θ
(
tp

)
= {θb| b = 1, 2, · · · ,m}

θ̇
(
tp

)
=

{
θ̇b

∣∣ b = 1, 2, · · · ,m
}

θ̇b
(
tp

)
≜

θb
(
tp

)
− θb

(
tp − 1TS

)
1TS

(9)

where tp is the sampling time, 1TS is the sampling interval,
the subscript b is the bus number, m is the total number
of buses, |V | is the magnitude of the bus voltage, θ is the

FIGURE 6. Flow chart of processing the state variable to the feature map
in the proposed system.

phase of the bus voltage, and θ̇ is the phase angle change
with respect to the sampling interval. Because the voltage
distribution of the entire power system during the fault period
is determined by factors such as the location of the voltage
source, line admittance, fault impedance, and fault location,
it can be observed that the voltage magnitude of all buses
in the PMU conveys the information about the fault and
network properties. Also, the power flow is the function of
voltages and phase angles, so the trajectories of voltages,
phase angles, and derivatives of phase angles during the fault
period are caused by unbalanced energy under the influence
of the fault; thus, these variables stand for the disturbance
severity influencing the transient stability. From (9), the DSI
is defined as

Disturbance severity index : DSI

≜
{[

|V | (k) θ (k) θ̇ (k)
]T∣∣∣ k = tF , tF + 1TS , · · · , tC

−1TS , tC
}

(10)

where k is the sampling time, tF is the fault occurrence time,
and tC is the fault clearing time. Collectively, as shown in
Fig. 5, the DSI is the trajectory of the variables of the fault
period, and the temporal range of data varies depending on
the fault clearing time.

3) FEATURE MAP GENERATION
The power system time-series data acquired from the PMU
should be converted into the appropriate type for the
CNN-based model so that the PDCNN effectively recognizes
the correlation between the trajectory of power system state
data and the transient stability. As shown in Fig. 6, the
DSI defined in (10) is three-dimensional time series data
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sampled only during the fault period, which is instanta-
neously converted into the feature map after the fault clearing
and is imparted to the TSA model. To convert the DSI into
the feature map, the state variables defined in (9) are sampled
only during the fault period and assigned to each dimension
in the form of a 3-dimensional tensor, as described in (10).
The RGB image data format consists of 3-dimensional data
with red, green, and blue components. Each dimension is rep-
resented by an 8-bit unsigned integer, ranging from 0 to 255,
indicating the brightness or intensity of the respective color
channel. Therefore, by linearly transforming the data distri-
bution of each dimension in (10) into 8-bit unsigned integers
ranging from 0 to 255, the data acquires the same attributes
as an RGB image. In MATLAB, to perform the described
process, as shown in Fig. 6, each state variable is transformed
to have a data scale from 0 to 255 using ‘‘rescale’’, and
then converted to an 8-bit unsigned integer data class using
‘‘uint8’’. These transformed state variables are then combined
into a 3-dimensional tensor using ‘‘cat’’, and ‘‘imresize’’ is
used to adjust the size of the input image to fit the CNN based
model.

B. FINE-TUNING FOR TRANSIENT STABILITY ASSESSMENT
The PDCNN models are defined as (11).

HB (WF , C,Xi) = Ŷi

HB ∈


AlexNet,SqueezeNet,ResNet18, . . . ,
ResNet50,MobileNet,GoogLeNet, . . . ,
VGG16,VGG19,ShuffleNet,DarkNet19


WF ∈ {10%, 30%, 50%, 70%, 90%}

C = {Stable,Unstable} (11)

HB is the deep CNN model pre-trained with ImageNet to be
the backbone, WF is the ratio of layers whose learning rate
is set to 0 (i.e., the frozen layer), Ŷi is the inference result
for input Xi, and C is the category (i.e., class labels). The
cross-entropy loss function with the regularization term [38]
for training the PDCNN (11) is

EL = −
1
ND

ND∑
i=1

{
Yi ln Ŷi + (1 − Yi) ln (1 − Ŷi)

}
+ λ

1
2

∥W∥

(12)

where ND is the number of samples, the output of the model
for input Xi is Ŷi (the inference result), the class of input Xi
is Yi (the class label), W is the weight vector, and λ is the
regularization coefficient to reduce overfitting. The optimizer
to minimize the loss function (12), the stochastic gradient
descent with momentum (SGDM) [40], is

W j+1
= W j

− α∇EL
(
W j

)
+ γ

(
W j

−W j−1
)

(13)

where j is the iteration number, α is the learning rate, W
is the weight vector, ∇EL

(
W j) is the gradient of the loss

function (12) with respect to W at iteration j, and γ is the
momentum which determines the contribution of the pre-
vious gradient step to the current iteration. In the training

FIGURE 7. An overall framework of the proposed transient stability
assessment model.

dataset (8), the feature map converted from the DSI (10) and
the transient stability (2) for each case are assigned to the
input Xi and label Yi, respectively. The training dataset is
constructed accordingly, as (14).

DTSA= { (Xi,Yi)| i = 1, 2, · · · ,ND} (14)

Using the training dataset (14), the PDCNNs with 10–90%
depth of the frozen layer (WF ) are trained by the SGDM (13)
tominimize the loss function (12) and, consequently, form the
TSA model.

V. CONSTRUCTING PROPOSED ASSESSMENT SYSTEM
Training and verification datasets are constructed through
time-domain simulation in power system models of different
scales and characteristics to verify the proposed TSA system.
The assessment model is selected by comparing the perfor-
mance of models trained by varying the depth of the frozen
layer. The design of the neural network model, data process-
ing, training, and DTL for assessment model construction
are performed using MATLAB R2022b with Deep Learning
Toolbox and Image Processing Toolbox. All the tests are
fulfilled on a computer with Intel Core i9-7900X 3.30GHz
CPU, 16GB RAM, and RTX 3090Ti GPU.

A. TRANSIENT STABILITY ASSESSMENT MODEL
The DTL-based TSA system proposed in this study is illus-
trated in Fig. 7. The state variables of the power system are
measured by PMUs and stored in the database, from which
the DSI is reconstructed. Immediately after the fault clearing,
the DSI is converted into the feature map (see Fig. 6). The
feature map represents the power system state variable during
the fault period in the type of image data, which is then fed
into the deep CNN model. The TSA model is constructed
by fine-tuning PDCNNs, as shown in Fig. 3, using the train-
ing dataset obtained from the power system model to be
implemented.

B. TRAINING DATA GENERATION
1) SIMULATION MODEL
To verify the performance and feasibility of the proposed
system, time-domain simulation models of the IEEE 39-bus
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TABLE 4. Parameters for the benchmark power system.

TABLE 5. Configuration of the benchmark system.

and the IEEE 118-bus system, which are widely used
as the benchmark system, are constructed using MAT-
LAB/Simulink. The parameters and configuration of each
model are set up as Tables 4 and 5.

2) DATABASE GENERATION
The training dataset of the TSA model is acquired through
time-domain simulation for a three-phase short circuit fault in
transmission lines and buses, as summarized in Table 6. The
fault duration is set using a uniform distribution ranging from
200ms to 600ms, and the simulation time is set between 5 and
10 seconds. Case-1 involves conducting fault simulations on
all transmission lines and buses for various load scenarios
on the IEEE 39-bus system, resulting in a sufficient training
dataset. On the other hand, case-2 considers only bus faults on
the IEEE 118-bus system, which is larger and more complex
than case-1. Because of the limited and insufficient fault
simulation on the larger benchmark system, case-2 presents
a challenging dataset for neural network models. The case
studies are composed of two types: one with sufficient train-
ing data (case-1), and the other with insufficient training data,
referred to as case-2. Case-2 is used to verify the generaliza-
tion ability of the TSA model within the limitations of the
training dataset. In actual power systems, it is impossible to
obtain all potential fault cases that may occur, so the capa-
bility of generalizing the characteristics of transient stability
from the training dataset needs to be verified.

C. PRETRAINED DEEP CONVOLUTIONAL NEURAL
NETWORK SELECTION
In order to apply the deep CNN pre-trained with ImageNet
to TSA, the PDCNNs (11) listed in Table 3 are fine-tuned

TABLE 6. Configuration of training dataset for the case study.

TABLE 7. Optimization parameters for fine-tuning.

using the optimization parameter in Table 7 to compose the
best-performing TSA system. The performance comparison
is conducted through case studies by varying the depth of the
frozen layer to select the most suitable model for TSA.

In Fig. 8(a), the overall good performance of DTL models
is verified. Because the difference between generality and
specificity learned by the neural network from the former
task depends on the depth of the layer, performance variations
are observed for an increase in the frozen layer. Fig. 8(b)
represents a magnified figure expanding the dotted line box
in Fig. 8(a). Each model demonstrates its best performance
with different depths of the frozen layer due to the property
of each model. Comparing the transient stability feature map
(i.e., the DSI) and ImageNet from the perspective of Fig. 2,
these datasets (see Figs. 1 and 9) are dissimilar visually and
differ significantly in scale; thus, excellent performance is
observed at the proportion of the frozen layer 10–50% due
to the low similarity and relatively small training dataset.
From the comparison of the accuracy of the trained PDCNN
models shown in Fig. 8(c), it is evident that theVGG-19 based
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FIGURE 8. Comparison of the training result for selecting a pre-trained
deep convolutional neural network. (a) Training results of the models
depending on the depth of the frozen layer. (b) Training results (zoomed
in the gray dotted box of (a)). (c) Best performances of each model at the
optimal frozen layer depth.

model exhibits the best performance for both case-1 and
case-2. Relatively deeper and more complex models exhibit
rather disappointing classification results. This indicates that
the training dataset used for TSA in this study is some-
what insufficient to train massive networks. As a result,
relatively simple models among candidate networks reveal
better performance. While most of the models show excellent
performance, VGG-16, of note, proves the best classification
competence. In the training process, not only the effect of
the mini-batch size but also the depth of the frozen layer
on the performance appears to have the slightest difference.
As a result, in the case studies of this research, it has been
confirmed that VGG-16 is the most suitable model for DTL
in TSA, considering the size of the training dataset in this
study. As summarized in Table 3, VGG-16 can determine
transient stability from a feature map within 5.1ms, so it
has performance sufficient for real-time application and is
relatively small-scale compared to other PDCNNs, which

FIGURE 9. The proposed feature map and classification label. (a) Stable
case sample: 265ms transmission line (#9bus to #39bus) short circuit
fault on IEEE 39-bus model. (b) Unstable case sample: 280ms
transmission line (#9bus to #39bus) short circuit fault on IEEE 39-bus
model. (c) Stable case sample: 480ms #49bus short circuit fault on IEEE
118-bus model. (d) Unstable case sample: 500ms #49bus short circuit
fault on IEEE 118-bus model.

has advantages in terms of saving training time and comput-
ing resources. Starting from the next section of this paper,
VGG-16, which serves as the backbone of the assessment
model, is referred to as the DTL model.

VI. VERIFICATION
The performance comparison is conducted between
the proposed DTL-based model and other approaches,
including CNN-based models [31], [32], GINN-based
model [33], LSTM-based model [30], and CNN-LSTM-
based model [35]. From this point onward in this paper, these
other approach models will be denoted as CNN-1, CNN-2,
GINN, LSTM, and CLN model, respectively. To achieve
objective performance comparison, TSA are constructed in
an environment where all conditions for composing themodel
are exactly the same except for the neural network model.
Due to the difference in the training datasets in the case
studies, some modifications to the structures of the other
approach models are necessary. The structural differences
between the proposed model and other approach models can
be observed in Table 8. The training is conducted with the
same optimizer settings listed in Table 9, and the classifica-
tion results are summarized as the average value of 10 training
results.

A. PERFORMANCE ANALYSIS
All models for comparing the performance assess transient
stability using the state variable only during the fault period
accompanied by the composition of the training dataset pro-
posed in this study. The performance of the assessment model
is evaluated using accuracy (AC), precision (PR), recall (RC),
F1-score (F1S), false positive rate (FPR), and false discovery
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TABLE 8. Comparison of the structure of assessment models.

rate (FDR) as the performance index (15) [40].

AC =
TP+ TN

TP+ FP+ TN + FN

PR =
TP

TP+ FP

RC =
TP

TP+ TN

F1S =
2 × PR× RC
PR+ RC

FPR =
FP

FP+ TN

FDR =
FP

TP+ FP

(15)

As shown in Table 10, TP is true positive, TN is true negative,
FP is false positive, and FN is false negative.

A considerable difference in classification ability is con-
firmed in the performance comparison results (see Fig. 10),
even though all conditions are the same except for the neural
network model. In the proposed DTL model, the false nega-
tive and false positive cases are only 4.75 and 1.25 cases on
the IEEE 39-bus system and 1 and 3 cases on the IEEE 118-
bus system, respectively. The DTL model, moreover, shows
clear superiority in F1-score, used to validate performance
from the imbalanced training dataset, such as stable and
unstable cases in power systems. The results of the two case
studies can be seen in Fig. 11, where most models perform
well in case-1. However, a clear performance difference is

TABLE 9. Optimization parameters for training comparison models.

TABLE 10. Confusion matrix.

observed in case-2, where learning about transient stability
characteristics is relatively difficult. These results confirm the
ability of the proposed DTL model to learn and generalize
transient stability in power systems. Because the proposed
model has a deep layer structure, it can be inferred that if
implemented in an actual power system, the deep neural net-
work model can be upgraded continuously using the training
dataset being accumulated from the actual operation data and
simulation. Notably, through the procedure proposed in this
study transfer learning of superior neural networks developed
for other tasks enables the continuous improvement of the
DTL model itself. The reason why the performance of other
approach models is rather insufficient compared to the results
in the original research is the difference in assessment timing
between this study and the previous studies. In previous stud-
ies, the TSAmodels delay the response time, i.e., the decision
timing, until identifying more apparent clues about transient
stability, as shown in Table 1, so as to obtain an accuracy of
99% or higher. This is because, in general, the classification
accuracy is upregulated as the response time is delayed owing
to the physical characteristics of transient stability becoming
apparent as time progresses after the fault clearing. However,
in this study, the accuracy of other approaches diminishes
as the assessment is set to be taken immediately after the
fault clearing. The outstanding modeling capabilities of the
deep CNN used in this study and the classification ability
remaining in the network pre-learned with over 1 million
ImageNet datasets are able to immediately and accurately
assess transient stability only using the state variables during
the fault period.
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FIGURE 10. Comparison of the confusion matrix. (a) Case-1: IEEE 39-bus
system. (b) Case-2: IEEE 118-bus system.

B. ROBUSTNESS AGAINST PMU DATA WITH NOISE
Considering the standard for the total vector error and noise
filtering capability of the PMU specified in IEEE standard
C37.118.1 and the field test results under interference con-
ditions [55], [56], [57], it is identified that the PMU can be
interfered to around 40–60dB signal-noise ratio (SNR). It is
necessary to investigate the overall effect of the reported noise
interference on TSA because the proposed model should be
built from the state variable acquired from the PMU and
be applied in a real-time assessment system. Additive white
Gaussian noise (AWGN) is a widely used noise model in
communication systems, where the noise is uniformly dis-
tributed across all frequency bands, and its amplitude follows
a normal probability distribution. It is especially common
in modeling satellite communication channels, such as PMU
systems. By incorporating AWGN into TSA, the robustness
to noise can be validated. Therefore, the power system state
data (10) is reconstructed using an AWGNwith SNR ranging
from 40 to 60 dB to examine the impact of noise on the TSA
system.

FIGURE 11. Comparison of the transient stability assessment
performance. (a) Case-1: IEEE 39-bus model. (b) Case-2: IEEE 118-bus
model.

CNN converts a specific area of the input image into a
representative value, thereby reducing the influence of slight
variations in the input signal on the inference results [38].
In particular, deep CNNs have convolution layers connected
in series and perform multiple convolution and pooling oper-
ations repeatedly in each layer, which can impart robustness
against noise interference in the PMU. As identified in
Fig. 12, the CNN-based models generally show good per-
formance deviations against noise, while the LSTM-based
model clearly exhibits performance degradation. The DTL
model (the dotted gray box in Fig 12) demonstrates the
most noise-resistant characteristics in line with the features
of the deep network structure. Furthermore, the performance
differences among case studies also exhibit the most marginal
variances. Tables 11 and 12 indicate the effects of noise
interference on performance.

C. LIMITATION AND POTENTIAL CHALLENGE
The approach to constructing the TSA system through DTL,
as proposed in this study, requires a substantial amount of
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FIGURE 12. Comparison of the robustness against noise. (a) Performance
variation of models depending on signal-to-noise ratio. (b) Distribution of
performance with noise variations.

training data, which is an inherent drawback of data-drivenAI
technologies. In actual power systems, acquiring a sufficient
number of unstable cases for training is impossible. Hence,
accurate modeling of the power system network, machines,
and control systems becomes essential as a prerequisite,
necessitating the time-consuming process of modeling and
simulating the power system to obtain the necessary training
dataset. Additionally, from the perspective of power system
operation, defining the role of the TSA system in control and
operation systems is crucial. The primary purpose of TSA is
to enhance the stability of the power system through effective
operation and control strategies. Therefore, validation and
application in power system operation systems are necessary
to ensure its practical implementation. In particular, for effec-
tive integration with remedial action schemes (or emergency
control), the TSA system must be designed and evaluated
considering various constraints, such as PMU data acquisi-
tion communication delay, remedial action communication
delay, algorithm operation time, circuit breaker interrupting
time, and the operation time of the remedial action deci-
sion algorithm. The roles and performance criteria required

TABLE 11. Performance indexes with different noise levels
(Case-1: IEEE 39-Bus).

TABLE 12. Performance indexes with different noise levels (Case-2:
IEEE 118-Bus).

for TSA in these constrained conditions need to be clearly
defined, and a seamless relationship between the TSA system
and the remedial action scheme should be established.

VII. CONCLUSION
In this paper, DTL method for composing the TSA system
through the excellent learning performance and image classi-
fication ability of the deep CNN pre-trained with ImageNet
is proposed. The proposed system exhibits high accuracy
assessment at the fastest timing, which is challenging to
achieve with existing methods. Despite utilizing only the
state data during the fault period the PDCNN has effectively
learned the characteristics of power system transient stabil-
ity and thus can assess transient stability immediately after
the fault clears. Furthermore, it is verified that DTL is a
valuable method for overcoming the restriction of acquiring
large-scale datasets and training deep neural networks. Future
work will focus on developing the results of this study in
connection with power system emergency control to improve
power system stability.
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