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ABSTRACT The growth of information technology has resulted in a massive escalation of data and the
demand for data exploration, particularly in the machine learning sector. However, machine learning raises
concerns about data privacy because algorithms require large amounts of data to learn and make accurate
predictions. Such data often contain personal information about individuals, and there is a risk that this
information could be accessed or misused by unauthorized parties. It is crucial for organizations that use
machine learning to prioritize personal data protection and ensure that appropriate safeguards are in place to
prevent privacy breaches. Federated learning (FL) and blockchain technology are two increasingly popular
approaches to distributed computing. Federated learning is a distributed machine-learning approach that
trains machine-learning models on decentralized datasets without centralizing the data. Federated learning
offers several benefits, including improved data privacy. Ensuring the benefit of clients in federated learning
is vital for the success of this distributed machine learning approach, especially when combined with
blockchain technology, as it offers a secure and transparent way to store and verify data. In this study,
we propose a combination of federated learning and blockchain as a solution to some of the challenges
faced by both approaches. By leveraging the decentralized nature of federated learning and the security and
transparency of blockchain, our approach tends to overcome issues such as data privacy and trustworthiness
of results. The evaluation results demonstrated that the proposed approach has many potential applications
in various domains.

INDEX TERMS Artificial intelligence, blockchain, federated learning, machine learning, incentive mecha-
nism.

I. INTRODUCTION
With the rise of information technology, the world is gener-
ating data at an unprecedented rate, leading to an increased
demand for data exploration and machine learning. However,
this demand is accompanied by growing concerns regarding
data protection and privacy, which hinders the use of tra-
ditional centralized machine learning methods. Traditional
methods involve collecting and storing data on a central
server, where machine learning algorithms are executed
to produce a model after training. In this approach, user
data protection and privacy depend entirely on the server
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management. Moreover, traditional methods may require
assistance in data transmission and storage. Traditional
techniques can no longer handle massive datasets because
the data size is increasing. Consequently, cloud and edge
computing have become valuable tools with powerful and
flexible computational capabilities. Cloud or edge comput-
ing technologies provide infrastructure with thousands of
computing servers and offer multimachine computation capa-
bilities worldwide [1]. For example, a single vehicle can
produce hundreds of gigabytes of data via its sensors in the
autonomous vehicle industry. The transfer and storage of data
from all vehicles on a single server are expensive and imprac-
tical [2]. Moreover, data generated from different sources are
often decentralized, making it difficult to collect and store
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data on a single machine. This is particularly true when
dealing with big data on multimachine computing servers.
A singlemachine does not have sufficient storage capacity for
large amounts of data, and transferring data between devices
can result in substantial network overhead and congestion.
Additionally, data samples cannot be spread across networks
for information and personal privacy. Consequently, there is a
need for a suitable computational framework and a distributed
method for big data.

In 2017, Google introduced a federated learning technique
to address this issue. In this decentralized approach, clients
in a learning network communicate only the parameters of
the training model with the server, thereby eliminating the
need for data transmission [3]. Federated Learning aids in
reducing the amount of data in communication, and mitigates
threats related to data privacy and protection. Centralized
storage strategies can lead to privacy risks. A federated
learning framework is used to protect privacy. This training
was performed using local model training on the end-user’s
device. The server computes only global parameters, leading
to effective privacy preservation [4].

However, another issue has been raised: the exploitation
of user data collected by organizations and businesses for
analysis and machine learning purposes and the integrity of
the learning process might not be guaranteed [5]. These data
are generally exploited for free, without users receiving any
economic benefits, even though organizations and companies
are applying traditional machine learning or federated learn-
ing methods. Furthermore, the previous schemes ignored the
evaluation of the performances contributed by specific client
datasets. Another aspect of fair trading of user data in tra-
ditional transaction schemes is the presence of a centralized
third party (such as banks and financial companies), which
poses a threat of disputation, dubiety, privacy, and so on.
Scheme-based blockchain technology is a fair and reliable
solution for this issue [6].

The combination of blockchain technology and federated
learning can help prevent personal data leakage and provide
users with a corresponding profit for their data contribution
to the machine learning of organizations and businesses.
Furthermore, this combination reduces the risk of a Single
Point of Failure, because the system is less dependent on a
central server. Based on this discussion, this paper studies the
implementation of federated learning, focusing on aggregat-
ing the weights contributed by clients in the network. In this
study, we applied smart contracts to a simulated blockchain to
record and ensure the benefits to client nodes during federated
learning.

This study has the main contribution as follows:

- Propose a machine-learning framework that applies fed-
erated learning to preclude data leakage and utilizes
blockchain to award data contributors.

- Test scenarios were conducted to evaluate and compare
the effectiveness of the proposed framework and tradi-
tional machine learning using the CIFAR-10 dataset.

The remainder of this paper is organized as follows.
An introduction is presented in section of this paper.
Section II presents the related work and background.
Section III describes the proposed system. The evaluations
are presented in Section IV. Finally, conclusions and future
work are discussed in Section V.

II. RELATED WORKS
A. NETWORK STRUCTURE OF FEDERATED LEARNING
In federated learning, the two main network structures are
the client-server and peer-to-peer modes [7]. In peer-to-peer
mode, nodes in the network cluster can only exchange data
with their neighbors. No master node handles information
broadcast or transfer [8]. In the client-server mode, a master
node controls the information exchange between all devices.
The master node receives messages from worker nodes, pro-
cesses all variables, and then sends or broadcasts information
to specific or all nodes for small-problem optimization [9].
Many algorithms in distributed environments randomly

divide datasets into small ones that are stored on different
nodes. They processed the datasets and trained the local
models in parallel. Nonetheless, this approach does not
consider the differences between the data collected from
different resources on a single machine. To address this issue,
we suggest using a global constraint to ensure a distributed
model regardless of whether the data distribution is the
same.

In this study, we discuss a distributed classification method
using a client-server mode in federated learning. In this
approach, each slave node trains its local model. Subse-
quently, the model parameters are sent to the master node.
The master node then receives all the local model parameters.
Subsequently, the global model parameters are updated using
a collaborative mechanism. The master node then broadcasts
the updated global model parameters to other nodes. This
process was repeated until the optimization problem reached
a global consensus.

B. COMPARISON BETWEEN THE CENTRALIZED AND
FEDERATED LEARNING
Asad et al. [10] indicated the differences in executions
between centralized, distributed, and federated learning and
measured the performance of those approaches in solving
classification problems.

1) CENTRALIZED LEARNING
This method involves connecting the participants to a central
server and uploading their data. The server then uses machine
learning algorithms to train a model based on these data.
The advantage of this method is that there is no requirement
for participants’ resources during training, because the server
performs the task entirely. However, this method also risks
client data, because the server can be attacked or leak infor-
mation. Additionally, the high volume of data involved in
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the transmission process can result in the probability of data
transmission failure.

2) DISTRIBUTED LEARNING
Distributed learning (distributed machine learning) is
designed to solve complex problemswith large datasets, mak-
ing it more efficient and scalable than centralized learning.
Edge computing has recently gained popularity owing to
its ability to process applications, including basic machine-
learning algorithms. This approach can be used to build
public cloud-computing services for big data applications
[11]. Distributed machine learning also implements algo-
rithms such as traditional machine learning, but these tasks
are performed independently and separately on each par-
ticipant’s machine. Initially, the server provides pre-trained
models to clients. After the clients use their own datasets
to train the models, the participating devices send the model
parameters, wi to the server. After a predetermined number of
parameter exchanges, the server calculates the global model
parameter w and performs testing, and updates the global
model. Clients cannot use the results from other clients before
receiving the global model [12].

3) FEDERATED LEARNING
Machine learning in federated learning (FL) operates sim-
ilarly to distributed learning, with some studies viewing
federated learning as a form of distributed machine learning
[13] [14], [15], [16], [17], [18], [19]. However, in federated
learning, the client runs training independently from other
clients in the network. Each client declares local epochs when
participating in the model training. After the local epochs are
completed, the local model sends its model parameters, wi.
After receiving the local model parameters from all partici-
pating clients in that round, the server performs computations
to update the global parameters, and sends the updated global
model parameters back to all clients for the next round.
In federated learning, this process continues until the global
model reaches the desired accuracy or a specified number of
rounds is reached.

C. FEDERATED LEARNING WITH BLOCKCHAIN
In traditional approaches, a centralized third party is used for
data exchange services to negotiate the settlement of trade
between data providers and consumers. This approach suffers
from issues such as extra settlement fees, a single point of fail-
ure, and ambiguity in settlement details. To overcome these
limitations, blockchain technology has been proposed as a
new settlement model [17], [18], [20], [21], [22]. Blockchain
smart contracts can be adopted to build a fair and autonomous
settlement model. It also provides and proposes an opti-
mized fault-tolerant consensus protocol. This approach can
be used to achieve an identical shared ledger that records all
transactions.

Kim indicated that the effectiveness of data privacy pro-
tection in the FL model depends on the server. If a server

contains malware, it can affect the accuracy of the global
model. It can potentially attack client data during local model
parameter exchange [23]. Additionally, Feng Yu and Hui Lin
pointed out that clients in a federated learning network have
different configurations and datasets in practice, leading to
various contributions to the global model. Hence, if these
clients do not participate in federated learning, they will
negatively affect the accuracy of the global model. There-
fore, creating a mechanism that encourages clients to actively
participate in federated learning is appropriate and positively
affects the system [24].
Feng Yu and Hui Lin also suggested that during machine

learning operations, some clients may accidentally or delib-
erately insert malware into the system, resulting in failure of
the entire system [24]. By taking advantage of local model
parameter exchangewith the server, malware can be uploaded
and spread within the system. Therefore, updates from the
local model must be recorded for reference in case of an
attack. Another scenario that leads to unexpected system
failure could be the instability of communication between the
server and clients.

Regarding incentive mechanisms, smart contracts seem to
be a powerful tool for executing contracts without relying
on a trusted intermediary. However, a disadvantage is that
all transactions related to a smart contract are visible to all
nodes in the blockchain, potentially raising privacy concerns
[25]. To solve this issue, Zether [26] introduced a decentral-
ized payment system that utilizes privacy-preserving smart
contracts in an account-based model. This innovative system
enables the concealment of account balances and the use of
confidential transactions to update the associated balances,
while keeping both transaction values and balances hidden.
Zether is fully compatible with Ethereum and similar smart
contract platforms.

In conclusion, the current client-server machine learn-
ing model has three challenges to address: (1) the system
architecture heavily depends on the server, leading to Sin-
gle Failure Point issues; the whole system will collapse if
the server is attacked or malfunctions; (2) the reliability of
participating clients and untrustworthy clients may attack
and exploit the server’s data or other peer clients during
the exchange of model parameters; (3) although FL does
not require sharing personal data, the entire system bene-
fits from it, and businesses seek to profit from the model’s
accuracy; therefore, sharing the benefits to encourage clients
to participate in training the system is appropriate and
necessary.

The BlockFL (see Figure 1) model introduced by
H. Kim and Jihong Park is summarized as follows: (1) clients
calculate and update their local models to the miners in
the main blockchain; (2) the miners are responsible for
exchanging and verifying the posted local models and then
running the consensus algorithm. (3) When the consensus
algorithm was completed, a new block was created to verify
the recorded local models. Finally, the newly created block
contains the updated global model. The block is entered into
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FIGURE 1. Description of BlockFL architecture.

the distributed ledger, and the machines in the system use that
model to calculate for the next round [23].

The above model results in the following experimen-
tal results: In terms of accuracy, BlockFL provides similar
results to the traditional federated learning models; however,
BlockFL takes longer to complete. The latency of BlockFL
increases when the number ofminers increases, becausemore
time is spent on cross-verification and creating a new block.
Regarding anti-malware, in BlockFL, a miner containing
malware will only affect the update of the global model,
whereas other normal miners in the system will recover.

D. DISTRIBUTED FILE STORAGE USING IPFS AND
BLOCKCHAIN
Several essential applications use blockchain technology
in distributed structures to ensure immutability, availabil-
ity, and security. However, as the volume of transactional
data increases, these applications are facing storage chal-
lenges. The number and size of transactions in a block on
a blockchain are increasing owing to their immutable and
append-only nature. Transactions growing in a block create
the problem of storage and access for block transactions [27].

The Interplanetary File System (IPFS) is the foundation
of Web 3.0, and it provides a decentralized file storage sys-
tem and a technique for accessing stored files using content
addressing. It connects to a P2P network and calculates a
unique hash for each file that is accessible to all nodes in
the network; the hash changes when the file is updated.
The IPFS eliminates the need for centralized authorities and
prevents the exploitation of personal information by a central
entity. Privacy is enhanced using two different key pairs:
public/private encryption keys provided by the Ethereum

FIGURE 2. The IPFS-based data storage working model.

platform and a symmetric key for encrypting an IPFS profile
when users choose to make some of their data private [28].

IPFS is a distributed data storage system that assigns a
unique hash to each stored file using content addressing.
It offers high throughput. Additionally, it offers an efficient
storage model. In addition, it provides concurrent access. The
hash created by the IPFS is 46 bytes long. The hash returned
by the IPFS and the transaction data in the IPFS are stored in
a blockchain block.

A data storage model using IPFS was proposed for
blockchain to provide efficient storage and take advantage
of IPFS features. The miners in this model collect transac-
tions. Valid transactions were put into the mining pools. They
are stored in a distributed network using the IPFS. During
mining, the IPFS network provides a unique hash for the
stored transactions. This method can be used to create new
blocks. This transaction can be accessed using the hash value,
which is known as content-addressable access. The proposed
approach maintains the actual access name of the transaction
(see Figure 2).
The IPFS is a distributed file system that uses

content-addressed storage to store and retrieve files, which
makes IPFS more efficient and secure than traditional file
systems, as files are not stored on a single server and can be
accessed from anywhere in the world. One of the key benefits
of IPFS is its low latency. (<1ms) which is significantly lower
than traditional file systems [29]. IPFS uses a distributed
network of nodes to store files, so there is no single point of
failure, making IPFS ideal for applications that require high
availability and low latency, such as streaming media and
gaming. Another key benefit of IPFS is its high reliability.
IPFS files are stored redundantly across the network, so they
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FIGURE 3. Description of FlwrBC architecture.

are highly resistant to corruption or loss [29]. IPFS is thus
ideal for storing critical data, such as medical records and
financial documents.

The IPFS can store and retrieve blockchain data, reducing
the blockchain’s storage cost while improving its security and
reliability. The low latency and high reliability of IPFS are
made possible by the underlying technology. IPFS uses a dis-
tributed hash table (DHT) to store files. DHT is a distributed
database that maps file content to a unique identifier called
a hash. This hash is used to locate the files in the network.
The DHT is self-organizing, so it can dynamically adapt to
changes in the network, meaning that the IPFS is scalable and
fault-tolerant. IPFS also uses various techniques to improve
performance, such as caching and replication, which helps
ensure that files can be retrieved quickly and reliably.

III. PROPOSED SYSTEM
A. OVERALL FRAMEWORK
The framework developed in this study is based on Flower’s
federated learning framework [30] and is combined with the
Ethereum blockchain named FlwrBC (see Figure 3). In previ-
ous studies, such as BlockFL [23] and BFL [24], the authors
also pointed out that applying blockchain to peer-to-peer
federated learning models incurs a significant gas fee and
time when the number of machines participating is large.
To address this issue, FlwrBC applies a blockchain to a client-
server model. To solve the single-point failure problem of the
model, the global model parameters are stored in a distributed
storage system, and a cloud server is proposed for use as a
server. An SSL layer was added between the client and server

to ensure a secure connection. However, within the scope of
this study, the SSL and cloud-server settings were simplified.

The FlwrBC is shown in Figure 3. The system has three
main components: clients participating in federated learn-
ing, blockchain, and an aggregated server. Clients have
separate datasets, and after training the model with their
local datasets, they send the updated local model to the
blockchain. Two smart contracts are implemented in the
simulated blockchain: the Contribution Contract and the Fed-
eration Contract. With the Contribution Contract, after the
client trains and updates the model parameters, the parame-
ters (weights) are hashed and encoded before uploading them
to the blockchain. Owing to the characteristics of blockchain,
these weights ensure traceability and immutability. In addi-
tion, the system relies on the data size of clients to log and
calculate rewards. On the side of the aggregated server, the
server sends the global model parameters to the Federation
Contract after receiving the weights from the clients and to
perform global model aggregation. The Federation contract
also performs hashing and stores the global model. In the
design, the IPFS is used as a distributed file storage system to
help the model withstand attacks if the storage system of the
aggregated server is compromised.

The program flow is shown in Figure 4. The aggre-
gated server and clients are authenticated in the blockchain,
based on the address of the corresponding account. To start
a session, (1) the aggregated server sends an API and
(2) activates an event on the blockchain to notify clients
within the blockchain. Upon receiving the notification, clients
(3) activate the client program and (4) preprocess their
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FIGURE 4. Description the program flow of FlwrBC.

datasets. (6) At this point, there are two cases: if the server
already has parameters from the previous session, it dis-
tributes them to all the clients. If the server does not have the
model parameters from the previous session, it requests these
parameters from a random client and distributes them to the
remaining clients. In each federated learning session, (7) the
server stores the global model parameter aggregation results
and the corresponding hash chain on the IPFS distributed
storage system, and (8) algorithmic information stored on the
blockchain to facilitate future tracing. (7) After local training,
the client saves the new local parameter information to the
local database and then submits the parameters, associated
hash chain, and related information to the blockchain through
a Contribution Contract smart contract. (9) After the feder-
ated learning session was completed, each participant client
was rewarded with a token amount corresponding to the data
point contribution in that session. (10a) To use the results
of federated learning, clients save the final global model
parameters in their local database for prediction at the end
of each session. (10b) If a new device wants to use the global
for prediction but has yet to participate in the training, it can
obtain the model from IPFS for its prediction.

B. THE MECHANISM OF FEDERATED LEARNING
IN FLWRBC
Figure 5 shows the server-client communication process.
This is divided into three sections: strategy, server, and
client. A strategy is the federated learning algorithm that
runs on the server, which decides how to sample clients,

FIGURE 5. Data flow in federated learning mechanism of FlwrBC.

configure for training, aggregate updates, and evaluate the
models. The initialize_parameters are called only once at
the beginning of execution by the server. Consequently, the
parameters are passed to initial_parametersif there are any.
If no parameters are returned from initialize_parameters,the
server arbitrarily asks one client in the network to provide
its parameters.In the federated training stage, the server calls
configure_fit to select clients and decides the instructions
to send to these clients. The return value is a list of tuples
in which each item represents an instruction (FitIns) sent
to a specific client (ClientProxy). For each instruction sent
to clients selected by configure_fit, the clients will result
and return FitRes to the server. In this process, the fail-
ure is not promised to be carefree, and the server thus
receives a list of successes and failures as List[FitRes].
The aggregate_fit method returns aggregated_parametersif
aggregated_fitdecides that the result is valid, or it can be
concluded that the result is insufficient for aggregation if
there are too many failures in the list. The framework has
two approaches to evaluation: server-side evaluation and
client-side evaluation. In client-side evaluations such as con-
figure_fit, configure_evaluatedecides how to sample those
clients and sends instructions to the corresponding clients.
aggregate_evaluate is then responsible for aggregating the
list of successes and failures of evaluation resulting from
clients. In server-side evaluations, having both evaluate and
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FIGURE 6. Data exchange in federated learning mechanism of FlwrBC.

configure_evaluate/aggregate_evaluate enables strategies to
perform server-side and client-side evaluations.

The framework principle focuses on the communication
between clients and the server, as shown in Figure 6. The
server is responsible for coordinating the federated learning
process on the available set of client machines. Clients com-
pute the local training of the model using their own data.
Global logic concerning the selection of clients, configuration
of the global model being trained, and the algorithm for
aggregating the model’s parameters (aggregated weights) is
defined in the abstract strategy class. This study employs
a federated averaging algorithm. This strategy is called the
FedAvg Strategy. Local logic is defined for training and
evaluating local data. The server has three main components:
client management for client proxies, federated learning
loops, and strategies. A client proxy represents a client con-
nection to the server, and is responsible for transmitting
messages to the client. The federated learning loop relies on
the strategy class to configure the next round of learning,
and sends that configuration to available clients while also
receiving parameters from the clients, the state of the clients
(success or failure), and the aggregated parameters of the
global model.

Theworkflow of themachine learning component is shown
in Algorithm 1. First, in the session initialization step, the
server initializes the parameter set w0 from the global model
of the previous session or selects a random client parameter
set w0 if this is the first session and passes it to the partici-
pating clients in that round. In addition to w0, the parameters
for the number of rounds, local epochs, batch size, and global
model parameter aggregation algorithm were also defined by
the server in this step. Second, in step two, depending on the

Algorithm 1 FlwrBC – Federated Learning Process
Input:
Strategy parameters
Set of clients participating in the
training: C = {Ck ; k = 1, 2, . . . , n}
The number of rounds in the session: R
Output:
The global weights of the session

Step 1: initialize
Server side

initialize strategy parameters
if w0 exist from previous session:
Broadcast w0 to C

else:
take w0 from a random client and

broadcast to C
Step 2: local training
Each clientCk ∈ C execute

Ck load global model architecture
Ckpre-process datasetPk
r ← 1
while r ≤ R:
Cktraining onPk
send wrk to server

Step 3: aggregated model
server receives local models from C ,

and aggregated model for next round by
FedAvg

wr ← FedAvg(wrk , k = 1, 2, . . . , n)
validate model with parameter wr

send wr to C for next round
r ← r + 1

Step 4: repeat until r = R or model is
converged
return global model

number of rounds R specified in the initialization step, clients
train locally on their own dataset based on the initializa-
tion parameters. Subsequently, client k sends its local model
parameter wrk at round r back to the server for aggregation.
In step three, after aggregating the models using the FedAvg
algorithm, the server evaluated the global model wr at round
r on the test dataset. In step four, the server sends the global
model parameter wr of that round back to clients to continue
the training process. This cycle was repeated until a specified
number of rounds (r = R) is completed.

C. THE MECHANISM OF BLOCKCHAIN IN FLWRBC
1) SMART CONTRACTS IN FLWRBC
Owing to the decentralized, immutable, secure, and transpar-
ent characteristics of the blockchain, the framework utilizes
blockchain technology to record federated learning activities
and incentivizes clients to participate in federated learning.
As outlined in the general framework, the blockchain in the
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Algorithm 2 Contribution Contract Interface
Procedure CALCULATECONTRIBUTION

Check whether a Work was not
contributed

Check whether a Work finished
if a Work is finished and has

proper dataSize then create a block for
contribution and a block for reward

emit contributeEvent
end if

end procedure

function GETCLIENTADDRESSES: returns an
array of client addresses
function GET_RNOS: returns an array of
rNos
function GETCONTRIBUTION: returns
contribution
function GETBALANCE: returns balance

system consists of two smart contracts: the Federation Con-
tract (see Algorithm 3), which is responsible for storing and
tracing the global model aggregation activities at the server;
and the Contribution Contract (see Algorithm 2), which is
used to store, trace, and reward the local training activities
of clients. Algorithms 2 and 3 define the interfaces between
these two smart contracts.

2) REWARDING MECHANISM
According to a study by Yu [31], continuous client partic-
ipation and long-term federated learning are essential for
achieving high model performance. Some famous frame-
works of federated learning, such as TensorFlow Federated
(TFF) or FATE by WeBank, assume that there is always an
existing participating group to join the process; therefore,
those frameworks want reward mechanisms. However, this
assumption was impractical.

In the same study, Yu identified three common approaches
to profit sharing: (1) egalitarian profit sharing, where profits
are evenly distributed based on the amount of data; (2) util-
itarian profit sharing, where profits are distributed based on
the marginal utility gained from each client’s participation;
and (3) loss-based profit sharing, where profits are deter-
mined by the reduction in utility due to a client’s failure to
participate.

In this study, we developed a reward mechanism based on
egalitarian profit-sharing by calculating the reward based on
the client’s data size and the number of rounds participating
in a training session. Specifically, in a training session with
a predefined budget B, R rounds, and N participating clients,
clientCi with dataset di and participating in ri rounds (ri ≤ R)
receives a reward Pi as shown in Equation 1.

Pi =
di ∗ ri∑N
i=1 di

∗
B
R

. (1)

Algorithm 3 Federation Contract Interface
Declare contract Federation

Declare struct Weight
Declare variable dataSize of type uint
Declare variable filePath of type

string
Declare variable fileHash of type

string
End struct

Declare struct GlobalModel
Declare variable filePath of type

string
Declare variable fileHash of type

string
End struct

Declare struct Strategy
Declare variable algoName of type

string
Declare variable numRounds of type uint
Declare variable numClients of type

uint
End struct

Declare mapping weights with key of
type uint, value of mapping with key of
type uint, and value of mapping with key of
type address to store Weight structs

Declare mapping models with key of type
uint, value of mapping with key of type
uint to store GlobalModel structs

Declare mapping strategies with key of
type uint to store Strategy structs

Declare event addStrategyEvent with
parameters _algoName of type string,
_num_client of type uint, and _num_round
of type uint

Function addWeight: store weight
information on the blockchain

Function getWeight: return the weight
of given session and given round number

Function addModel: store global model
information at the specific session and
round number to the blockchain

Function getModel: return global model
of a given session and given round number

Function addStratergy: store strategy
algorithm information at the specific
session to the blockchain

Function getStratergy: return strategy
algorithm information of a given session
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IV. EXPERIMENT
A. ENVIRONMENTAL SETTING
The FlwrBC framework was primarily written in Python and
built on two main frameworks: Tensorflow and Flower. Ten-
sorFlow was used for pre-processing data, building models,
and training model functions. A flower is used to deploy fed-
erated machine-learning models. For blockchain simulation,
FlwrBC uses truffle and ganache to simulate the Ethereum
blockchain and deploys smart contracts. The project waswrit-
ten in Python and the NodeJS package was used. Therefore,
Anaconda set up a virtual environment with a configuration
specified in the ENV.txt file of the project. The test machine
had a configuration similar to that of an AMDRyzen 7 5800H
CPU (16 threads, 8 cores, 3.20 GHz), 16GBRAM, GTX1650
4GB GPU, and Windows 11 OS. The system has three main
components: the Blockchain, Server, and Client.

B. DATASET DESCRIPTION
In this experiment, FlwrBC was used to perform the image
classification using the CIFAR-10 dataset [32]. CIFAR-10
is a popular computer vision dataset used for image-
classification problems. The CIFAR-10 dataset contains
60,000 randomly arranged color images (50,000 training
images and 10,000 testing images) belonging to ten classes,
each with 6,000 images (5,000 training and 1,000 testing).
The classes in CIFAR-10 include airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each
image in the CIFAR-10 had a size of 32× 32 pixels. We used
a convolution neuron network with 3 × 3 layers to train this
dataset for both centralized and federated learning.

C. PERFORMANCE EVALUATIONS
To evaluate the performance and compare local and federated
machine learning, the following metrics were used:

• Accuracy: The percentage of correctly predicted data
from the total number of observed samples is calcu-
lated. True Positives (TP) are correctly predicted data
belonging to the correct group. False Positives (FP)
are incorrectly predicted data belonging to the correct
group. True Negatives (TN) are correctly predicted data
belonging to the wrong group, and False Negatives (FN)
are incorrectly predicted data belonging to the wrong
group. The accuracy formula was as follows: accuracy=
(TP + TN) / (TP + NP + TN + FN).

• Loss: Determines the difference between the model
predictions and actual values. In this thesis, the sparse-
categorical cross-entropy loss function is used. A lower
loss value indicated that the model predictions were
closer to reality.

• Precision: Calculates the percentage of correctly pre-
dicted data in the correct group out of the total predicted
data in the correct group. The formula used was Preci-
sion = TP / (TP + NP).

• Recall: Calculate The percentage of correctly predicted
data in the correct group is calculated from the total

actual data. The recall formula was Recall = TP /
(TP + FN).

• F1-Score: a combined score for recall and precision.
A higher F1 value indicates a higher accuracy and recog-
nition of a model. The F1-Score formula was F1 = 2 ×
precision × recall / (precision + recall).

• ROC-AUC score: calculated by plotting an ROC curve
and calculating the area under the ROC curve based on
the ratio between the true positive and false positive
rates.

This study compares the accuracy and confusion matrix
metrics with the local machine learning results. The training
scenario for local machine learning was as follows: batch
size,32; epochs,10; dataset, CIFAR-10. The training scenario
for federated machine learning was as follows: number of
clients,3; local batch size,32; local epochs,2; and number of
training rounds,10. Figure 7 shows a comparison of central-
ized learning and FL in terms of the accuracy and lossmetrics.
These metrics indicate that both approaches provided models
with equal accuracy after training, where centralized learn-
ing achieved 75.7% and federated learning reached 76.3%.
By contrast, the loss metric between the two models shows
that local machine learning has a better index (0.766 for
FlwrBC and 0.698 for local machine learning).

However, in Figure 8, when comparing the confusion
matrices, the results of the two models show that the FlwrBC
model can recognize each class better than Centralized Learn-
ing. Notably, in classes 0, 2, 4, and 5, FlwrBC had a darker
color than Centralized Learning. Darker-colored cells exhib-
ited high values. If the elements on the main diagonal of
the confusion matrix have large values, and the remaining
elements have small values, it is considered a good model.
In other words, when representing colors, the darker the
diagonal line compared to the rest, the better. Similarly, the
ROC-AUC score of for each class in FlwrBC outperformed
that of local machine learning. Especially in class 3, both
models had the lowest ROC-AUC score, but FlwrBC had a
higher score of 93.56% compared to 92.16% in centralized
learning. This is also in agreement with the comparison of
F1 scores in Table 1, where the FlwrBC metric yields higher
outcomes than the local machine learning by two percent-
age points; specifically, the average F1-score of FlwrBC is
0.78 compared to 0.76 of the local machine learning.

The efficiencies of the two machine-learning methods,
Centralized Learning and Federated Learning, are compared
in Table 1. The table displays the performance of each
method in terms of three metrics: Precision, Recall, and F1-
Score, which measure how well the methods can classify the
data into ten different classes. In addition, the table shows
the average performance of each method across all classes.
According to the results, Federated Learning is slightly more
efficient and robust than Centralized Learning, as it achieves
higher values for all three metrics in most classes and average
performance. In Classes 4 and 9, Centralized Learning per-
formed similarly or slightly better than Federated Learning.
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FIGURE 7. Comparison of accuracy and loss between FlwrBC and centralized learning.

TABLE 1. Precision, recall, F1-score between FlwrBC and centralized learning.

Class 4 had identical performances for both methods, with a
precision, recall, and F1-score of 0.81. In class 9, Centralized
Learning had a slightly higher performance, with a precision
of 0.83, recall of 0.82, and F1-score of 0.82, compared to
Federated Learning’s precision of 0.82, recall of 0.81, and
F1-score of 0.81. The most significant difference between the
methods was observed in Class 3, where Federated Learning
had a precision of 0.88, a recall of 0.87, and an F1-score

of 0.87. In contrast, Centralized Learning had a precision of
0.75, recall of 0.74, and F1-score of 0.74. This result indicates
that Federated Learning is more accurate and consistent in
identifying Class 3 than Centralized Learning. The smallest
difference between the methods was observed in class 10,
where Federated Learning had a precision of 0.79, recall of
0.78, and F1-score of 0.78, while Centralized Learning had a
precision of 0.78, recall of 0.77, and F1-score of 0.77. This
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FIGURE 8. Comparison of confusion matrix and ROC curve between FlwrBC and centralized learning.

similarity indicates that both methods were almost equally
efficient in classifying Class 10.

V. CONCLUSION AND FUTURE WORKS
As the amount and variety of data grow, security and data pri-
vacy pose significant challenges to data mining for machine
learning. Traditional machine learning methods often do not
address these challenges and require considerable bandwidth
to exchange parameters between clients and servers during
model training. Federated learning has been proven to offer
several benefits over traditional methods, including reduced
bandwidth load and improved security and privacy concerns.
However, federated learning also has risks such as the risk
of lazy clients who do not want to contribute to the model,
complex traceability, and single-point failure. Blockchain
technology has been integrated to address the abovemen-
tioned challenges by leveraging its unique technical features
to improve the model performance. The experimental results

demonstrate that the performances of both machine learn-
ing models are comparable, with federated learning showing
slightly better results. Distributing the workload among client
machines reduces the server workload, thereby ensuring the
efficiency of other tasks.

Although the system currently addresses simple image
classification, the framework can be adapted to handle other
issues by changing themachine-learning algorithmwithin the
system. Additionally, the system will further explore reward
algorithms that focus on the degree of contribution of local
models to the global model rather than solely relying on the
data size. This new reward system encourages higher-quality
data, rather than simply rewarding quantities. Furthermore,
the author seeks other blockchain platforms that are more
suitable and cost-effective as the system scales up.

This framework can address issues beyond image classi-
fication, such as malware detection and anomaly detection
[33]. This approach helps prevent the leakage of user infor-
mation and encourages the community to participate in the

VOLUME 11, 2023 107865



N. T. Cam, V. T. Kiet: FlwrBC: Incentive Mechanism Design for FL by Using Blockchain

training process, leading to a broader dataset and a more
efficient training process. Nonetheless, the system developed
in this thesis is still in progress, and there is ample room for
improvement.
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