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ABSTRACT Selecting suppliers involves making decisions based on multiple criteria and options, making
it a multi-criteria decision-making (MCDM) problem. Optimal decisions can help the entire supply chain
to reduce costs and increase efficiency. However, uncertainty in supplier selection can increase the risk
of incorrect choices and unforeseen consequences, which may stem from criteria weights or supplier
performance. To address these challenges, this paper presents the Triangular Fuzzy-Grey (TFG) system,
an innovative approach for MCDM problems. Integrating grey numbers and triangular fuzzy numbers, the
TFG system extends fuzzy logic. Grey systems and fuzzy numbers are valuable tools in MCDM, each with
their own advantages and limitations. Grey systems exhibit robustness in handling uncertain and incomplete
information, aided by their intuitive models. They offer prediction capabilities and adaptability, although
they may provide approximate solutions and rely on expert judgment, lacking a comprehensive theoretical
foundation. Fuzzy numbers excel in handling uncertainty, accommodating vague data, and expressing
linguistic preferences. They facilitate criteria aggregation and accommodate various decision variables.
Combining grey systems and fuzzy numbers enhances decision-making, leveraging their strengths to address
uncertainty and improve accuracy. The TFG system effectively handles uncertainty by assigning higher
probabilities to smaller, more certain areas. To demonstrate its effectiveness, an integrated TFGWLD-SAW
model is proposed for green supplier selection, where Supplier No.2 with hat SSi = 3.3202 is selected as the
best green supplier. Comparative analysis using the Zakeri-Konstantas weighted rankings similarity measure
shows that TFGWLD achieves similar results to fuzzy and grey WLDmethods in solving the green supplier
selection problem.

INDEX TERMS Supplier selection, multi-criteria decision-making (MCDM), grey numbers, triangular
fuzzy numbers, triangular fuzzy-grey system, the Zakeri–Konstantas weighted rankings similarity measure.

NOMENCLATURE
This paper adheres to certain conventions for representing
vectors, matrices, and random variables, as is customary in
scientific literature. These conventions are presented in the
following Table 1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

I. INTRODUCTION
Supply Chain Management (SCM) refers to the coordination
and management of activities involved in producing and
delivering products and services to customers. It encompasses
all processes from procurement of raw materials, production,
and manufacturing, to the final delivery of the products to the
end customer [1]. Practical supply chain management aims
to ensure the efficient and timely delivery of goods while
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TABLE 1. The list of symbols and notations.

reducing costs and improving overall quality. Giri et al. [2]
defined SCM as managing the movement of the firm’s
supplies, products, and services most efficiently and econom-
ically. SCM involves the collaboration and communication
between various parties, including suppliers, manufacturers,
distributors, and customers. This collaboration aids in ensur-
ing that the supply chain operates smoothly and effectively,
with minimal disruptions. Advanced technologies, such
as artificial intelligence [3], [4], [5] and the Internet of

Things [6], [7], [8], are being integrated into supply chain
management to improve decision-making, increase visibility,
and enhance overall performance. One of the most influential
factors in increasing the performance of a supply chain is
appropriate suppliers, which reduce the costs of materials
and the time of product development by about 20% and
improve the quality of materials by the same degree [9].
Moreover, appropriate suppliers participate in the four
paramount competitive primacy: quality, delivery, flexibility,
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and cost [10]. As a non-stop process, supplier evaluation
is an essential industrial problem in which various criteria
are taken into account simultaneously to identify, assess,
investigate, and deal with suppliers [11]. The selection of
the best supplier is one of the critical factors that contribute
to the firms’ operational success, yet it consumes time and
resources, which makes it vital for decreasing the overall cost
of the supply chain [12]. Saputro et al. [13] argue that to
extend the decision scope in selecting appropriate suppliers,
the formulation of the supplier selection problems should
incorporate sourcing strategy and selection criteria as the two
primary dimensions.

The supplier selection problem could be well formulated
into a complex multi-criteria decision-making (MCDM)
problem. This complexity arises from a number of quanti-
tative and qualitative factors affecting supplier alternatives as
well as the inherent difficulty of making numerous trade-offs
amongst these factors. There exists a rich literature on using
MCDM methods for solving supplier selection problems.
Various studies have investigated the role of MCDMmethods
in solving supplier selection problems, such as [14], [15],
[16], [17], [18], [19], [20], [21], [22], and [23].
One of the main concerns in the selection of an appropriate

supplier is the uncertainty which mainly emanates from
the information regarding the suppliers and the firms’
environments. In general, uncertainty in supplier selection
is a common challenge that firms confront in procurement.
As mentioned, the process of an appropriate supplier
selection involves making critical decisions about the long-
term health and success of the firm. The wrong choice
can lead to costly consequences, such as delayed deliveries,
subpar product quality, and bankruptcy. Given the high
stakes involved, it is not surprising that many firms struggle
with uncertainty in selecting suppliers. Lack of reliable
information or access to complete/perfect information is one
of the primary sources of uncertainty in supplier selection,
which can be due to several reasons, including insufficient
information provided by suppliers, limited data on supplier
performance, and the dynamic nature of the market. Another
source of uncertainty in supplier selection is the constant
changes in the business environment, e.g., market conditions,
regulatory changes, and shifts in consumer demand which
can all significantly impact suppliers’ performance. This
could be well correlated to the first source, which regards
the lack of access to complete/perfect information about the
firm’s external factors. The third source is indeed the political
and economic instability which increases noisy information
and uncertainty in supplier selection. This uncertainty is
reflected in solving the supplier selection problems using
MCDM methods as well [24], [25], [26], [27], [28],
[29], [30], [31].

Uncertainty is an inherent aspect of mostMCDMproblems
and is distributed from the inputs of the MCDM algorithms
to the outputs. A variety of sources could be addressed
where the uncertainty emanates. The DMs may have limited
information about the alternatives and the criteria being used,

or the criteria may have vague definitions or conflicting
values. Additionally, criteria values for the alternatives may
be subject to random fluctuations or measurement errors.
In general, six sources can be counted as the major sources
of uncertainty in solving MCDM problems. The first source
is the uncertainty in the inputs of MCDM algorithms which
originates primarily from human involvement as the decision-
maker (DM). This type of uncertainty injects uncertainty
into solving MCDM problems through DM’s behavior in
the evaluation of situations/options, DM’s expectations, judg-
ments, opinions, levels of knowledge, and his/her perception
of the environment and the reality (e.g., see Dubois et al.
[32] - using non-additive measures instead of using additive
measures such as probability functions). Time also adds
another layer of uncertainty in the inputs by incrementing
Entropy [33]. The second source of uncertainty is the missing
information in the complex MCDM problems in which the
problem deals with several criteria with different natures
(beneficial and non-beneficial criteria), mostly more than
seven criteria [34]. The third type of uncertainty is generated
by the MCDMmethods due to A:using different philosophies
and policies for extracting the best option and B:using diverse
mathematical approaches for normalizing the decision matrix
[35]. Another source that increases the uncertainty of using
MCDM methods for MCDM problems analysis is the
uncertainty in the validation of MCDM algorithms’ outputs.
It happens due to differences in the generated rankings for
a same problem, i.e., the decision-making paradox [36],
[37], differences in selection of the best choice/alternative,
Inherent deficiency in the conventional statistical measures
for validation of results., e.g., the adjusting the weights
based on subjective judgments is a significant issue with
sensitivity analysis or Spearman correlation needs more than
a single case to validate the MCDM methods’ results [38].
The fifth type of uncertainty comes from the decision-
making’s goals. When the decision-making is architected
around more than a single goal, the interaction between
goals and the degree of relationships of each criterion for
reaching goals might involve subjective information, which
adds uncertainty to the process. Finally, the last type of
uncertainty generates from using different mathematical
tools, e.g., different extensions of fuzzy logic, probability
functions, or using grey systems theory, etc., to formulate
the uncertainty of MCDM algorithms’ inputs, which leads
to 1. Providing dissimilar values for the uncertain data; 2.
extracting dissimilar values of information form the decision
matrix; 3. increasing the complexity of decision matrix due
to the various philosophies and approaches, with different
complexity, they employ to interpret the uncertainty. This
escalates the risk of missing information during the analysis
of the decision matrix consequently (see the second type of
uncertainty); 4. delivering dissimilar outputs for a samethe
same problem using a same MCDM algorithm due to the
same motive that increases the uncertainty in the previous
product of sixth type of uncertainty. Some of the aforesaid
uncertainty types and the possible ways for dealing with
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them are discussed in Zakeri and Konstantas [12] work.
Dealing with uncertainty of the inputs derived from the
MCDM problems requires the use of additive methods that
can account for it, such as stochastic programming [39], fuzzy
set theory, grey systems theory [40], [41], rough set [42],
[43], or probabilistic methods [44]. However, the choice of
method will depend on the nature and extent of uncertainty,
as well as the DMs’ goals and preferences. Despite the use
of these methods, uncertainty may still play a role in the final
decision.

In spite of the fact that fuzzy logic revolutionized the
formulation of uncertainty in solving MCDM problems
and also the fact that their applications for dealing with
uncertainty in solving supplier selection/MCDM problems
are extremely popular, they have received some criticisms
in mathematics and computer science [45], [46], [47], [48],
[49]. To put it in a nutshell, according to the mentioned
studies, four main criticisms are collected as follows: 1.
fuzzy logic and fuzzy numbers lack the mathematical rigor
of traditional mathematical concepts such as binary logic and
real numbers; 2. the mathematical representation of fuzzy
concepts can be complex and challenging to understand,
especially for those without a background in mathematics;
3. fuzzy logic and fuzzy numbers can be ambiguous and
open to interpretation, leading to inconsistent results in some
applications; and 4. critics argue that fuzzy logic and fuzzy
numbers may not accurately represent real-world phenomena
and may be too limited to provide valuable solutions in many
situations.

On the other hand, the applications of grey systems theory
and grey numbers in solving supplier selection received
attention in the past two decades. Although they are relatively
new concepts, they have shown some advantages in dealing
with uncertainty. Grey numbers and grey systems theory
provide a number of advantages for data analysis and
decision-making in situations where incomplete or uncertain
information is present [50], [51], [52], [53], [54], [55], [56],
[57]. Respecting to the above studies, the advantages of
employing grey systems theory and grey numbers could
be addressed as: 1. grey numbers and grey systems theory
are specifically designed to handle situations where data
is uncertain or incomplete, making them ideal for real-
world applications where information is often imperfect;
2. the use of grey numbers and grey systems can lead
to improved accuracy in predictions and decision-making
compared to traditional methods that do not account for
uncertainty; 3. grey numbers and grey systems theory allow
for the integration of subjective information, such as expert
opinions, into the decision-making process, providing a more
comprehensive view of the situation; 4. grey numbers and
grey systems are flexible and can be applied to a wide range
of applications, including engineering, economics, finance,
and social sciences; and 5. by incorporating uncertainty into
the decision-making process, grey numbers and grey systems
can lead to better andmore informed decisions, increasing the
chances of success.

Grey systems bring robustness, simplicity, prediction,
and adaptability to MCDM, while fuzzy logic excels in
uncertainty handling, aggregation, linguistic expression, and
flexibility. By taking into account the benefits of grey systems
and fuzzy logic, as well as the limitations associated with
using them independently to address uncertainty in supplier
selection problems, integrating these approaches presents a
solution that capitalizes on the advantages of both theories
while mitigating their respective shortcomings. Integrating
grey systems and fuzzy logic enhances decision-making
capabilities by leveraging their strengths and mitigating
individual limitations. This combination effectively handles
uncertainty and imprecision, realistically representing deci-
sion problems. Decision outcomes become more accurate
by improving precision while considering uncertain infor-
mation. Furthermore, integration offers greater flexibility
in modeling complex decision scenarios, accommodating
diverse criteria and decision variables. This paper aims
to make utilization of the benefits of grey numbers in
a combined approach fashioned on a numeric platform
provided by triangular fuzzy numbers. The present article is a
continuation of the Zakeri and Keramati [58] work, in which
they combined fuzzy numbers with grey numbers in order
to propose a supplier evaluation model when uncertainty is
involved in the problem. The rest of the paper is composed of
seven sections. The approach that Zakeri and Keramati [58]
is represented in the second section. The new combination
of grey numbers and fuzzy numbers is proposed in the
third section. In the fourth section, the WLD method is
represented to compute the weights of criteria. The new
uncertainty model is applied to a real-world case in the
fifth. The sixth section is devoted to discussion, and finally,
the conclusion and future work are denoted in the seventh
section.

II. TRIANGULAR GREY-FUZZY NUMBERS (TGFNs)
Grey Systems Theory (GST) and Fuzzy Logic are two major
mathematical theories used tomodel and control complex and
uncertain systems. While they share some similarities, they
also have key differences. GST is a mathematical framework
that deals with incomplete or uncertain information in system
modeling and analysis. It provides tools and methods to
handle such situations and gain insights into real-world
system behavior. GST finds applications in engineering,
economics, and decision-making. On the other hand, Fuzzy
Logic is a mathematical framework that allows for the
representation and manipulation of uncertain or vague
information. It extends classical set theory by introducing
degrees of membership for elements in sets. Fuzzy Logic is
commonly used in control engineering, artificial intelligence,
and decision-making. The main distinction between GST and
Fuzzy Logic lies in their approaches to handling uncertainty.
GST focuses on modeling and analyzing systems with
incomplete or uncertain information, using grey numbers
to represent uncertainty. On the other hand, Fuzzy Logic
focuses on representing and manipulating uncertain or vague
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information using fuzzy sets and membership degrees.
Furthermore, GST is widely applied in engineering, eco-
nomics, and decision-making domains, where information
is limited. Fuzzy Logic, on the other hand, is particularly
useful in fields where information is uncertain or vague.
In terms of implementation, GST requires moremathematical
sophistication and complexity compared to Fuzzy Logic.
GST involves the use of mathematical models and algorithms
to analyze systems andmake predictions. Fuzzy Logic, on the
other hand, relies on fuzzy sets and membership degrees to
represent uncertainty.

The triangular grey-fuzzy (TGF) numbers were first
proposed in Zakeri and Keramati [58] work, where the fuzzy
numbers and grey numbers were combined to provide an
extended interval of numbers to convert decision-makers’
(DMs) opinions, which mostly appear as the linguistic
variables/terms into numbers. They presented a systematic
combination of grey and fuzzy numbers to provide more
range of numbers with sets of certain numbers that were
numerically higher than what both grey systems and fuzzy
math are proposing to capture more certain information
in solving MCDM problems under uncertain information,
compared to its roots. Their original work can be found
as the following, in which the fuzzy membership functions
with their corresponding numeric grey intervals have been
combined to approximate what a decision-maker intends to
their actual number in the corresponding scale. The proposed
numbers are architected on a triangular fuzzy number for
formulating uncertainty.

TABLE 2. The scale of attributes of rating of ⊗G.

To covert the triangular fuzzy numbers into the triangular
fuzzy-grey numbers (TGFN) for the translation of the
linguistic variables, mainly for scoring the values of the
alternatives against criteria and to determine the importance
weights of criteria, the original work used two different
scales of. In Table 2, the development of TGFNs for rating
alternatives (scoring) based on the scale of attributes of
rating of ⊗G is exhibited, where ⊗G represents a grey
number.

To compute the ⊗̃AF, the several transformation equations
were employed. An example of the equations is provided in
Equation 1, where ⊗G1 =

[
G1,G1

]
= [0, 1]. In order

to compute and convert linguistic variables for weighing the

criteria, the same process is executed.

⊗̃AVP =



µÃ

(
G1
)

=



(
G1 − 0

)
(0 − 0)

, 0 ≪ G1 ≪ 0(
1 − G1

)
(1 − 0)

, 0 ≪ G1 ≪ 1

0, otherwise

µÃ

(
G1
)

=



(G1 − 0
)

(0 − 0)
, 0 ≪ G1 ≪ 1,(

1 − G1
)

(3 − 1)
, 1 ≪ G1 ≪ 3,

0, otherwise. ;

(1)

III. THE TRIANGULAR FUZZY-GREY SYSTEM
The work done by Zakeri and Keramati struggles with some
issues. In the article, the focus was merely on transforming
linguistic terms into a combined system of fuzzy and grey
numbers, in which the functions were not developed. The
second issue is the incompleteness of the proposed system,
in which no solutions were provided for the α cut in their
combination process. As the third issue, the uncertainty
distributionwas not explained in thework. The final issuewas
the purpose of their research, where they used two probability
functions instead of two certain boundaries of grey numbers
in order to expand the range but did not consider the
probability distribution of the certain information in which
instead of two certain values and linear distance, the proposed
model was defined based on six uncertain values provided by
two fuzzy probability functions. Maintaining the advantages
and premises of the proposed model in Zakeri and Keramati,
a new model is proposed to address the mentioned issues in
this section.

Developed on the basis of TFN and using advantages
of both fuzzy numbers and grey numbers g a triangular
fuzzygrey system (TFG) is a numeric system for formulating
uncertainty in a decision-making process. TGF is a modified
version of TGF which provides a more accurate and dynamic
framework for interpretation of uncertainty and facilitates its
translation into a set of numbers. The definition of TFG is
provided as follows: if U stands for a universe of discourse,
⊗̃Aα, ⊗̃Aβ ⊆ ⊗̃A, and the characteristic function value of x
with respect to ⊗̃A states with a grey number v±, then a ⊗̃A
is a TFG set, χG : U → D[0, 1]±. ⊗̃A could be also defined
as a TFG number (see Equation 2), where:

⊗̃A±
∈

[
⊗̃A−

α , ⊗̃A+

β

]
=

{
y∈⊗̃A±

|⊗̃A−

α ≤y≤⊗̃A+

β

}
,

× ⊗̃A±
∈U; (2)

where y is a random/natural number and y∈Z, y∈N, and y̸=0.
A TFG number is bounded between two fuzzy number,

where ⊗̃A−

α and ⊗̃A+

β are the lower and higher bounds,

respectively, therefore ⊗̃Aα and ⊗̃Aβ could be defined as
sets of ordered pairs, where µ

⊗̃Aα (x) : X → [0, 1] and
µ

⊗̃Aβ (x) : X → [0, 1] are the fuzzy membership functions
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(Equations 3-15), then:

⊗̃Aα
=
{〈
x, µ

⊗̃Aα(x)
〉
| x ∈ U

}
; (3)

⊗̃Aβ
=
{〈
x, µ

⊗̃A(x)
〉
| x ∈ U

}
; (4)

⊗̃A =

[
⊗̃Aα

, ⊗̃Aβ
]
; (5)

⊗̃A, ⊗̃Aβ
= (G,C, Ḡ), G =

[
l1, l1

]
, C ∈

{
m1,m1

}
,

Ḡ =
[
u1, u1

]
; (6)

⊗̃Aα
=
([
l1, l1

]
,m1,

[
u1, u1

])
; (7)

⊗̃Aβ
=
([
l1, l1

]
,m1,

[
u1, u1

])
; (8)

µα
⊗̃A(x) =



[
x − l1, x − l1

][
m1l1,m1 − l1

] , x ∈
[
l1, l1

]
, x ≥ m1[

u1 − x, u1 − x
][

u1 − m1, u1 − m1
] , x ∈

[
u1, u1

]
, x ≤ m1

0, otherwise.

(9)

µ
⊗̃Aα (x) =



[
x − l1, x − l1

][
m1 − l1,m1 − l1

] , x ∈
[
l1, l1

]
, x ≥ m1[

u1 − x, u1 − x
][

u1 − m1, u1 − m1
] , x ∈

[
u1, u1

]
, x ≤ m1

0, otherwise.

(10)

µ
⊗̃A =



[
x − l1, x − l1

][
m1 − l1,m1 − l1

] , x ∈
[
l1, l1

]
, x ≥ m1[

u1 − x, u1 − x
][

u1 − m1, u1 − m1
] , x ∈

[
u1, u1

]
, x ≤ m1[

x − l1, x − l1
][

m1 − l1,m1 − l1
] x ∈

[
l1, l1

]
, x ≥ m1;[

u1 − x, u1 − x
][

u1 − m1, u1 − m1
] , x ∈

[
u1, u1

]
, x ≤ m1

0, otherwise.

(11)

where

m1 = min


l1 + u1

2
l1 + u1

2

, m1 > m1; (12)

m1 = max


l1 + u1

2
l1 + u1

2

, m1 > m1; (13)

u1 − l1∼=1, l1∼=0, u1∼=1, u1∼=1 + ξ, l1∼=0 + ξ ; (14)

u1 − l1∼=1∓ξ, l1∼=0, u1∼=1, u1∼=1 + ξ, l1∼=0 + ξ ; (15)

l1 stands for the lower bound, l1 is inner bound, m1 denotes
inner center, m1 expresses outer center, u1 is outer bound, u1

stands higher bound. A TFG number, and its boundaries are
illustrated in Figures 1-3.

FIGURE 1. A triangular fuzzy-grey system.

FIGURE 2. The lower bound of a triangular fuzzy-grey system.

FIGURE 3. The upper bound of a triangular fuzzy-grey system.

A. THE OPERATIONS OF THE TFGNS
The operations of TFG numbers are shown in the following
equations (16)-(33). These equations rely on the utilization
of grey and TFN operations. The fundamental operations for
fuzzy triangular numbers are detailed in [59], [60] while the
grey operations can be found in [61]. Each operation’ proof
is provided in Appendix A.
if

⊗̃A =

[
⊗̃Aα

, ⊗̃Aβ
]
,

⊗̃Aα
=
([
l1, l1

]
,m1,

[
u1, u1

])
,

⊗̃Aβ =
([
l1, l1

]
,m1,

[
u1, u1

])
; (16)

then
• For addition

⊗̃A1 + ⊗̃A2
=
([
l1, l1

]
,m1,

[
u1, u1

])
+
([
l2, l2

]
,m2,

[
u2, u2

])
; (17)
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⊗̃A1 + ⊗̃A2

=

{ ([
l1 + l2, l1 + l2

]
,m1 + m2,

[
u1 + u2, u1 + u2

])([
l1 + l2, l1 + l2

]
,m1 + m2,

[
u1 + u2, u1 + u2

])
;

(18)

• For Additive inverse:

−⊗̃A =

[
−̃ ⊗ Aβ̃ , − ⊗Aα

]
; (19)

−⊗̃A =

{ ([
−u1, −u1

]
, −m1, −

[
−l1, −l1

])([
−u1, −u1

]
, −m1, −

[
−l1, −l1

])
;

(20)

• For Substraction:

⊗ Ã1 − ⊗̃A2

=

{ ([
l2 − u1, l2 − u1

]
,m2 − m1,

[
u2 − l1, u2 − l1

])([
l2 − u1, l2 − u1

]
,m2 − m1,

[
u2 − l1, u2 − l1

])
;

(21)

• For Multiplication:

⊗̃A1 × ⊗̃A2∼=
[
min

{
⊗̃Aα

1 × ⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1

×⊗̃Aα
2 , ⊗̃Aβ

1 × ⊗̃Aβ

2

}
, max

{
⊗̃Aα

1

×⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1

×⊗̃Aα
2 , ⊗̃Aβ

1 × ⊗̃Aβ

2

}]
(22)

• For Division:

⊗̃A1 × ⊗̃A2
−1

=

[
⊗̃Aα

1 , ⊗̃Aβ

1

]
×

 1

⊗̃Aα
2

,
1

⊗̃Aβ

2

 ; (23)

• Crisp numbers - Multiplication:

⊗̃A1 × r =
[([
r × l1, r × l1

]
, r × m1,

[
r × u1, r × u1

])
,([

r × l1, r × l1
]
, r × m1,

[
r × u1, r × u1

])]
;

(24)

• Crisp numbers - Division:

⊗̃A1 × r−1
=

[([
1
r

× l1, r × l1

]
,
1
r

×m1,

[
1
r

× u1, r × u1

])
,

([
1
r

× l1,
1
r
×l1

]
,

1
r

× m1,

[
1
r

× u1,
1
r

× u1

])]
; (25)

B. CONVERTING TFN INTO TFGN
Converting an TFN to an TFGN follows the Equations 26-
57, where Ã is an TFN. ξ refers to the amount of uncertain
information ignored through the process and ξ value could
be assigned by the DMs.

l ∼=
l

max {l,m, u}
− ξ ; (26)

l ∼=
l

max {l,m, u}
+

ξ

l
; (27)

m ∼=
m

max {l,m, u}
+

ξ

lL
+ ξ ; (28)

m ∼=m1 + ξ ; (29)

u ∼=
u

max {l,m, u}
−

ξ

m
; (30)

u ∼=u+ ξ ; (31)

if
m = u
then

m ∼=
m

max {l,m, u}
−

ξ

lL
; (32)

u, u ∼=1; (33)

Example:
if Ã = (1.812,2.673,5.034),
then

⊗̃A = [([0.356, 0.364] , 0.520, [0.527, 1]) , ([0.356, 0.364] ,

0.524, [0.527, 1])] , ξ = 0.004.

Assume ⊗G = [G, Ḡ] is a grey number, to transform
it into an TFGN, the center has to be determined first (see
Equation 34) to transform it to an TFN, where G̃ = [G,G, Ḡ],
and the probability of the existence of the certain information
is more around the upper bound, Ḡ.

G ∼= (0.3 × G) + (0.6 × G); (34)

Example:
if ⊗G = [0.91, 1.12]
then

G̃ = [0.91, 1.057, 1.12]
then

⊗̃A = [([0.804, 0.821] , 0.936, [0.952, 1]) , ([0.804, 0.821] ,

0.944, [0.952, 1])] , ξ = 0.008.

C. UNCERTAINTY DISTRIBUTION
In this section, the distribution of uncertainty in an TFG
system is discussed. If U be the universe where x belongs
to and the degree of its membership defines by Equations 3-
15, the value of the block of information a TFG system
generated from equals 1. The block is illustrated in Figure 4,
where the black block shows the symmetric uncertain
information block, whose value equals -1. In the figure,
an TFGN is bounded between

[
l, l
]
,
[
l,m

]
,
[
m,m

]
,
[
m, u

]
,

and
[
u, u

]
, embedded into a block of information which

its value approximately equals 1. The computation process
of the TFGNs runs in this block and certain information
is located among the aforesaid intervals with different
probabilities.

The value of the grey area where information is fluctuating
is computed by following Equation 35, and the calculation of
uncertain area follows Equation 36, in whichϒ

⊗̃A and −ϒ
⊗̃A
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FIGURE 4. The information block where a TFG system belongs to and its
symmetric uncertain block.

stand for the grey and uncertain areas.

ϒ
⊗̃A =

u1 − l1
2

; (35)

−ϒ
⊗̃A =

u1 − l1
2

− 1; (36)

The distribution of the probability in an TFG system, the
spectrums the certain information could be probably located,
and their symmetric uncertain reflection spectrums are shown
in Figure 5.

FIGURE 5. The distribution of uncertainty in a triangular fuzzy-grey
system.

Similar to every dynamic system constructed on infor-
mation, there is a missing amount of information in a
TFG system as well, which increases the uncertainty of
embedded information. Each TFG system is architected
on eight different information spectrums. The missing
information can be computed by the entropy of probable
fluctuation of information between these eight spectrums
(see Appendix B).

D. COMPARING TFG NUMBERS
Two TFG numbers cannot be compared independently since
both numbers’ higher bounds are equal; therefore, they ought
to be from the same set, such as a set of options’ ranks
obtained from solving an MCDM problem.

The results of TFG MCDM methods are includes (n× m)
TFGNs for the whole set and n TFGNs for the individuals,
where m and n stands for the number of alternatives and
criteria in anMCDMproblem respectively. To compare them,
the comparison processes out to implement on their roots
(TFNs). Let Ã1 = (l1,m1, u1) and Ã2 = (l2,m2, u2)
be two TFNs, then the two TFGNs could be computed as
Equations 37-42:

⊕lz =
⊕lz

max {⊕ui}
, z∈i, i = {1, 2, . . . ,m} ; (37)

⊕lz =
⊕l1

max
{
⊕ui

} , z∈i, i = {1, 2, . . . ,m} ; (38)

⊕mz =
⊕m1

max {⊕ui}
, z∈i, i = {1, 2, . . . ,m} ; (39)

⊕mz =
⊕mz

max {⊕ui}
, z∈i, i = {1, 2, . . . ,m} ; (40)

⊕uz =
⊕uz

max {⊕ui}
, z∈i, i = {1, 2, . . . ,m} ; (41)

⊕u1 =
⊕u1

max {⊕ui}
, z∈i, i = {1, 2, . . . ,m} ; (42)

Hence the comparison and its result follow the following
conditions:
Condition 1
if u2 > u1 and u2 > u1
then ⊗̃A2 > ⊗̃A1, or vice versa.
Condition 2
if u2 = u1 and u2 > u1
then ⊗̃A2 > ⊗̃A1, or vice versa.
Condition 3
if u2 = u1, u2 = u1, and u2 − m2 < u1 − m1
then ⊗̃A2 > ⊗̃A1, or vice versa.
Condition 4
if u2 = u1, u2 = u1, u2 − m2 = u1 − m1, and u2 − m2 <

u1 − m1
then ⊗̃A2 > ⊗̃A1, or vice versa.
Condition 5
- if u2 = u1, u2 = u1, u2 − m2 = u1 − m1, u2 − m2 =

u1 − m1, and u2 − l2 < u1 − l1
then ⊗̃A2 > ⊗̃A1, or vice versa.
Condition 6
if u2 = u1, u2 = u1, u2−m2 = u1−m1, u2−m2 = u1−m1,

u2 − l2 = u1 − l1, and u2 − l2 < u1 − l1
then ⊗̃A2 > ⊗̃A1, or vice versa.
The comparison could also be conducted by Equation 43

based on the higher value of ŜSl .

ˆSSi =

∑
i

⊕Ai, ⊕̃Ai =
{
⊕l i, ⊕mi, ⊕ui

}
,

i = {1, 2, . . . ,m} ; (43)
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IV. THE WLD METHOD
Introduced by Zakeri et al., [11], the WLD method is a
powerful MCDM subjective weighting method that extracts
weights of criteria from DMs’ opinions with a simple
process functioning on three concepts of winning, losing, and
drawing. WLD uses pairwise comparison and DMs’ opinions
in its operation. In the process, each concept receives a unique
value, where the winner criterion collects 3, each criterion
obtains 1 in a draw competition, and 0 is the value the loser
criterion receives. The following steps conduct computing
weights through the WLD algorithm.
Step 1. Evaluating criteria using a scale where the upper

and lower bounds are 1,10, and the center is 5, in which
DM can select any rational numbers between 1 to 5,
and 5 to 10.

TABLE 3. The pairwise comparison of criteria.

Step 2. Establishing the pairwise comparison matrix (see
Table 3) presented displayed in Equations 44-47).

XPj QZ =
(
WWzq∨DDzq∨LLzq

)
,

Q = {1, . . . , q} , Z = {1, . . . ,Z } ,

cnz = cnq∈cj, j = {1, . . . , n} ; (44)

WWj =

q∑
Q=1

WWzq; (45)

DDj =

〈 q∑
Q=1

DDzq

〉
− 1; (46)

LLj =

q∑
Q=1

LLzq; (47)

where XPj stands for the matrix, where WWj, DDj, and LLj
stand for win, lose, and draw, respectively; WWj describes
the situation where one criterion is more important than the
other one. In contrast, LLj stands for the situation where
a criterion is less important compared to another criterion.
Finally, DDj shows the equal importance between two
criteria.
Step 3. Computing the final weights using Equations 48

and 49, where w
′

j is the weights determined by DM and Sj
denotes the scores of criteria.

Sj = WWj + DDj + LLj; (48)

wj = w
′

jSj

〈∑
j

w
′

jSj

〉−1

; (49)

V. THE APPLICATION
In this section, a complex green supplier selection case has
been adopted from [62] comprising ten suppliers and twelve
criteria in order to select the best supplier for suppliers to
support the firm’ adoption of GSCM procedures.

FIGURE 6. The green supplier selection process workflow.

A. THE METHODOLOGY
The process of solving the green supplier selection is demon-
strated in Figure 6, in which the green supplier selection is
divided into three sections, including 1. Computing weights;
2. Defuzzicaiton; and 3. Supplier evaluation. Each section has
been briefly described as follows:

• COMPUTINGWEIGHTS: In this section, two main
processes are executed to extract the criteria weights.
Using the WLD method’s concepts, a group of experts
evaluates the criteria in terms of their importance in
reaching the objective, putting each criterion in one of
three groups of W, L, or D group. WLD method runs
by the inputs provided by the group decision-making in
order to compute the weights of criteria.

• DEFUZZIFICAITON: The centroid method has been
applied to convert the fuzzy green supplier selection
decision matrix into a crisp decision matrix. Two pro-
cesses arrange this section, including defuzzification
of the weights provided in the original work and
defuzzification of the performance of suppliers against
the criteria.

• SUPPLIER EVALUATION: Using the weights com-
puted by the TFG WLD method, the original criteria
weights, and the crisp suppliers’ performance, the SAW
method is employed to evaluate the suppliers. The
supplier that receives the first rank is selected as the
best green supplier.

FIGURE 7. The linguist pattern for TFG WLD method.
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B. THE TFG WLD METHOD
The following linguistic pattern (see Figure 7) is employed
to convert the WLD method’s scale to a TFGN. First,
DM selects any number between [1, 10], and its correspond-
ing TFGN is established on its higher and lower vicinities,
where the chosen number is the center; then, transformation
of the obtained weight into a TFGN follows Equations 26-33.
For instance
if w

′

j = 7.5then Ãw′

j
= (6.5, 7.3, 9), where l = 0.6, m =

7.3, and l = 9.
Then

⊗̃VD =

[
([0.101, 0.432] , 0.844, [0.988, 0.998]) ,

([0.101, 0.432] , 0.854, [0.988, 0.998])

]
,

ξ = 0.01;

To convert win, loss, and draw variables into TFGnumbers,
we followed the following steps, Where V stands for the
value:

FIGURE 8. The win, loss, and draw variables’ corresponding TFNs.

Step 1. Converting each variable into a TFN with
respecting Equation 50. The converted variables are shown
in Figure 8.

µṼL =


x − 1, 1 ≤ x
2 − x, 1 ≤ x ≤ 2
0, otherwise

(50)

then

VL = 1 → ṼL = (1, 1, 2) ; (51)

The same process executes for D and W , where
VD = 2 → ṼD = (1, 2, 3)and VW = 3 → ṼW = (2, 3, 3).
Step 2. According to Equations 26-33, converting the

obtained TFN into TFGN is the second step of the process.
Since there exist three sets of number, corresponding to
three variables, and the variables are evaluated based on
their relationship with each other, max {l,m, u} computes by
taking all sets into account, then:

max {l,m, u}

= max {VL ,VD,VW } ;

max {VL ,VD,VW }

= max {lL , lD, lW , mL ,mD,mW , uL , uD, uW } ;

max {lL , lD, lW , mL ,mD,mW , uL , uD, uW }

= 3;

VL = 1 → ṼL = (1, 1, 2) ;

VD = 2 → ṼD = (1, 2, 3) ;

VW = 3 → ṼW = (2, 3, 3) ;

therefore

⊗̃VL =

[
⊗̃V α

L , ⊗̃V
β
L

]
, ṼL = (1, 1, 2);

⊗̃V α
L =

([
lL , lL

]
,mL ,

[
uL , uL

])
⊗̃V β

L =
([
l1, l1

]
,m1,

[
u1, u1

])
lL ∼= 0.323, ξ = 0.01

then

lL ∼= 0.364, mL∼=0.371, mL∼=0.381,

uL ∼= 0.640, uL∼=0.650;

therefore

⊗̃VL = [([0.323, 0.364], 0.371, [0.640, 0.650]),

([0.323, 0.364], 0.381, [0.640, 0.650])];

⊗̃VD =

[
⊗̃V α

D, ⊗̃V β
L

]
, ṼD = (1, 2, 3);

l ∼= 0.323, l̄ ∼= 0.364,m ∼= 0.704,

m̄ ∼= 0.714, u ∼= 0.986, ū ∼= 0.996;

therefore

⊗̃VD = [([0.323, 0.364], 0.704, [0.986, 0.996]),

([0.323, 0.364], 0.714, [0.986, 0.996])]

⊗̃VW =

[
⊗̃V α

W , ⊗̃V β
W

]
, ṼW = (2, 3, 3)

l ∼= 0657, l̄ ∼= 0.682,m ∼= 0.985, m̄ ∼= 0.995

u ∼= 1, ū ∼= 1;

⊗̃VW = [([0.657, 0.682], 0.985, [1, 1]), ([0.657, 0.682],

0.995, [1, 1])]

FIGURE 9. The win, loss, and draw variables’ corresponding TFGNs.

The corresponding TFGNs of the variables are displayed
in Figure 9.

The remainder of the steps follows the classic WLD
algorithm’s steps.
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C. THE GREEN SUPPLIER SELECTION
The decisionmatrix for the green supplier evaluation is shown
in Table 4, in which ten suppliers are evaluated with twelve
criteria. In the decision matrix, wj stands for the weights of
criteria.

TABLE 4. The green supplier selection decision matrix.

1) COMPUTING THE WEIGHTS USING TFG WLD METHOD
Keeping the original weights of criteria, to evaluate the
weights with the TFG WLD method, the weights have
been reevaluated using experts’ opinions. The evaluation of
criteria through WLD’s process and the experts’ opinions are
displayed in Table 6, and its corresponding analysis’s results
are shown in Table 6 and 7, respecting the corresponding
values of W, L, and D obtained from the second step of the
TFG WLD method’s process (see Figure 8).

TABLE 5. The criteria pairwise comparsion.

TABLE 6. The frequency of the WIN, LOSS, and draw in each criterion
against other criteria.

TABLE 7. The corresponding TFG values for each criterion’s WIN, LOSS,
and draw frequencies.

By following Equation 51, the scores of criteria are
displayed in Table 8.
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TABLE 8. The scores of criteria of the green supplier evaluation problem.

2) DEFUZZICATION OF THE DECISION MATRIX: THE
CENTROID METHOD APPLICATION
In order to reduce the complexity of the process and to show
the TFG applications clearly, the fuzzy decision matrix is
converted to a crisp decision matrix through the application
of the centroid method [63]. The method is shown in
Equation 52, where Â stands for the corresponding crisp
number of Ã.

Â =

∫ l

u
xµÃ(x)dx⟨

∫ l

u
xµÃ(x)dx⟩

−1, Ã = (l,m, u);

(52)

The converted decision matrix including the performance
of suppliers against the criteria and the normalized defuzzied
weights of criteria is illustrated in Table 9.

By following Equations 50 and 51 and using wj, adopted
from Table 9, the obtained TFG weights of criteria are
displayed in Table 10.

3) SUPPLIER SELECTION USING SAW METHOD
Simple additive weighting (SAW)method is a simpleMCDM
method using a weighted summation process to rank the
decision’ alternatives in MCDM problems. The method’s
process and application can be found in [63]. The obtained
scores of suppliers using the SAW method are displayed in
Table 11, where ⊗̃Si stands for the TFG scores of suppliers
obtained from SAW method application.

Table 12 displays the ranking of each supplier based on
the utilization of Equation 43, where the second supplier is
assigned the top rank.

VI. DISCUSSION
This paper introduces a novel approach that combines fuzzy
and grey numbers to capture input uncertainty in MCDM
algorithms. The first sub-section examines the properties of

TABLE 9. The supplier evaluation decision matrix with crisp values.

this new extension, while the second sub-section presents
the application results and compares them with alternative
uncertainty formulations.

A. THE PROPERTIES
A TFG system is proposed in this study to enhance the
quantification of uncertainty in solving MCDM problems by
using probability functions within upper and lower bounds.
This system combines the advantages of grey systems theory
and fuzzy logic while addressing their respective limitations.

In the TFG system, the probability distribution of specific
information is divided into four distinct blocks (refer to
Figures 10-13). Each block is defined by two points on
the x vector and one on the µ

⊗̃A(x) vector, representing
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TABLE 10. The TFG weights of criteria obtained from WLD method.

TABLE 11. The obtained scores of suppliers using saw method.

FIGURE 10. An information block bounded in [l, m] where the uncertain
value is probably located.

its height. When comparing TFGNs, the likelihood of
certain information being located in the bounded regions

FIGURE 11. An information block bounded in [l, m] where the uncertain
value is probably located.

FIGURE 12. An information block bounded in [m, u] where the uncertain
value is probably located.

FIGURE 13. An information block bounded in [m, u] where the uncertain
value is probably located.

is associated with the area of the triangles depicted in
Figures 10-13. The bounded regions with smaller triangle
areas have higher probabilities for the location of the certain
information (as defined in Equations 53-56), in which A
expresses the area of the blocks of information.

TABLE 12. The obtained rankings of green suppliers.

VOLUME 11, 2023 107523



S. Zakeri et al.: Supplier Selection Model Using the TFG Numbers

TABLE 13. The areas of regions associated with the WLD method.

For example, see Figure 8, in which different areas located
in different regions are illustrated. In Table 13, each region’s
area, associated with L, D, and W of the WLD method,
is computed. As showillustrated in the Table 13, for L, the
area bounded between

[
l,m

]
has the highest probability of

carrying certain information. For D,
[
m, u

]
and [m, u], and

forW , [m, u] has the highest probability of containing certain
information (see Figure 10).

A[l,m] =

(
m− l

)
× h

2
× sin θ, θ = 90, h = 1; (53)

A[l,m] =

(
m− l

)
× h

2
× sin θ, θ = 90, h = 1; (54)

A[m,u] =

(
u− m

)
× h

2
× sin θ, θ = 90, h = 1; (55)

A[m,u] =
(u− m) × h

2
× sin θ, θ = 90, h = 1; (56)

FIGURE 14. The local regions that have the highest probabilities of
carrying certain information.

FIGURE 15. The tendency of W, L, and D to different values.

Based on the findings presented in Table 13, Figure 14,
and the outcomes derived from Equations 53-56, the TFG
system demonstrates a tendency for the TFG system of L to
approach 0, the TFG system of D to converge towards W,
and the TFG system of W to approach 1. These results not
only indicate and forecast the behavior of the TFG system
but also align with real-world observations. To validate the
anticipated behavior, Figure 15 showcases the normalized
tendencies of W, L, and D variables. The ability to predict
certain information within an uncertain system is a notable

advantage of the TFG system, distinguishing it from both grey
systems theory and fuzzy logic.

TABLE 14. The areas of four different regions of suppliers’ corresponding
TFG systems.

TABLE 15. The each region’s rank, based on the lower area.

The same process has been done on the green supplier
example, where the results are demonstrated in Table 14.
The distributions also show that

[
m, u

]
region has the highest

probability of carrying certain information regarding the
performance of suppliers against the criteria. The ranks of
regions according to the lowest area are shown displayed in
Table 15. To find the correlation between the areas of the
regions with the highest probability of carrying information
and the ranking obtained from the application of TFG WLD
and SAW method, two different rankings are shown in
Table 16: the Rank* and the Rank. The Rank* stands for
the ranking of suppliers based on the lowest areas of their
corresponding

[
m, u

]
regions, and the Rank denotes the

ranking obtained from the previous section. Using Excel, the
correlation between the two rankings equals 0.939, indicating
they are highly correlated.
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TABLE 16. The suppliers’ ranking based on the lowest area of [m, u] and
their original ranking.

B. COMPARISON
To show the comparison between the application of TFGN,
TFN, and grey numbers in solving the green supplier
selection problem, we used the fuzzy WLD method, grey
WLD method, and WLD method using crisp values with the
results obtained from the TFG WLD application. To conduct
the comparisons, we used the decision matrix presented in
Table 9. The rankings obtained from different forms of WLD
are shown in Table 17.

TABLE 17. The suppliers ranking using different forms of WLD
application.

TABLE 18. The constant values of P∗
m per number of members of the data

sets/ranks.

1) THE ZAKERI-KONSTANTAS WEIGHTED RANKINGS
SIMILARITY MEASURE
To compare them through the similarities of the rankings
obtained from different forms of WLD, a new similarity
measure is introduced called the Zakeri-Konstantas weighted
rankings similarity measure (WRSM), which considers
different values for each rank generated by two different
algorithms (see Equation 57, in which ZK stands for
the WRSM; the extended version can be also found in
Appendix C). In the equation, P stands for WRSM, X and
B are two different algorithms, and P∗

m denote the maximum
WRSMbetween two rankings’ data sets withmmembers (see
Table 18).

ZKP
X ,B = 1 −

〈
m∑
i=1


〈
(m+ 1)

(
RXAi − RBAi

)〉
RBAiR

X
Ai

2〉0.5
×P∗

m
−1

,

i = {1, . . . ,m} , 0 ≤ ZKP
X ,B ≤ 1; (57)

The results attained from the application of WRSM are
shown pictured in Table 19.

TABLE 19. The weighted rankings similarity measure of the different
rankings using different WLD method.

FIGURE 16. The comparison of different WLD applications with TFG WLD
method using WRSM.

The WRSM results show that the TGF WLD application
generated the same results as G-WLD in this paper’s supplier
selection example. It is also more similar to F-WLD than
the WLD application with crisp values. The comparison is
illustrated in Figure 16.

VII. CONCLUSION AND FUTURE RESEARCH
Supplier evaluation and selection pose a challenging MCDM
(Multiple Criteria Decision Making) problem that often
involves inherent uncertainty. The uncertainty arises from
various sources, such as the weights assigned to evaluation
criteria or the performance of suppliers against those criteria.
In order to address this concern, the present study introduces a
novel extension of fuzzy logic known as the triangular fuzzy
grey (TFG) system. This system is specifically designed to
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effectively capture and manage uncertainty in the context
of multi-criteria decision-making (MCDM) problem-solving.
The TFG system operates based on a new type of number
called the triangular fuzzy grey number (TFGN), which is
employed to quantify uncertainty.

Each TFGN is constructed within a grey number frame-
work, incorporating upper and lower bounds. These bounds
are defined as triangular fuzzy numbers (TFN), allowing
for a more comprehensive representation of uncertainty.
Grey systems theory provides notable advantages in handling
incomplete information, thus facilitating decision-making by
offering a framework for analyzing systems with incomplete
data. This theory exhibits versatility and robustness, making
it applicable across various domains. On the other hand,
the utilization of fuzzy triangular numbers brings certain
benefits. The triangular membership function associated
with these numbers enables straightforward visualization
and comprehension, making it easier for decision-makers to
understand the outcomes of TFN-based models.

Furthermore, fuzzy triangular numbers possess a simple
and intuitive mathematical structure, enhancing their practi-
cal usability compared to other extensions of fuzzy numbers.
Their computational efficiency is also advantageous due
to the straightforward mathematical structure, simplifying
manipulation, and algorithm integration. Moreover, estab-
lished algorithms specifically designed for working with
fuzzy triangular numbers further facilitate the development
of decision-making models utilizing these numbers.

TFNs serve as valuable instruments for representing uncer-
tainty in decision-making problems. Their straightforward
mathematical structure, interpretability, and well-defined
properties make them highly suitable for decision-making
and optimization tasks. Leveraging the advantages previously
discussed, TFGNs offer an expanded range of numbers
compared to other fuzzy extensions with precise distribution
regions that encapsulate crucial information. The introduc-
tion of the TFG system, incorporating TFGNs, extends the
capabilities of fuzzy logic in effectivelymanaging uncertainty
within the realm of MCDM, providing decision-makers with
enhanced tools for decision-making and optimization tasks.

In this study, we introduce diverse operations, compar-
isons, and interpretations of TFGNs, all of which can be
applied to address MCDM problems. In order to address
uncertainty in a green supplier evaluation case, a novel
extension has been introduced. The TFG (Triangular Fuzzy
Grey)WLDmethod is proposed to determine criteria weights
within an uncertain environment, while the SAW (Simple
Additive Weighting) method is employed for supplier rank-
ing. Through the analysis of results, two main properties
of the TFG systems have been identified. Firstly, when
considering four primary regions of information distribution,
the region with a smaller area has the highest probability
of containing certain information. Secondly, the ranking of
different TFGNs is associated with the areas where certain
information is located with the highest probabilities. These
properties provide decision-makers with the ability to predict

system behavior and estimate probable values for uncertain
variables, representing significant advantages of the TFG
systems over grey systems theory and TFN. Notably, the
results indicate similarities in behavior between the TFG
system, grey systems, and fuzzy systems.

This paper serves as an initial endeavor to showcase
the practicality, benefits, and effectiveness of the newly
developed systems, while acknowledging the potential for
further advancements in the field. Moving forward, it is
recommended to investigate the limitations of the TFG
system in managing uncertainty, conduct comparative studies
with other fuzzy extensions, and explore the development
of MCDM methods incorporating the application of TFGNs.
These research directions will contribute to a deeper under-
standing and refinement of the proposed systems, leading to
their continued evolution and enhancement.

APPENDIX A
TFGNs operations and proofs

if

⊗̃A =

[
⊗̃Aα, ⊗̃Aβ

]
,

⊗̃A =
([
l1, l1

]
,m1,

[
u1, u1

])
, ⊗̃Aβ

=
([
l1, l1

]
,m1,

[
u1, u1

])
;

Then:
• For Addition:

⊗̃A1 + ⊗̃A2
=
([
l1, l1

]
,m1,

[
u1, u1

])
+
([
l2, l2

]
,m2,

[
u2, u2

])
;

⊗̃A1 + ⊗̃A2

=

{ ([
l1 + l2, l1 + l2

]
,m1 + m2,

[
u1 + u2, u1 + u2

])([
l1 + l2, l1 + l2

]
,m1 + m2,

[
u1 + u2, u1 + u2

])
;

Proof:

⊗̂A1 + ⊗A2

=

[
⊗̄Aα

1 , ⊗̄
β

1

]
+

[
⊗̂Aα

2 , ⊗̂Aβ

2

]
=

[
⊗̃Aα

1 + ⊗̃Aα
1 , ⊗̃Aβ

1 + ⊗̃Aβ

2

]
=
[([
l1, l1

]
,m1,

[
u1, u1

])
+
([
l2, l2

]
,m2,

[
u2, u2

])
,
([
l1, l1

]
,m1,

[
u1, u1

])
+
([
l2, l2

]
,m2,

[
u2, u2

])]
=
([
l1, l1

]
,m1,

[
u1, u1

])
+
([
l2, l2

]
,m2,

[
u2, u2

])
=
([
l1 + l2, l1 + l2

]
,m1 + m2,

[
u1 + u2, u1 + u2

])
;

• For Additive inverse:

−⊗̃A =

[
−̃ ⊗ Aβ , −̃ ⊗ Aα

]
;

−⊗̃A =

{ ([
−u1, −u1

]
, −m1, −

[
−l1, −l1

])([
−u1, −u1

]
, −m1, −

[
−l1, −l1

])
;
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Proof:

−̃ ⊗ Aβ =
(
−
[
u1, u1

]
, −m1, −

[
l1, l1

])
=
([

−u1, −u1
]
, −m1, −

[
−l1, −l1

])
;

−̃ ⊗ Aβ =
(
−
[
u1, u1

]
, −m1, −

[
l1, l1

])
=
([

−u1, −u1
]
, −m1, −

[
−l1, −l1

])
;

• For Subtraction:

⊗ Ã1 − ⊗Ã2

=

{ ([
l2 − u1, l2 − u1],m2 − m1,

[
u2 − l1, u2 − l1

])([
l2 − u1, l2 − u1],m2 − m1,

[
u2 − l1, u2 − l1

])
;

Proof:

⊗ Ã2 − ⊗Ã1
=
[([
l2, l2

]
,m2,

[
u2, u2

])
,
([
l2, l2

]
,m2,

[
u2, u2

])]
+

[ ([
−u1, −u1

]
, −m1, −

[
−l1, −l1

])
,([

−u1, −u1
]
, −m1, −

[
−l1, −l1

]) ]
=
[([
l2, l2

]
,m2,

[
u2, u2

])
+
([

−u1, −u1
]
, −m1, −

[
−l1, −l1

])
,([

l2, l2
]
,m2,

[
u2, u2

])
+
([

−u1, −u1
]
, −m1, −

[
−l1, −l1

])]
;

×
([
l2, l2

]
,m2,

[
u2, u2

])
+
([

−u1, −u1
]
, −m1,

−
[
−l1, −l1

])
=
([
l2 − u1, l2 − u1

]
,m2

−m1,
[
u2 − l1, u2 − l1

])
;

×
([
l2, l2

]
,m2,

[
u2, u2

])
+ ([−u1,

−u1
]
, −m1, −

[
−l1, −l1

])
=
([
l2 − u1, l2 − u1

]
,m2 − m1,

[
u2 − l1, u2 − l1

])
;

• For Multiplication:

⊗̃A1 × ⊗̃A2

∼=

[
min

{
⊗̃Aα

1 × ⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1 × ⊗̃Aα
2 , ⊗̃Aβ

1

×⊗̃Aβ

2

}
,

max
{
⊗̃Aα

1 × ⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1 × ⊗̃Aα
2 , ⊗̃Aβ

1

×⊗̃Aβ

2

}]
;

Proof:

⊗̃A1 × ⊗̃A2

=

[
⊗̃Aα

1 , ⊗̃Aβ

1

]
×

[
⊗̃Aα

2 , ⊗̃Aβ

2

]
=
[
min

{
⊗̃Aα

1

×⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1 × ⊗̃Aα
2 , ⊗̃Aβ

1 × ⊗̃Aβ

2

}
, max

×

{
⊗̃Aα

1 × ⊗̃Aα
2 , ⊗̃Aα

1 × ⊗̃Aβ

2 , ⊗̃Aβ

1 × ⊗̃Aα
2 , ⊗̃Aβ

1

×⊗̃Aβ

2

}]
;

⊗̃Aα
1 × ⊗̃Aα

2

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])
=
([
l1, l1

]
×
[
l2, l2

]
,m1

× m2,
[
u1, u1

]
×
[
u2, u2

])
=
[
min

{
l1 × l2, l1 × l2, l1

× l2, l1×l2
}
,max

{
l1×l2, l1×l2, l1 × l2, l1 × l2

}]
,m1

× m2,
[
min

{
u1×u2, u1 × u2, u1 × u2, u1×u2

}
,max

{
u1

× u2, u1 × u2, u1 × u2, u1 × u2
}]

;

⊗̃Aα
1 × ⊗̃AA2

β

2

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])
=
([
l1, l1

]
×
[
l2, l2

]
,m1

× m2,
[
u1, u1

]
×
[
u2, u2

])
=
([
min

{
l1 × l2, l1 × l2, l1

× l2, l1×l2
}
,max

{
l1×l2, l1×l2, l1 × l2, l1 × l2

}]
,m1

× m2,
[
min

{
u1×u2, u1×u2, u1 × u2, u1×u2

}
,max

{
u1

× u2, u1 × u2, u1 × u2, u1 × u2
}])

;

⊗̃Aβ

1 × ⊗̃Aα
2

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])
=
([
l1, l1

]
×
[
l2, l2

]
,m1

× m2,
[
u1, u1

]
×
[
u2, u2

])
=
([
min

{
l1 × l2, l1 × l2, l1

× l2, l1×l2
}
,max

{
l1×l2, l1 × l2, l1×l2, l1 × l2

}]
,m1

× m2,
[
min

{
u1×u2, u1×u2, u1×u2, u1 × u2

}
,max

{
u1

× u2, u1 × u2, u1 × u2, u1 × u2
}])

;

⊗̃Aβ
1 × ⊗̃Aβ

2

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])
=
([
l1, l1

]
×
[
l2, l2

]
,m1

× m2,
[
u1, u1

]
×
[
u2, u2

])
=
([
min

{
l1 × l2, l1 × l2, l1

× l2, l1×l2
}
,max

{
l1×l2, l1×l2, l1 × l2, l1 × l2

}]
,m1

× m2,
[
min

{
u1×u2, u1×u2, u1×u2, u1 × u2

}
,max

{
u1

× u2, u1 × u2, u1 × u2, u1 × u2
}])

;

• For Division:

⊗̃A1 × ⊗̃A2
−1

=

[
⊗̃Aα

1 , ⊗̃Aβ

1

]
×

[
1

⊗̃Aα
2
,

1

⊗̃Aβ

2

]
;

Proof:

⊗̃A1 × ⊗̃A2
−1

=

[
⊗̃Aα

1 , ⊗̃Aβ

1

]
×

 1

⊗̃Aα
2

,
1

⊗̃Aβ

2


=

[
min

{
⊗̃Aα

1 × ⊗̃Aα
2

−1, ⊗̃Aα
1 ×

˜
⊗Aβ−1

2 , ⊗̃Aβ

1

× ⊗̃Aα
2

−1, ⊗̃Aβ

1 × ⊗̃Aβ−1

2

}
,max

{
⊗̃Aα

1 × ⊗̃Aα−1

2 , ⊗̃Aα
1

×
˜
⊗Aβ−1

2 , ⊗̃Aβ

1 × ⊗̃Aα−1

2 , ⊗̃Aβ

1 × ⊗̃Aβ−1

2

}]
;

⊗̃Aα
1 × ⊗̃Aα

2

−1
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=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m1,

[
u2, u2

])−1

=

( [
l1, l1

][
u2, u2

] , m1

m1
,

[
u1, u1

][
l2, l2

] )

=



[
min

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]
,

m1

m1
,[

min

{
u1
l2

,
u1

l2
,
u1
l2

,
u1
l2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]


;

⊗̃Aα
1 × ⊗̃Aβ

2

−1

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])−1

=

( [
l1, l1

][
u2, u2

] , m1

m2
,

[
u1, u1

][
l2, l2

] )

=



[
min

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]
,

m1

m2
,[

min

{
u1
l2

,
u1

l2
,
u1
l2

,
u1
l2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]


;

⊗̃Aβ
1 × ⊗̃Aα

2

−1

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])−1

=

( [
l1, l1

][
u2, u2

] , m1

m2
,

[
u1, u1

][
l2, l2

] )

=



[
min

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]
,

m1

m2
,[

min

{
u1
l2

,
u1

l2
,
u1
l2

,
u1
l2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]


;

⊗̃Aβ
1 × ⊗̃Aβ

2

=
([
l1, l1

]
,m1,

[
u1, u1

])
×
([
l2, l2

]
,m2,

[
u2, u2

])−1

=

( [
l1, l1

][
u2, u2

] , m1

m2
,

[
u1, u1

][
l2, l2

] )

=



[
min

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]
,

m1

m2
,[

min

{
u1
l2

,
u1

l2
,
u1
l2

,
u1
l2

}
,max

{
l1
u2

,
l1
u2

,
l1
u2

,
l1
u2

}]


;

• With Crisp number
• For Multiplication:

⊗̃A1 × r =
[([
r × l1, r × l1

]
, r × m1,

[
r × u1, r × u1

])
,([

r × l1, r × l1
]
, r × m1,

[
r × u1, r × u1

])]
;

Proof:

Ã1 × r

=

[
⊗̃Aα

, ⊗̃Aβ
]

× r =

[
⊗̃Aα

× r, ⊗̃Aβ × r
]

=
[
r ×

([
l1, l1

]
,m1,

[
u1, u1

])
, r ×

([
l1, l1

]
,m1,

[
u1, u1

])]
;

⊗̃Aα×r
= r ×

([
l1, l1

]
,m1,

[
u1, u1

])
=
([
r × l1, r × l1

]
, r

×m1,
[
r × u1, r × u1

])
;

⊗̃Aβ×r
= r ×

([
l1, l1

]
,m1,

[
u1, u1

])
=
([
r × l1, r × l1

]
, r

×m1,
[
r × u1, r × u1

])
;

• Division

⊗̃A1 × r−1

=

[([
1
r

× l1, r × l1

]
,
1
r

× m1,

[
1
r

× u1, r × u1

])
,([

1
r

× l1,
1
r

× l1

]
,
1
r

× m1,

[
1
r

× u1,
1
r

× u1

])]
;

Proof:

⊗̃A1 ×
1
r

=

[
⊗̃Aα

, ⊗̃Aβ
]

×
1
r

=

[
⊗̃Aα

×
1
r
, ⊗̃Aβ ×

1
r

]
=

[
1
r
×
([
l1, l1

]
,m1,

[
u1, u1

])
,
1
r
×
([
l1, l1

]
,m1,

[
u1, u1

])]
;

⊗̃Aα ×
1
r

=
1
r

×
([
l1, l1

]
,m1,

[
u1, u1

])
=

([
1
r

× l1, r × l1

]
,
1
r

×m1,

[
1
r

× u1, r × u1

])
;

⊗̃Aβ ×
1
r

=
1
r

×
([
l1, l1

]
,m1,

[
u1, u1

])
=

([
1
r

× l1,
1
r

× l1

]
,
1
r

×m1,

[
1
r

× u1,
1
r

× u1

])
;

APPENDIX B
The spectrums are shown in the following equations,
where S℧stands for the set of spectrums, S℧ =

{S1, S2, . . . , S7, S8} .

S℧ =



S1 =
(
l,m, u

)
S2 =

(
l,m, u

)
S3 =

(
l,m, u

)
S4 =

(
l,m, u

)
S5 =

(
l,m, u

)
S6 =

(
l,m, u

)
S7 =

(
l,m, u

)
S8 =

(
l,m, u

)
, ℧ = {1, 2, . . . , 7, 8} ;
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TABLE 20. The information matrix - Mα .

To calculate the entropy of the system, the following
information matrix, constructed on the eight spectrums and
their values, is established (Table 20, 21), where Mα and Mβ

stand two information matrices, and σα
ℵ℧ and ∂

β

ℵ℧ represent
the value of information in each spectrum (see the following
equations).

Mα
= σα

ℵ℧, ℵ = {1, 2, . . . , 7, 8} , ℧ = {1, 2, . . . , 7, 8} ;

Mβ
= ∂

β

ℵ℧, ℵ = {1, 2, . . . , 7, 8} , ℧ = {1, 2, . . . , 7, 8} ;

To calculate σα
ℵ℧ and σ

β

ℵ℧, the common values and union
values of spectrums are considered (see Table 22, 23).

TABLE 21. The information matrix - Mβ .

The computation of missing information by entropy is
conducted by the following equation, where Eα

℧ and Eβ

℧ stand

TABLE 22. The common values and union values of spectrums
regarding - Mα .

TABLE 23. The common values and union values of spectrums
regarding - Mβ .

for the entropy.

Eα
℧ = −

1
log 8

8∑
ℵ=1

σα
ℵ℧ log σα

ℵ℧

×

(
8∑

℧=1

−
1

log 8

8∑
ℵ=1

σα
ℵ℧ log σα

ℵ℧

)−1

;

ℵ = {1, 2, . . . , 7, 8} , ℧ = {1, 2, . . . , 7, 8} ;

8∑
℧=1

Eα
℧ = −1;

Eβ

℧ =
−1
log 8

8∑
ℵ=1

∂
β

ℵ℧ log ∂
β

ℵ℧

×

(
8∑

℧=1

−1
log 8

8∑
ℵ=1

∂
β

ℵ℧ log ∂
β

ℵ℧

)−1

;

ℵ = {1, 2, . . . , 7, 8} , ℧ = {1, 2, . . . , 7, 8} ;
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8∑
℧=1

Eβ

℧ = −1;

1S℧ = max
1≤℧≤8

Eα
℧,Eβ

℧;

APPENDIX C
The extended form of the Zakeri-Konstantas weighted
rankings similarity measure:

ZKP
X ,B

= 1 −

〈
m∑
i=1


〈
(m+ 1) − RXAi

〉
RXAi

−

〈
(m+ 1) − RBAi

〉
RBAi

2〉0.5

× P∗
m

−1
, i = {1, . . . ,m} ;
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