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ABSTRACT Attributed Network Embedding (ANE) and the representation of its nodes in a low-dimensional
space is a pivotal step in the analysis of real-world networks. One of the biggest challenges in the
embedding process of nodes in complex networks is to capture any dynamic changes in both the node
itself and in its adjacent. To address the above challenge, in this paper, we propose a novel ANE model
that combines an improved Weisfeiler-Lehman Information Aggregation (WLIA) schema with a novel
Deep Skip-Gram (DSG) approach. First, an information aggregation of network data is performed using an
improved Weisfeiler-Lehman, which captures each node’s attributes and combines them with the attributes
of its adjacent nodes in a mathematically proven balanced and fair manner. Next, a novel deep autoencoder
model that adopts the Skip-Gram approach to capture the high non-linearity among the nodes and between
nodes with their attributes is proposed. In the DSG approach, a deep encoder is paired with a set of deep
decoders; the main decoder is for the node itself and the secondary deep decoders act as attention decoders
to extract common features from its neighbors. Extensive experimental evaluations have demonstrated that
the proposed method is superior in performance compared to recent network embedding models.

INDEX TERMS Attributed network embedding, Weisfeiler-Lehman, skip-gram, random walks,
autoencoder.

I. INTRODUCTION
An attributed network describes an extensive set of complex
networks in which the links between nodes are important for
analysis as node attributes. Networks of protein-protein inter-
actions [1], citation networks [2], [3], and social networks
[4], [5] are typical examples of attributed networks. The
analysis of attributed networks is highly important because
these networks represent an integral part of the real world.
For instance, social networks increasingly reflect intricate
details of our daily lives, harnessing the wealth of informa-
tion they provide. Consequently, this research area is highly
active, engaging researchers and developers from diverse
fields such as security, economics, and humanitarian pursuits
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[6], [7]. An effective analysis of this type of network depends
deeply on the way these networks are represented [8]. Several
network-embedding models have been proposed to repre-
sent nodes in low-dimensional vectors to facilitate analysis.
Network embedding is a mapping function for representing
network nodes in a low-dimensional space while preserving
the distinctive features of each node, which facilitates the
use of machine-learning methods in analyzing network data.
Attributed Network Embedding allows us to incorporate rich
node information such as node attributes, node features, and
node labels into the embedding process. This can help us to
better understand the structure and function of the network,
as well as to identify important nodes and relationships within
the network [8], [9]. Moreover, attributed network embed-
ding can be used for a wide range of applications, such as
node classification [10], [11], link prediction [12], [13], and
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community detection [14], [15], where the learned repre-
sentations can be used as input features for downstream
machine-learning tasks. The design of a mapping function
for network embedding involves several important con-
siderations. Efficiency, adaptability, proximity, and latent
information are crucial considerations when designing net-
work embedding models for large-scale, dynamic networks
[16]. To address computational challenges, the mapping
function should be efficient in terms of time and space
utilization [17]. Additionally, the mapping function should
possess adaptability to accommodate changes in network
relationships without necessitating complete retraining [18].
Proximity, or the level of relatedness between nodes, is an
essential aspect to consider, as it varies within a network.
Capturing these varying levels of proximity accurately is vital
for an accurate representation of the network structure [19].
Moreover, real-world networks often contain latent informa-
tion that is not explicitly present in the network data itself.
To provide a more comprehensive representation, the map-
ping function should be able to capture and incorporate this
latent information into the embedding model [20]. By con-
sidering these factors, network embedding models can better
handle the complexities and nuances of real-world networks.

Owing to these considerations, several embedding meth-
ods have been proposed. Some of these embedding methods
depend on the degree of proximity between the nodes [2],
[21], [22], where each node is placed with its adjacent
nodes of the first, second, or higher degrees of proxim-
ity in the embedding space. Another group of embedding
methods relies on graph kernel techniques, which are embed-
ding network techniques that deal with the network from a
micro-level perspective to show the nodes in a comparable
manner based on both their structural role in the network
and their location, in addition to their features [23], [24].
The Weisfeiler-Lehman Graph kernel [25] is a technique
that combines scalability with the ability to consider node
attributes.

A new set of methods has been presented in recent
research, such as DeepWalk [26], Node2Vec [27], and Walk-
lets [28]. These methods are inspired by word embedding
methods that aim to maintain word convergence based on
skip-grams [29]. In these methods, a series of random walks
are generated from the nodes and their neighbors, where each
node represents a word, each path represents a sentence, and
the paths collectively represent the entire text. These methods
significantly improve the embedding performance. How-
ever, these methods only consider the network topology and
ignore the node attributes. To address this challenge, several
enhanced methods have been proposed as a generalization of
these methods, as they consider the network structure along
with node attributes [30], [31]. Although these embedding
methods have shown promising results, they still have certain
drawbacks. This is because the nature of complex networks
cannot be compared to the architecture of language texts
and words, as words associations within a certain context
are much less dynamic compared with nodes associations in

large networks which are very dynamic, we can conclude that
the traditional and shallow skip-grams approaches commonly
used for NLP applications are insufficient to be applied to
complex networks.

In summary, the above-mentioned methods used shallow
network embedding models to solve the data variance prob-
lem using trait information during the modeling process.
However, because the underlying patterns of the attributable
network are very complex and non-linear, the limited rep-
resentation capabilities of the shallow units cannot reflect
the complex patterns of the attributed networks. To address
this problem, several recent studies proposed frameworks
based on deep learning for node representation in attributed
networks in order to capture the complex patterns of nodes
in attributed networks [8], [32]. Based on a recursive Neural
Network (NN), A graph neural network (GNN) model was
proposed based on a recursive NN [33]. In this model, a trans-
fer function is used to transfer the graph or its vertices to an
m-dimensional Euclidean space. Several deep GNNmethods,
such as graph convolutional networks [34], [35], [36], graph
attention networks [37], [38], and graph auto-encoders [39],
[40], [41] have been presented.

From the above, it is clear that each of the proposed
embedding methods mainly deals with one or two of the chal-
lenges of network embedding. In this study, we extended the
proposed network embedding model, DANE-WLA, in [42].
We propose a mathematically proven novel network embed-
ding model that addresses the main challenges of the network
embedding process in an effective and balanced manner.

The main contributions in this paper are summarized as
follows:

• We present a deep network embedding model (ANE-
WLDSG) consisting of three stages. In the first stage,
we used a modifiedWeisfeiler-Lehman (WLIA) schema
to capture the integration of links and attributes.
In the second stage, a training group was created
based on random walking. In the third stage, a Deep
Skip-Gram (DSG) is trained to extract the high
non-linearity between the nodes and embed them in a
low-dimensional space.

• We proposed an improved Weisfeiler-Lehman schema
that integrates the attributes of the nodes with the
attributes of their neighboring nodes with K iterations.
We proved by mathematical induction that the improved
Weisfeiler-Lehman model preserves all k-order proxim-
ity between nodes, where 1<=k<=K.

• We proposed a new function to improve the flow of
information in the WL schema, called the Rectified
Aggregate Element (ReAE), and used it as an activation
function for the last layer in the autoencoder.

• The novel DSG model involves learning to combine
structural regularity in a short random walk with node
attributes within an attributed network. This innovative
approach aims to improve the performance of network
embedding by leveraging the strengths of both deep
autoencoders and the Skip-Gram model.
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FIGURE 1. Four modes of attribute network embedding models that use autoencoder. (a) Separate modes. (b) coupled modes. (c) Joint Bottleneck
modes. (d) Combined modes.

The proposed model was experimentally evaluated on
four datasets, including node classification, link prediction,
and visualization, to determine whether it is applicable
to real-world networking tasks. The results showed that
ANE-WLDSG is a significant and reliable network embed-
ding method that outperforms several other recent network
embedding techniques, even when the test factors differ
greatly.

II. RELATED WORK
The following is a brief summary of the relevant work, which
is divided into three major categories as follows in the follow-
ing subsections.

A. NETWORK EMBEDDING BASED ON
WEISFEILER-LEHMAN SUBTREE KERNEL
The Weisfeiler-Lehman graph kernel framework [25]
is an effective graph kernel method based on the
Weisfeiler-Lehman idea of testing the isomorphism of graphs
[43], which adopts the renaming of vertices iteratively by col-
lecting neighborhood information. The Weisfeiler-Lehman
subtree kernel has attracted considerable interest in the
field of graph kernels. The relabeling operation of the
Weisfeiler–Lehman algorithm can be considered as a neigh-
borhood aggregation scheme. Neighborhood aggregation
algorithms are based on the principle that each vertex
receives messages from its neighbors and uses them to
update its representation [44]. Yang et al. [16], [45] intro-
duced the concept of a Weisfeiler-Lehman matrix to capture
the interplay between a node’s structure and its attributes.
Ma et al. [46] built upon this idea with their own model based
on Weisfeiler-Lehman Graph kernels, which combines the
attributes of nodes with those of their neighborhoods. Most
graph neural networks use Weisfeiler-Lehman as a pooling
function of node features with those of neighboring nodes
[10], [35].

The above studies showed that the Weisfeiler-Lehman dia-
gram is able to capture the integration of links and attributes.
However, our study aims to address the remaining question:
What is the effect of each node in the Weisfeiler-Lehman
subtree on the root node during the integration process, and
what is the most appropriate equation to balance and fair this
effect?

B. NETWORK EMBEDDING BASED ON RANDOM WALK
A random walk is a process that specifies a path in a mathe-
matical space that includes a series of random steps [47]. This
approach can construct node sequences while maintaining
the original relationships of the nodes [8]. DeepWalk [26] is
the first node embedding method inspired by the Skip-Gram
word embeddingmodel, which generates word embedding by
implicit analysis of an array of mutual information in a corpus
of text. The sequences of the nodes were created as a corpus
using random paths starting at each node in the network.
Node embedding is then obtained by passing these sequences
into a Skip-Gram model. By modifying these parameters,
Node2vec [27] created a random walk sampling method that
can sample networks with a preference for depth-first sam-
pling or breadth-first sampling. Dozens of nodes embedding
methods have been proposed based on the DeepWalk concept
[3], [28], [48], [49], [50]. It appears that above methods
utilized network architecture but did not take into account
the valuable features of nodes when representing them in an
embedding space.

TADW [30] is a proposed algorithm for embedding
attributed networks based on the DeepWalk model, which
considers the text information of the nodes. The MMDW
[51] model takes advantage of the information accompanying
the contract to improve the inclusion process, along with its
dependency on DeepWalk. MUSAE [31] uses an approach
similar to that of Skip-gram to build an embedding algorithm
for the attributed networks by capturing the node information
from the attributes of its neighboring nodes and through
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TABLE 1. Attributed network embedding models based on autoencoder.

i

randomwalks. These studies have shown promising results in
many tasks related to analyzing complex networks, however
they are designed to work with static graphs and may not
be effective in capturing temporal changes or the dynamic
evolution of complex networks.

C. NETWORK EMBEDDING BASED ON AUTOENCODER
Autoencoders and their derivatives are deep learning mod-
els that are most widely used for feature representation
and have been used in a variety of network-based appli-
cations. FIGURE 1 shows various modes of models that
depend on the autoencoder. The network structure and node
attributes were reconstructed using a separate double autoen-
coder in the DANE) [39]. The UWMNE model [52] suggests
embedding nodes by inserting a modular matrix and Markov
attribute matrix into the deep autoencoder. SNE [4] is an
attributable social network embedding model that learns
to represent nodes by maintaining structural proximity and
attribute proximity. Net-VAE [53] was proposed to represent
both the network topology and node attributes in the same
encoder for information integration and learning transmis-
sion. Richang et al. [54] proposed an integrated framework
consisting of three processes that address data variation,
graph topology, and node attributes for attribute network
embedding. NETTENTION is a proposed model [55] that
uses deep autoencoders to capture the high non-linearity
in both network structure and node attributes. The first
autoencoder is a discrete recurrent neural network (RNN)
autoencoder that learns the representation of nodes within
the network topology. The second autoencoder is a multilayer
perceptron (MLP) autoencoder for learning the distribution in
the attribute spaces. The two representations are passed into

an adversarial regularized self-attentive approach to integrate
them into a common space. In [56], the authors proposed
an IINE model based on three encoders: a basic coupled
autoencoder, and two auxiliaries conventional autoencoders.
The coupled autoencoder trains node representation by seam-
lessly combining the network topology and node attributes,
while one auxiliary autoencoder is used to probe the internal
property of the network structure, and the other auxiliary
autoencoder is used to search for data inherent in the attributes
of the nodes; then, the main autoencoder is fed with the aux-
iliary autoencoder outputs. The algorithm’s [57] fundamental
idea of the NEATVGA algorithm is to pre-process the node
attributes first and then input the learning vectors along with
the adjacency matrix into the variational graph autoencoder.
FSADA [58] is an autoencoder-based framework proposed
for integrating network structures and node features. The
DANE-WLA model [42] consists of two stages, in which
the Weisfeiler-Lehman schema is used in the first stage to
integrate attributes and links between the nodes, while the
second stage uses a deep autoencoder to exploit nonlinear
patterns by applying it to the proximity matrix. TABLE 1
summarize the above models.

Above studies have demonstrated the widespread use of
deep autoencoder methods for embedding attributed net-
works, as they can capture the relationship between node
attributes and network structure. However, thesemethods also
have some limitations and disadvantages:

Firstly, deep autoencoders can be computationally expen-
sive. Secondly, theymay not be effective in modeling noisy or
incomplete data or in adapting to dynamic network changes.
Lastly, the high-dimensional embeddings produced by deep
autoencoder methods may be difficult to interpret. Therefore,
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FIGURE 2. An illustration of the stages of training the ANE-WLDSG model: the first stage is to integrate the attributes of the nodes with their
neighbors using modified Weisfeiler-Lehman schemes, the second stage is to build the training set using random walking, and the third stage is to
train the novel DSG model using inputs from the first two stages.

while deep autoencoder methods are promising, their limi-
tations and challenges should be taken into account when
applying them to real-world problems.

The objective of this study is to develop a model that
improves the performance of network embedding by com-
bining the advantages of both deep autoencoders and the
Skip-Gram model. By leveraging the strengths of these two
models, the proposed approach aims to capture both the
structural and attribute information of nodes in the network,
while also addressing some of the limitations of previous
embedding methods.

III. THE PROPOSED MODEL
This section introduces the proposed network embedding
model. We list some notations and definitions used in
Section III-A are first presented. Then, ANE using an
improved Weisfeiler-Lehman schema and a novel Deep
Skip-Gram (ANE-WLDSG) model is described in detail in
Section III-B.

A. NOTATIONS AND DEFINITIONS
Assume that the attributed network can be represented as an
undirected graph G(V ,E,P), where:
V = {vi}ni=1 is a set of n network nodes, E =

{
ej

}m
j=1 is a

set of m network edges, and P = {p(vi)}ni=1 ∈ Rn×t is a set
of n vectors representing node attributes, and t is the attribute
dimension. Also, let A = [ai,j]

|V |

i,j=1 ∈ Rn×n represents the
adjacency matrix, where etch element ai,j is given by:

ai,j =

{
1 when e(vi, vj) ∈ E
0 otherwie

(1)

Definition 1 (Attributed Network Embedding (ANE)):
Given adjacency matrix A, node attributes P, ANE is a func-
tion f (·) of re-representing each node within the network at

a low-dimensional vector, while preserving the several-order
proximity of adjacency and the attribute’s proximity to the
other nodes:

f (A, p) → H , H ∈ Rn∗d (2)

where d is the dimension of the low-dimensional vector and
each row vector hi ∈ H is the d-dimensional representation
of node vi.

Some characteristics and levels of proximity among the
nodes must be considered when designing embedding mod-
els to learn vertex representations accurately [59]. Below,
we provide the definitions of some common proximity levels.
Definition 2 (First-Order Proximity): The local proxim-

ity that preserves the direct relationships between nodes is
referred to as first-order proximity. For each pair of nodes
(vi, vj), if ai,j = 1 then there is first-order proximity between
vi and vj otherwise, the first-order proximity is 0.
Definition 3 (Second-Order Proximity): The second-order

proximity between a pair of nodes (vi, vj) indicates that there
is a common neighborhood between the first and second
nodes. For each pair of nodes (vi, vj), if (Nvi∩Nvj ̸= ∅), then
there is second-order proximity between vi and vj, otherwise
the second-order proximity is 0, whereNvi is the neighbor set
of vi.
Definition 4 (k-Order Proximity): The k-order proximity

between two pairs of nodes (vi, vj) occurs if and only if there
is at least one shortest path of length k between vi and vj.
Definition 5 (Weisfeiler-Lehman Scheme):
Let G = (V ,E, lb) be a graph with initial node labels

lb. Let lb0(vi) = lb(vi) for each vi ∈ V and K be the
Weisfeiler-Lehman iteration amount; for all 0 ≤ k < K
recursively computes the new label of vi in iteration k+1 by:

lbk+1(vi) = relable(lbk (vi) ,
[
lbk (u) : u ∈ N (vi)]

)
(3)

where N (vvi) is the neighbour set of vi.
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Definition 6 (Skip-Gram): Skip-gram is an unsupervised
machine-learning mechanism that imp.roves a word’s repre-
sentation based on a specified number of other words in the
same context.

B. THE PROPOSED ANE-WLDSG MODEL
The architecture of the proposed ANE-WLDSmodel consists
of three main stages, as illustrated in FIGURE 2.
Stage1 (Information Aggregation): In this stage, we pro-

pose an improved Weisfeiler-Lehman schema that is defined
based on Weisfeiler-Lehman graph kernels. It aims to inte-
grate the attributes of a node with the attributes of its
neighboring nodes at the K-level of proximity, and to produce
a new representation of the node that preserves its attributes
and integrates them with the network structure.
Stage2 (Training Set Building): In parallel with the previ-

ous stage, a corpus is built to learn the representation of the
attributed network using the randomwalk method, depending
on the network structure. Then, we build a training set that
consists of the input node and target nodes that represent the
node context with a specific size.
Stage3 (Node Representation Using Deep Skip-Gram): To

capture the high non-linearity of each node’s patterns, a novel
autoencoder is proposed in this study; we call it Deep Skip-
Gram (DSG). This autoencoder consists of a single encoder
and several decoders representing the number of nodes in the
node context window. The autoencoder maps the aggregated
information and embeds it into a low-dimensional vector,
which can reconstruct the node context as closely as possible.
The encoding in the hidden layer represents the node. This
autoencoder obtains its input from the outputs of the previous
two stages.

In the following, we present the details of each of the above
stages.

1) WEISFEILER-LEHMAN INFORMATION
AGGREGATION (WLIA)
Weisfeiler-Lehman Information Aggregation (WLIA) is used
to aggregate information from neighboring network nodes to
a target node. It uses the K parameter to control the adjacent
node layers that are involved in the aggregation process. The
primary idea of a network with attributes P is to generate a
propagation subtree that captures the current node’s attributes
and combines them with the attributes of its adjacent nodes in
balanced proportionality. FIGURE 3 shows the propagation
subtree for a specific node of the network, and the steps of
the WLIA scheme are presented in Algorithm 1.
Definition 7 (Weisfeiler-Lehman Information

Aggregation):
Let G = (V ,E,P) be a graph with initial node attributes

P(0)(v) = P(v) for each v ∈ V, and let K be the number
of Weisfeiler-Lehman iterations. In iteration k+1, the new
attributes of v are computed as follows:

Pk+1(v) = aggregation(Pk (v) ,
[
pk (u) : u ∈ N (v)]

)
(4)

FIGURE 3. Illustrating the WL sub-tree propagation of node (1) according
to network G.

Algorithm 1WLIA Information Aggregation
Input:
Attributed Network: G(V ,E,P),
parameters:WL iteration K.
Output:
WL features WL_f ∈ R|V |∗t ,
Begin
P0 = P
for k =1 to K
for v in V
Pk (v) = Pk−1 (v)
for u in N (v)

Pk (v) = ReAE(Pk−1 (v) +
1

√
d(v)∗d(u)

Pk−1 (u))

return PK

For all 0 ≤ k < K .
We derive an aggregation function based on the Laplacian

matrix element because the Laplacian matrix has the ability
to preserve the local topological properties of the graph (first-
order proximity).

Given a network G(V ,E,P) with an adjacency matrix A,
the Laplacian matrix L of A is given by

L = D− A (5)

whereD = diag(d1, d2. . . ,dn) is the degree matrix of A, with
di =

∑n
j=1 ai,j is the degree of each node vi.

Meanwhile, the signless Laplacian matrix is calculated as
L+

= D + A. For the undirected graph G, the normalized
signless Laplacian matrix is defined as [60]:

L+
= D−1/2AD−1/2

= I + D−1/2A (6)

The elements of L+ are given by:

L+

i,j =


1 if i = j

1√
di × dj

if i ̸= j and e
(
vi, vj

)
∈ E

0 otherwise

(7)

To integrate the attributes of a node with the attributes of
its neighbor nodes, the Laplacian matrix is multiplied by the
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attribute matrix as:

P(1) = L
+
P(0) (8)

where P(1) ∈ Rn×t is a matrix of node attributes aggregated
with attributes of nodes with first-order proximity, and each i
row in the matrix expresses the modified attributes of node vi.
Thus, each node vector vi ∈ {vi}ni=1 in P

(1) can be represented
as follows:

P(1) (vi) =

n∑
j=1

L+

i,j × P(0) (
vj

)
(9)

Depending on the definition of the Laplacian matrix in
Equation (6) and ignoring the zero values, P(1) (vi) is
expressed as:

P(1) (v) = P(0) (v) +

∑
u∈N(v)

1
√
d (v) × d (u)

P(0) (u) (10)

Equation (10) represents the 1-iteration Weisfeiler-Lehman
scheme.

Equation (10) can be generalized for the Weisfeiler-
Lehman scheme with K iterations, in which for each v ∈

V ,P(K ) (v) can be expressed as

P(K ) (v) = P(K−1) (v) +

∑
u∈N(vi)

1
√
d (v) × d (u)

P(K−1) (u)

(11)

Rectified Aggregate Element (ReAE) function is defined to
normalize each value of the node attributes after each inte-
grative operation, motivated by the assumption that each node
has a probability value of having any attribute. We can define
ReAE as:

ReAE (x) = min (x, 1)where x ∈ R+ (12)

Then, we can define our proposed WLIA as:

P(K ) (vi)

= ReAA

P(K−1) (vi) +

∑
u∈N(vi)

1
√
d(v) × d(u)

P(K−1)(u)


(13)

Theorem 1: Weisfeiler-Lehman Scheme defined in Equation
(11) preserves all k-order proximity where 1 <= k <= K .
Moreover, k-order proximity between two pairs of nodes
(vi, vj) can be defined as:

k−order proximitye
(
vi, vj

)
=

(
K
k

)
√
d (vi) × d

(
vj

)
×

∏
ul∈k−path(vi,vj) d (ul)

(14)

Details of the proof using mathematical inductor of the above
theorem is presented in Appendix.

Corollary1: Weisfeiler-Lehman scheme, which is defined
in Equation (12), preserves all k-order proximity where
1 <= k <= K .
Proof:
Because Equation (13) is a normalization of Equation (11),

we conclude that whatever holds for Equation (11) also holds
for Equation (13), and the range of Equation (13) becomes
[0,1].
Corollary2: For each pair of nodes (u, v) ∈ V , theWLIA−

proximity (u, v) can be defined as:

WLIA− proximity(u, v)

=
1√

d (vi) × d
(
vj

) ∑
path∈pathsK (u,v)

(
K

| path |

)
∏

ul∈path d (ul)

(15)

where pathsK (u, v) is a set of all bath between (u, v) with
length <= K , and |path| is a length of path.

The advantages of the proposed WLIA scheme can be
summarized in the following points.

- The Weisfeiler-Lehman scheme efficiently preserves
and integrates the attributes of a node target with those of
its neighboring nodes, where parameter k represents the
number of proximity levels for the neighboring nodes
that join the integration.

- The proposed equation for the Weisfeiler-Lehman prox-
imity schema deals fairly well with the levels of
proximity and degrees of nodes. Through the coefficient(

K
k

)
√
d(v)×d(u)×

∏
ul∈1−path(vi,vj)

d(ul )
, it is clear that the influ-

ence of child node u is inversely proportional to both the
level of proximity and the strength of the node. In other
words, the closer the level of the child node to the target
node, the higher its impact. In addition, the greater the
degree of the child node, the lower is its impact.

- There is a greater influence of any child node on the
aggregation process if there are more noncircular paths
between the root node and child node.

- The WLIA scheme automatically handles missing data
in node attributes by aggregating them from neighboring
nodes according to the proposed equation.

- Furthermore, Equation (12) ignores the nodes that
appear in the same path more than once and takes into
account the first appearance only to avoid the duplica-
tion effect of the child nodes on the aggregation of the
root node, as shown in FIGURE 4.

2) TRAINING SET BUILDING
To train our proposed sub-model DSG, a corpus is first
created by running recursive random walks, starting with
a randomly chosen root node vi and following along with
random walks through neighboring nodes until a specified
length (τ ) is reached, then moving randomly to a new root
node and repeating the previous process until all nodes are
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FIGURE 4. Illustration of the difference between WL and WLIA with ReAE, where sub-figure (a) repersent the sub-tree propagation according to
WL schema and sub-figure(b) repersent the propagation sub-tree according to WLIA with ReAE funcation, the black color represent the nodes
that are neglected in the process of integrating the root node with the child nodes in the propagation sub-tree.

Algorithm 2 Training Set Building
Input: G(V ,E,P), parameters: walks length τ , number of
walks γ per node, context size C.
Output: Training set T
for i = 1 to γ

V = Shuffle(V )
for v in V ′

Append v to walk
u′

= v
for j = 1 to τ

u = Random− neighbor
(
u′

)
Append u to walk
u′

= u
Append walk to Corpus

for i = 1 : size(Corpus)
for j = C + 1 : τ − C
T ′.target = Corpus [i][j]
T ′. context = []
for k = j− C : C + j

Append Corpus [i][j] to T ′. context
Append T ′ to T

return T

completed. The previous process was repeated for a specified
amount γ for each node within the network. As a part of
network embedding, all network nodes from the corpus are
indexed and sorted by their frequency using a sliding window
to extract instances. Each of the instances consists of a target
node and its context of a fixed size. Algorithm 2 presents the
steps involved in building the training set.

3) NODE REPRESENTATION USING DEEP SKIP-GRAM
Skip-Gram has achieved impressive success in text modeling,
which is a model of the representation of words by increas-
ing the probability of the word being in a specific context
within the sentence. Motivated by the success achieved by
the Skip-Gram model, a number of studies have suggested

generalizing this model to the re-representation of nodes in
complex networks. However, there are shortcomings in the
proposed methods owing to the obvious differences between
the network structure and text structure, as well as between
network dynamics and text dynamics. Based on this, we pro-
pose in this paper a novel deep model based on SkipGram to
efficiently represent nodes in a low-dimensional space. In this
stage, low-dimensional deep embedding vectors are gener-
ated from the WLIA information obtained in the first stage
using deep learning models. We capture complex nonlinear
patterns using an autoencoder that learns the node represen-
tations through nonlinear learning and then reconstructs the
context of the target node from the deep representation pattern
of the target node. DSG architecture contains an encoder and
2C + 1 decoders, which is defined next:
DSG-Encoder: This consists of Y layers of fully connected

NNs as an encoder, whichmaps each target node v in the train-
ing set that is built in the second stage to a low-dimensional
nonlinear embedding space. The ith layer output is expressed
as follows:

h(i)
v = gi

(
W (i)h(i−1)

v + b(i)
)

(16)

where h(0)
v = WL_f (v),W (i) is the i− th layer weight, b(i) is

the bias, and gi is a nonlinear activation function.
Representation vector ϕv ∈ Rd of target node v can be

defined as:

ϕv = gL
(
W (Y )h(Y−1)

v + b(Y )
)

(17)

DSG-Decoder: This consists of several parallel decoders
that capture the resulting node-embedding vector ϕv of the
encoder and rebuilds the context of the target node. The layers
of each decoder are the same number and shape as the encoder
layers, and in reverse. The output of each layer of each
decoder of the context nodes can be represented as:

h(i)
vc = gic

(
W (i)
c h(i−1)

vc + b(i)c
)

(18)

VOLUME 11, 2023 110109



A. Al-Furas et al.: ANE Using an Improved Weisfeiler-Lehman Schema and a Novel DSG

FIGURE 5. Production model of embedding a node in a low-dimensional vector based on the trained model.

where h(0)
vc = ϕv, W

(i)
c is i − th layer weights, b(i)c is its bias

and, gic is a nonlinear activation function of decoder c, and
c ∈ [−C,C]. The output of each decoder is defined by the
following equation.

ṽc = ReAE
(
ReLU

((
W (Y )
c h(Y−1)

vc + b(Y )c

)))
(19)

We use ReAAwhich was defined earlier as an activation func-
tion, so that the outputs are the same as the deep SkipGram
inputs. We trained the model to obtain an embedded vector
capable of reconstructing the node context. Thus, we aim
to maximize the probability of obtaining the node context,
depending on the embedding vector.

Pr (context(v) | ϕv) =

∏
vc∈context(v)

Pr (vc | ϕv) (20)

To obtain the maximum value of the previous conditional
probability, we seek to reduce the following loss function.

L =

n∑
i=1

∥̃v−WL−f (v)∥22

+

∑
vc∈context(v)

1
2C

n∑
i=1

∥∥ṽci −WL−f
(
vci

)∥∥2
2 (21)

and

Lc =
1
2c

∑n

i=1

∥∥̃vci −WL−f
(
vci

)∥∥2
2 (22)

where Pr (vc|v) is the number of times a node vc is presented
within the context divided by the number of times the target
node vc appears in the training set T.

The model parameters:{
W (l), b(l)

}
i in Encoder layers

,{{
W (l)
c , b(l)c

}
l in c Decoder layers

}
c∈[−C,C].

were optimized using Stochastic Gradient Descent (SGD).
Algorithm 3 summarizes the training algorithm for the DSG.

Algorithm 3 DSG Training
Input: WL features WLf , Training set T ,N Number of
epochs, β batch size, C context size.
Output: Trained encoder parameters{
W (l), b(l)

}
l in Encoder layers

Begin
for i = 1 : N

T ′
= Shuffle (T )

for e = 1 to size(t)/β
Predict ϕ using equations 16,17
for vc ∈ context(v)
Predict ṽcusing equations 18,19
Compute Lost (Lc) using equation 21
Cost=mean (Lc)

Update
{
W (l)
c , b(l)c

}
l in Decoder layers

using SGD

Update
{
W (l), b(l)

}
l in Encoder layers using SGD

return
{
W (l), b(l)

}
i in Encoder layers

A comparison between DSG and Skip-Gram can be made
by examining the differences between their structures, param-
eters, and characteristics. The main differences are listed in
TABLE 2.

C. NODES EMBEDDING USING THE TRAINED MODEL
To embed any node in the network in the latent space, we first
apply the proposed WLIA to this node to capture its aggre-
gation information based on the node’s propagation sub-tree
by recurrently executing Equation 12. We then passed the
information from WLIA to the pre-trained DSG encoder.
The node-embedding process utilizing the learned model is
illustrated in FIGURE 5.

D. TIME COMPLEXITY
The proposed ANE-WLDSG framework consists of three
stages: aggregation of information, construction of train-
ing sets, and DSG. Our first part of the study utilized
a Weisfeiler-Lehman model whose time-complexity was
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TABLE 2. The main differences between DSG and skip-gram.

O(K×m), where m is the number of edges in the network,
and K is the number of iterations of Weisfeiler-Lehman. For
the stage of constructing the dataset by randomwalk, the time
complexity isO(n×γ ×τ ), where n represents the number of
network nodes, τ is the walk length, and γ is the number of
walks per node. We utilized an autoencoder with a time com-
plexity of O(θ × n), where θ is the dimension of the largest
hidden layer. By neglecting constant values (K , γ, τ, andθ ),
the ANE-WLDSG time complexity is O (n+ m) .

The linear complexity of the proposed model means that
its runtime will increase linearly with the size of the input
data. This makes it a good candidate for larger networks,
as the runtime will not increase exponentially as the size of
the network increases.

IV. EXPERIMENTS
To determine whether the proposed model is effective and
efficient in ANE, we applied it to real-world networks and
compared it with other well-known models.

A. BENCHMARK DATASETS
The following four datasets, which are freely available on
SNAP [61], were used in our experiments to evaluate the
proposed model.

LastFM Asia: Users of the LastFM social network living
in Asia are connected via their mutual follower relationships,
and their favorite musicians are represented by their vertex
features. The machine-learning challenge is the classification
of users’ nationality.

GitHub: Developers are represented as nodes, while the
relationships between them and their followers are repre-
sented as links. Attributes such as location, metadata, and
biography are used to calculate information about each devel-
oper, and they are classified into categories based on whether
they are machine learning developers or web developers.

Facebook: The task was to classify the websites into sev-
eral categories. The nodes correspond to official Facebook
pages. The edges represent the likes exchanged between the
pages. Extract node features from the page descriptions.

TABLE 3. Summary statistics of the benchmark attributed networks.

Wikipedia: There are nodes representing Wikipedia arti-
cles, edges representing interconnected links, a binary target
variable showing the amount of traffic on a website, and
vertex features that specify whether there are nouns in the
article.

Specification information of these dataset networks are
outlined in TABLE 3.

B. BASELINES
The following are the descriptions of seven popular models
that were compared with the proposed model (DANE-WLA):

HOPE [22]: This network-embedding model used here
is a simplified version that employs extended singular value
decomposition instead of an adjacency matrix.

DeepWalk [26]: Using samples taken during random
network walks, embedding is calculated by predicting the
immediate surroundings of the nodes, and the walking trails
are analyzed using Skip-Gram.

Node2vec [27]: This is a generalized form of deep walk
that combines depth-first search (DFS) with breadth-first
search (BFS) to connect nodes in a graph.

TADW [30]: TADW uses textual features to supervise
random walks on graphs and integrates node-content infor-
mation.

BANE [62]: This model embeds network nodes by identi-
fying the relationship between a node’s attributes and network
architecture. A proximity matrix is built by combining the
attributes and links of adjacent nodes. The node embedding
in the binary space is also depicted using cyclic coordinate
descent (CCD).

TENE [63]: Using this method, ANE problems are
subdivided into mutually non-negative matrix factoriza-
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TABLE 4. Detail of the encoder structure for all datasets.

TABLE 5. Hyperparameters of WL schema and DSG models.

tion problems, and their organization is based on node
embeddings.

MUSAE [31]: MUSAE learns how to represent attributed
nodes to factorize the creation of an attributed matrix and a
normalized adjacency matrix.

FSADA [58]: FSADA is an autoencoder-based framework
that integrates network structures and node features. It uses
two encoder units, one for the structure and one for the
attributes. The structure encoder learns a latent representation
of the network structure, while the attributes encoder learns
a latent representation of the node features. The two latent
representations are then combined using cosine similarity to
measure the node closeness.

DANE-WLA [42]: An approach for representing
attributed networks involves a two-stage model. In the first
stage, the attributes of nodes and their links are combined
to create an integrated representation. This can be achieved
using techniques such as concatenation or graph neural net-
works. In the second stage, a deep autoencoder is used to map
the integrated representations to a lower-dimensional space.

C. PARAMETER SETTINGS
The proposed model required several control parameters to
be determined in advance.

TABLE 4 presents the size of each encoder layer for
each dataset, whereas TABLE 5 presents the hyperparameters
applicable to the training process of the embedding model.
Each baseline was constructed using Karate Club’s [61] pub-
lic source code using settings chosen to provide the best
results across all datasets and trials.

The DSG autoencoder and discriminator were opti-
mized using the Adam optimizer [64]. The TensorFlow
deep learning tool was also used with a learning rate of
0.001 and ReEA activation function. We assure readers
that the code for the ANE-WLDSG model is available for
open access through the link https://github.com/amr-furas/
ANE-WLDSG.

FIGURE 6. Training loss and validation loss of ANE-WLDSG over
50 iterations.

D. EXPERIMENTAL RESULTS
In this section, we present the results of evaluating the perfor-
mance of the proposed embedding model (ANE-WLDSG).
Specifically, Figure 5 illustrates the relationship between the
training error and the validation error throughout the DSG
training process.

The analysis of the loss function based on the FIGURE 6
reveals that both the training and validation errors decrease
over the iterations, indicating that the model is learning and
improving its performance. The convergence of the errors
suggests that the model is stabilizing and approaching a
point of minimal error. The small difference between the
training and validation errors suggests that the model is
not severely overfitting the training data. However, further
evaluation using additional metrics is recommended to gain
a more comprehensive understanding of the model’s per-
formance. Overall, the analyzed loss function demonstrates
effectiveness in reducing errors and the model shows promis-
ing learning and generalization capabilities.

In the following experiments, we demonstrate the effi-
ciency of our proposed model against a set of recent
embedding models. We do this by applying and analyzing our
model on node classification, link prediction, and visualiza-
tion tasks. The results show that our model is effective and
superior to the other models.

1) NODE CLASSIFICATION RESULTS
Classifying network nodes according to their labels based
on the network’s available information is a common task
for determining the effectiveness of network embedding.
In this experiment, the node information was first embed-
ded in low-dimensional vectors, and the nodes were then
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TABLE 6. Facebook, GITHUB, LastFM, and Wikipedia node classification result, as evaluated by Macro-F1, and Micro-F1 metrics.

divided into training and test sets. We trained a support
vector machine (SVM) classifier using the training set. Then,
we used Micro-F1 and Macro-F1 as the evaluation metrics.
The experiment was repeated several times, using different
ratios as the training set. Specifically, 90 percent, 70 percent,
50 percent, 30 percent, and 10 percent of the nodes were
selected randomly as the training set and the remaining per-
centage as the testing set. Macro − F1 and Micro-F1 can be
expressed by the following equations:

Macro− F1 =

∑c
j=1

(
TPj

TPj+ 1
2 (FPj+FNj)

)
C

Micro− F1 = 2 ·
recall × precision
recall + precision

, (23)

where C represents the number of classes in the test set and
TN j,TPj,FN j, and FPi are the true negative, true positive,
true negative, and false positive of class j, respectively. Recall
and precision metrics are computed as follows:

recall =

∑C
j=1 TPj∑C

j=1
(
TPj + FPj

) ,

precision =

∑C
j=1 TPj∑C

j=1
(
TPj + FNj

) (24)

For the aforementioned datasets, TABLE 6 displays the
results for each of the applied network embedding models.
In each setting, the Macro-F1 and Micro-F1 values with the
best results are highlighted in boldface, while the second-best
performers are highlighted in underlined.
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According to these results, comparing different methods
for Plain network embedding, DeepWalk performs similarly
or better than Node2vec across various datasets. Both meth-
ods, based on random walks, outperform HOPE, as they
can capture diverse information about the network’s struc-
ture. However, when comparing methods that integrate node
attributes with those that only use the network structure,
the ANE methods tend to achieve better results. Overall,
these results highlight the advantages of incorporating both
structural and auxiliary information for learning node embed-
dings in attributed networks. In particular, ANE-WLDSG and
DANE-WLA appear to be the most effective approaches for
combining both structural and attribute information, achiev-
ing the highest Micro-F1 and Macro-F1 scores among all
tested methods in most cases. For example, on the FACE-
BOOKdataset, ANE-WLDSG outperforms other methods by
a margin of 3%. These results highlight the efficiency and
robustness of ANE-WLDSG and DANE-WLA for handling
complex networks with both structural and attribute features.
In general, the ANE-WLDSG method outperforms DANE-
WLA across all datasets except for GITHUB. This suggests
that incorporating the Deep Skip-Gram (DSG) model is
beneficial for integrating the network structure with node
attributes and improving the performance of the deep autoen-
coder. The superior results of ANE-WLDSG highlight the
impact of combining WLIA with DSG in learning effectively
attributed node embeddings.

2) LINK PREDICTION
This is one of the most prominent applications of network
embedding, and is devoted to inferring the likelihood that
edges might exist between nodes in the input network that
are not connected to each other at the present time. To build
a test set, we randomly selected 20% of the existing edges
and combined them with an equal number of non-existent
edges. First, the network nodes are projected onto a low-
dimensional space, and the connections between nodes are
represented based on these projections. Next, a One-class
classifier is trained using these representations as the training
set. Subsequently, we evaluate the absence of connections to
identify any missing links or potential future links. To mea-
sure the novelty of the connections, we employed the Local
Outlier Factor (LOF) algorithm [65], [66]. Subsequently, the
AUC and precision metrics were measured to evaluate the
link prediction process. The AUC is the average accuracy
over the entire range of test values, defined by the area under
the receiver-operating characteristic curve. To find the first
µ position after sorting the unknown edges descending by
precision, we used the precision index for link prediction.
The prediction precision if we have ϵ edges in the test set
are represented by

Precision =
µ

ϵ
(25)

Based on the results obtained by applying the proposed
embedding model and the other evaluated models listed in

TABLE 7. Overall, the results show that ANE-WLDSG per-
forms the best, achieving the highest precision and ACU
scores on three out of the four datasets. DANE-WLA also per-
forms well, achieving the highest precision and ACU scores
on one dataset.

DeepWalk and Node2Vec also perform well, with high
precision and ACU scores on most of the datasets when
compared with HOPE, BANE, TENE, and TADW. These
methods are based on biased random walks and can capture
diverse structural information of the network.

In summary, ANE-WLDSG, DANE-WLA, and MUSAE
are the most effective methods for link prediction on these
datasets, while the other methods may not be as effective.

This highlights the importance of considering both the
network structure and node attributes in predicting linkages in
attributed networks. By leveraging both types of information,
the link prediction models can capture more comprehensive
knowledge about the network and improve their accuracy.

3) VISUALIZATION

Visualization is a form of network analysis that provides
insights into the quality and efficiency of an embedding
model. An embedding model can be evaluated by visualizing
how nodes of the same type are condensed in the embedding
space, where more condensed nodes in a smaller area refer to
a higher degree of similarity of these nodes. In other words,
points representing nodes with the same label are clustered
together, and the closer these nodes are to one another, the
better is the embedding model performance. The network
visualization in FIGURE 7. depicts the distribution of gen-
erated points with different embedding methods applied to
the Facebook dataset, where four clusters are depicted in four
different colors for each model.

Based on the findings presented in Figure 6, it appears that
node embedding methods that rely solely on network struc-
ture generally yield poor visualization results, as they fail to
accurately identify distinct clusters within the network.While
TENE, TADW, and BANE perform better than traditional
embedding methods in terms of visualization results, there is
still a significant overlap between different groups of nodes.

In contrast, ANE-WLDSG, DANE-WLA, and MUSAE
produce more compact visualizations, with nodes from each
cluster aggregating in close blocks and minimal overlap
between clusters. Among these methods, ANE-WLDSG in
particular stands out for its ability to generate highly distinct
and well-separated groups.

Overall, these results suggest that incorporating both net-
work structure and node attributes can enhance the ability of
node embedding methods to accurately identify and visualize
distinct clusters within complex networks.

4) EVALUATING ANE-WLDSG EFFECTIVENESS IN HANDLING
UNSEEN DATA
In this experiment, the objective was to assess how well the
proposed method could handle the unseen data in the network
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TABLE 7. A performance analysis of link prediction with different models on GITHUB, Wikipedia, LastFM Asia, and Facebook.

FIGURE 7. T-SNE visualization of different models on Facebook dataset.

during embedding prosses. To simulate this scenario, 5% of
the network nodes were intentionally removed.

After removing the nodes, the modified network structure
was used to create a new representation or embedding of the
network. This embedding captured the underlying patterns
and relationships in the network, incorporating the available
data.

The next step involved evaluating the performance of a
classifier on the deleted data. The classifier was trained on the
embeddedmodified network nodes. By testing the classifier’s
ability to correctly classify the deleted data, we could assess
how well it could generalize and make accurate predictions
on unseen or missing data.

The performance of the classifier on the deleted data was
then compared to its performance on the data generated from

FIGURE 8. Generalization ability of the proposed model on unseen nodes.

the embedding of the complete network. This comparison
allowed for an understanding of the impact of missing data
on the classifier’s performance. It provided insights into the
effectiveness of the proposedmethod in handling the invisible
or missing data in the network.

FIGURE 8 shows that ANE-WLDSG is able to work with
the same efficiency on unseen nodes as it does on original
nodes. This is evident from the fact that the Micro-F1 and
Macro-F1 scores for unseen nodes are very similar to those
for original nodes.

The high Micro-F1 and Macro-F1 scores suggest that the
proposed model is able to correctly identify a large number
of nodes in each class, regardless of whether they were seen
during t0raining or not. This indicates that the model is able
to generalize well to new data and is not overfitting to the
training data.

The fact that ANE-WLDSG model works with the same
efficiency on unseen nodes as it does on original nodes
is a promising sign. It suggests that the model is able to
learn the underlying patterns in the data and is not simply
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FIGURE 9. Training loss of ANE-WLDSG with WL and ANE-WLDSG with
WLIA over 50 Iterations on the four datasets.

memorizing the training data. This makes the model a valu-
able tool for dealing with unseen data, such as data that
is collected in the future or data that come from different
domains.

5) THE EFFECT OF WLIA ON THE PERFORMANCE
OF ANE-WLDSG
In this section, we explore the impact of WLIA on
the performance of the ANE-WLDSG model. We con-
duct a comparative analysis of the training loss func-
tion between ANE-WLDSG with WL and ANE-WLDSG
with WLIA across four datasets. Our findings demon-
strate that WLIA consistently enhances the model’s
performance, showcasing its effectiveness as shown in
FIGURE 9.

Analyzing the provided loss values for the four datasets,
we observe the performance trends of the WL and WLIA
models across iterations. Comparing the two models, the
WLIA consistently outperforms the WL model at every
iteration. The WLIA model starts with a lower initial loss
value and achieves lower loss values compared to the
WL model at each iteration. As the iterations progress,
the performance gap between the two models gradually
widens, highlighting the beneficial impact of the iterative
adjustment in the WLIA model. Based on these observa-
tions, we can conclude that the WLIA model demonstrates
superior performance in analyzing the four datasets, as evi-
dent by consistently achieving lower loss values at each
iteration.

FIGURE 10. Comparisons of WLIA kernal depth size.

6) PARAMETERS ANALYSIS
To evaluate the impact of the depth parameter K on the
performance of our ANE-WLIADSG model, we conducted
an analysis with K varying from 1 to 6.

In FIGURE 10, we observe the Micro-F1 and Macro-
F1 scores for the WLIA kernel size and their relationship
with the performance of the model. Notably, as the kernel
size increases, both the Micro-F1 and Macro-F1 scores show
improvement. This indicates that the model becomes more
proficient in accurately predicting the correct class for each
individual instance and overall dataset as the kernel size
increases.

The results reveal that the best Micro-F1 and Macro-F1
scores are achievedwhen using a kernel size of 4. This finding
suggests that a kernel size of 4 is the optimal choice for
the WLIA model when applied to these datasets. Choosing
a larger or smaller kernel size may result in diminished per-
formance compared to the peak performance attained with
a kernel size of 4. These findings highlight the importance
of selecting an appropriate kernel size, in this case, 4, for
the WLIA model to achieve optimal performance on the
evaluated datasets.

Second, we examined the Micro-F1 and Macro-F1 scores
of ANE-WLIADSG using different embedding dimensions
ranging from 32 to 256, as depicted in FIGURE 11.

In general, both the Micro-F1 andMacro-F1 scores exhibit
an upward trend as the embedding dimension increases. This
indicates that employing a larger embedding dimension has
the potential to enhance the model’s performance across all
four datasets.
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FIGURE 11. The effect of embedding dimension on node classification
performance on different datasets.

However, the performance improvement is not consis-
tently linear. The disparity between the scores achieved with
128 and 256 embedding dimensions is relatively negligible.
This suggests that there might be diminishing returns when
augmenting the embedding dimension beyond 128.

V. DISCUSSION
The proposed ANE-WLDSG model for network embedding
presents several advancements in capturing network structure
and relationships. The linear complexity of the model enables
its scalability and efficient handling of large networks. The
incorporation of enhancements to the Weisfeiler-Lehman
schema and the ReAE normalization function contributes to
a balanced and fair estimation of proximity levels between
network nodes. Additionally, the integration of the Deep
Skip-Gram (DSG) sub-model, which utilizes random walks
and leverages deep autoencoders and the Skip-Gram model,
enhances the model’s performance in capturing non-linear
relationships among nodes.

Moreover, the embedded representations obtained from the
ANE-WLDSG model hold the potential for broader reuse
in various downstream applications. These representations
capture valuable structural information and relationships
within networks, which can be leveraged in tasks such as
link prediction, node classification, and community detec-
tion. By providing a flexible and adaptable framework, the
ANE-WLDSGmodel offers opportunities for researchers and
practitioners to explore and apply the learned representations
in different domains and application scenarios. This opens
avenues for cross-domain knowledge transfer and transfer

learning, where the insights gained from one domain can be
utilized to enhance performance in related domains.

Furthermore, an important aspect to highlight is the
ANE-WLDSG model demonstrates the ability to handle
invisible data by effectively embedding unseen network
nodes, making it suitable for dynamic network analysis.
It also exhibits high efficiency and comparable error rates
in dealing with both training and test data. This ensures
consistent performance and reliable results, particularly in
real-world scenarios where networks evolve or labeled data
may be limited. Overall, these attributes make the model a
valuable tool for various network analysis tasks.

However, while the ANE-WLDSG model shows promise,
it also has certain limitations that should be considered. It is
designed for homogeneous networks and may not be directly
applicable to heterogeneous networks. Additionally, while
the model exhibits linear complexity, practical challenges
may arise when dealing with extremely large networks. The
generalizability of the model to completely new networks
and the interpretability of its embedded representations are
also areas of concern. Furthermore, the model’s application
scope may vary across different domains, necessitating fur-
ther investigation and adaptation.

In short, the ANE-WLDSG model presents advance-
ments in network embedding by capturing proximity, non-
linearity, and evolving network structure. However, its
limitations in handling heterogeneous networks, scalability
for extremely large networks, generalization to new net-
works, interpretability of embedded representations, and
domain-specific applicability should be considered for future
research and development. Addressing these limitations
will contribute to the broader effectiveness and utility
of the ANE-WLDSG model in various network analysis
tasks.

VI. CONCLUSION
In this paper, we introduce the ANE-WLDSG model, a uni-
fied embedding model that effectively captures proximity,
non-linearity, and the dynamic evolving structure of network
data. The model exhibits linear complexity, enabling scal-
ability and efficient handling of large networks. Through
enhancements to the Weisfeiler-Lehman schema and the
introduction of the ReAE normalization function, the model
achieves a balanced and fair estimation of proximity lev-
els between network nodes. The incorporation of the Deep
Skip-Gram (DSG) sub-model, which utilizes random walks
and leverages deep autoencoders, and the Skip-Gram model,
further enhances the performance of network embedding by
capturing the non-linear relationships among nodes. Notably,
the proposed model accommodates the embedding of net-
work nodes that were not present during training, and it
dynamically updates node representations as links are added
or removed. Comparative evaluations demonstrate that the
ANE-WLDSG model outperforms existing embedding mod-
els in node classification, link prediction, and visualization
tasks. While currently designed for homogeneous networks,
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future extensions of the model aim to address heterogeneous
networks. Furthermore, the model holds promise for applica-
tions in diverse fields, including natural language processing
and bioinformatics.

APPENDIX
Proof1:We will use the proof by mathematical induction.
Base Case:
When K = 1, this satisfies equation (9), which is close to

the first-order proximity, (26), as shown at the bottom of the
page.

When K=2, (27) and (28), as shown at the bottom of the
page.
Induction Step:
Assume that P(K ) (v) = P(K−1) (v) +

∑
u∈N(v)

1
√
d(v)×d(u)

P(K−1) (u) is true, so (29), as shown at the bottom of the page
For k+1

P(K+1)(v) = P(K )(v) +

∑
u∈N(v)

1
√
d(v) × d(u)

P(K )(u) (30)

We aim to prove that (31), as shown at the bottom of the
page

1 − order proximitye
(
vi, vj

)
=


1√

d (vi) × d
(
vj

) if i ̸= j and e
(
vi, vj

)
∈ E

0 otherwise

(26)

P(2) (v) = P(1) (v) +

∑
u∈N(vi)

1
√
d (v) × d (u)

P(1) (u)

= P(0) (v) +

∑
u∈N(vi)

1
√
d (v) × d (u)

P(0) (u)

+

∑
u∈N(v)

1
√
d (v) × d (u)

P(0) (u) +

∑
s∈N(u)

1
√
d (u) × d (s)

P(0) (s)


= P(0) (v) +

∑
u∈N(vi)

1
√
d (v) × d (u)

P(0) (u)

+

∑
u∈N(v)

1
√
d (v) × d (u)

P(0) (u) +

∑
u∈N(v)

1
√
d (v) × d (u)

∑
s∈N(v)

1
√
d (u) × d (s)

P(0) (s)

P(2)(v) = P(0)(v) +

∑
u∈N(v)

2
√
d(v) × d(u)

P(0)(u) +

∑
s∈2nd − depth (v)

1
√
d(v) × d(s) × d(u)

P(0)(s) (27)

2 − order proximity e
(
vi, vj

)
=


1√

d
(
vj

)
× d

(
vj

)
× d (vl)

when e (vi, vl) ∈ E and e
(
vl, vj

)
∈ E

0 otherwise

(28)

P(K ) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−path(v)

(K
K

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk ) d(ul)

P(0) (uK ) (29)

P(K+1)(v) = P(0)(v) +

∑
u1∈1th−depth(v)

(
K + 1

1

)
√
d(v)d (uk)

P(0) (u1)

+ · · · +

∑
uK+1∈K+1th −depth(v)

(
K + 1
K + 1

)
√
d(v) × d (uk+1) ×

∏
ul∈K+1−path(v,uk ) d (ul)

P(0) (uk+1) (31)
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P(K+1) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−depth(v)

(K
K

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk )

d(ul)
P(0) (uK )

+

∑
u1∈N(v)

1
√
d (v) × d (u1)

P(0) (u1) +

∑
u1∈1th−depth(v)

(K
1

)√
d (u1) × d

(
u1k

)P(0) (
u11

)
+ . . .

+

∑
u1K ∈K−1th−depth(u1)

( K
K−1

)√
d (u1) × d

(
u1k−1

)
×

∏
u1l∈K−1−path(u1,uk−1)

d(u1l )
P(0) (

u1K−1

)

+

∑
u1K ∈K th−depth(u1)

(K
K

)√
d (u1) × d

(
u1k

)
×

∏
u1l∈K−path(u1,uk )

d(u1l )
P(0) (

u1K
)


P(K+1) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−depth(v)

(K
K

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk )

d(ul)
P(0) (uK )

+

 ∑
u1∈1th−depth(v)

1
√
d (v) × d (u1)

P(0) (u1)+
∑

u1∈1th−depth(v)

1
√
d (v) × d (u1)

∑
u1∈1th−depth(v)

(K
1

)√
d (u1) × d

(
u1k

)P(0) (
u11

)
+ . . .

+

∑
u1∈1th−depth(v)

1
√
d (v) × d (u1)

∑
u1K−1∈K−1th−depth(u1)

( (K
K

)√
d (u1) × d

(
u1k−1

)
×

∏
u1l∈K−path(u1,uk−1)

d(u1l )

)
P(0) (

u1K−1

)

+

∑
u1∈1th−depth(v)

1
√
d (v) × d (u1)

∑
u1K ∈K th−depth(u1)

(K
K

)√
d (u1) × d

(
u1k

)
×

∏
u1l∈K−path(u1,uk )

d(u1l )
P(0) (

u1K
)


P(K+1) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−depth(v)

(K
K

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk ) d(ul)

P(0) (uK )

+

∑
u1∈1th−depth(v)

1
√
d (v) × d (u1)

P(0) (u1)+
∑

u1∈1th−depth(v)

∑
u1∈1th−depth(v)

(K
1

)√
d (v)×d

(
u1k

)
×d (u1)

P(0)(u11)
+ . . . +

∑
u1∈1th−depth(v)

∑
u1K−1∈K−1th−depth(u1)

( K
K−1

)√
d (v) × d

(
u1k−1

)
× d (u1) ×

∏
u1l∈K−1−padth(u1,uk−1) d(u1l )

×P(0) (
u1K−1

)
+

∑
u1∈1th−depth(v)

∑
u1K ∈K th−depth(u1)

(K
K

)√
d (v) × d

(
u1k

)
× d (u1) ×

∏
u1l∈K−path(u1,uk ) d(u1l )

P(0) (
u1K

)
(32)
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FIGURE 12. Illustrating the WL sub-tree propagation of node 1 according to network G, the nodes on the third level of the root
node can be found on the second level of the nodes that are next to it.

Depending on the representation of P(K ) (v) = in
Equation 29, Equation 30 can be formulated as (32), shown
at the previous page.

We can note that:∑
u1∈1th−depth(v)

∑
u1k ∈k th−depth(u1)

x =

∑
uk∈k+1th−depth(v)

x,P(0) (
u1K

)
= P(0) (uk+1)

It is noticeable that FIGURE 12 provides a visual representa-
tion of this observation.

So, equation (31) will beP(K+1) (v), as shown at the bottom
of the previous page.

From Pascal’s identity (
(K
k

)
+

( K
k−1

)
=

(K+1
k

)
,

for 0 < k ≤ K ) and the fact
(K+1
K+1

)
=

(K
K

)
=

(K
0

)
= 1,

equation 33 can be written as (34), as shown at the top of the
next page.

P(K+1) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−depth(v)

(K
K

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk ) d(ul)

P(0) (uK )

+

 ∑
u1∈1th−depth(v)

1
√
d (v) × d (u1)

P(0) (u1) +

∑
u1∈2th−depth(v)

(K
1

)
√
d (v) × d (u2) × d(u1)

P(0) (u2)

+ . . . +
∑

uK∈K th−depth(v)

( K
K−1

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk ) d(ul)

P(0) (uk)

+

∑
uK+1∈K+1th−depth(v)

(K
K

)
√
d (v) × d (uk+1) ×

∏
ul∈K+1−path(v,uk ) d(ul)

P(0) (uk+1)



P(K+1) (v) = P(0) (v) +

∑
u1∈1th−depth(v)

(K
1

)
+

(K
0

)
√
d (v) × d (uk)

P(0) (u1)

+ . . . +
∑

uK∈K th−depth(v)

(K
K

)
+

( K
k−1

)
√
d (v) × d (uk) ×

∏
ul∈K−path(v,uk ) d(ul)

P(0) (uK )

+

∑
uK+1∈K+1th−depth(v)

(K
K

)
√
d (v) × d (uk+1) ×

∏
ul∈K+1−path(v,uk ) d(ul)

P(0) (uk+1) (33)
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P(K+1)(v) = P(0)(v) +

∑
u1∈1th−depth(v)

(
K + 1

1

)
√
d(v)d (uk)

P(0) (u1)

+ · · · +

∑
uK∈K th−depth(v)

(
K + 1
K

)
√
d(v) × d (uk) ×

∏
ul∈K− path (v,uk ) d (ul)

P(0) (uK )

+

∑
uK+1∈K+1th−depth(v)

(
K + 1
K + 1

)
√
d(v) × d (uk+1) ×

∏
ul∈K+1− path (v,uk ) d (ul)

P(0) (uk+1) (34)

In accordance with equation 34, the hypothesis in
equation 31 is confirmed.

Hence, Theorem1 is true for K+1, and in general true for
each K.
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