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ABSTRACT Recently,Wi-Fi-based human activity recognition using channel state information (CSI) signals
has gained popularity due to its potential features, such as passive sensing and adequate privacy. The
movement of various body parts in between Wi-Fi signals’ propagation path generates changes in the signal
reflections and refraction, which is evident from the CSI variations. In this paper, we analyze the relationship
between human activities and properties (amplitude and phase) of Wi-Fi CSI signals on multiple receiving
antennas and discover the signal properties that vary remarkably in response to human movement. The
variation in the signal received among multiple antennas shows different sensitivity to human activities,
directly affecting recognition performance. Therefore, to recognize human activities with better efficiency,
we proposed an adaptive antenna elimination algorithm that automatically eliminates the non-sensitive
antenna and keeps the sensitive antennas following different human activities. Furthermore, the correlation
of the statistical features extracted from the amplitude and phase of the selected antennas’ CSI signal was
analyzed, and a sequential forward selection was utilized to find the best subset of features. Using such
a subset, three machine learning algorithms were employed on two available online datasets to classify
various human activities. The experimental results revealed that even when using easy-to-implement, non-
deep machine learning, such as random forest, the recognition system based on the proposed adaptive
antenna elimination algorithm achieved a superior classification accuracy of 99.84% (line of sight) on the
StanWiFi dataset and 97.65% (line-of-sight) / 93.33% (non-line-of-sight) on another widely applied multi-
environmental dataset at a fraction of the time cost, demonstrating the robustness of the proposed algorithm.

INDEX TERMS Human activity recognition, channel state information, adaptive antenna elimination,
machine learning, artificial intelligence, Wi-Fi, smart home.

LIST OF ACRONYMS
AAE adaptive antenna elimination
CNN convolutional neural network
CSI channel state information
FN false negative
FP false positive
GRU gated recurrent unit
HAR human activity recognition
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HMM hidden Markov model
KNN k-nearest neighbor
LOS line-of-sight
LSTM long short-term memory
MAD mean absolute deviation
MIMO multiple-input multiple-output
ML machine learning
NLOS non-line-of-sight
OFDM orthogonal frequency-division multiplexing
PCC Pearson correlation coefficients
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PWR power
RF random forest
RSSI received signal strength indicator
SFS sequential forward selection
SNR signal-to-noise ratio
SVM support vector machine
TN true negative
TP true positive

I. INTRODUCTION
Human Activity Recognition (HAR) is one of the key factors
in a smart home that monitors daily activities using a set
of Internet of Things gadgets in the context of a smart
home. Thanks to such monitoring, a smart house can provide
occupants, especially disabled and aging citizens, with
individualized home care services to enhance their quality of
life, independence, and health. HAR has gradually become
one of the most notable research topics in diverse fields
because of its numerous applications, including fall detection
[37], [54], elderly monitoring [36], context awareness [21],
[34], driver behavior analysis [25], sports assistance [5],
gesture recognition [39], edutainment [18], and information
retrieval [12], [40], among others. The sophisticated design
and suitable usage of sensors are essential to obtain high-
quality sensory observations that may be used to identify
users’ activities and behaviors [30].
Conventional HAR methods use different sensing tech-

nologies: vision-based [1], wearable-based [47], and radars
[27]. Vision-based is a prominent and first sensing technology
where a camera is used to obtain human movement data
from the neighboring environment, which achieves good
performance but is susceptible to various factors, such
as measuring volume, light and environmental conditions,
and user privacy. These limitations significantly impact
the outcome of vision-based HAR in many applications.
In wearable-based HAR, signals are obtained from wearable
devices and sensors, which has been widespread and
fruitful. In addition, sometimes users need to carry different
devices, for example, smartphones, smartwatches, and smart
bracelets, to gather cumbersome human activity data, which
is inconvenient, particularly for elders and disabled people.
Moreover, activity recognition could be impracticable if the
person does not have the required tools with them. Radar-
based HAR collects data using specialized equipment, such
as universal software radio peripherals, but its coverage area
is limited.

Wi-Fi-based methods, hybridizing the following features,
can be the emerging way to bridge the issues associated with
vision, sensor, and radar sensing technologies [51]. First,
no camera/wearable and non-invasiveness enable uncompli-
cated data acquisition while preserving adequate privacy.
Second, Wi-Fi signals have extensive transmission that can
propagate through walls, furniture, and doors, ubiquitous
in indoor environments as a reliable and vital source of
information. Third, Wi-Fi signals are reflected by the human

body [24], [48], whose changing patterns can be utilized for
detecting different activities. Last but not least, the ease and
efficiency ofWi-Fi signal acquisition allow it to be potentially
applicable to real-time or online HAR [18], a task that often
requires complex research when utilizing vision or wearable
technologies, particularly against the capacity, speed, and
accuracy of data transmission [33].
Currently, available Wi-Fi-based HAR uses two metrics to

represent a Wi-Fi signal: received signal strength indicator
(RSSI) and channel state information (CSI). RSSI represents
coarse-grained information and has been used primarily for
indoor localization [20] and HAR [13]. RSSI signal analyzes
changes in the received signal’s strength but fails to detect
the changing signals generated by a moving person. As the
gap between human movement and the receiver antenna
increases, the RSSI signal, which measures changes in the
strength of the received signal, becomes erroneous, affecting
the overall performance of the system [35]. In contrast, CSI
measures fine-grained signals and is applied to a variety
of tasks, including handwriting recognition [15], position
estimation [49], fall detection [53], and micromovementnt
identification [50]. CSI signals expediently capture the
propagation signal information between the transmitter and
receiver antenna pairs at a particular carrier frequency.
As summarized in [37], generic human activities can be
classified based on CSI signals using time-frequency features
such as torso and limb velocities by characterizing the
changing speed of the reflected path length in subcarrier
amplitudes. Such velocities are similar to those obtained from
Doppler radars without movement direction. The critical
insight of HAR through the Wi-Fi CSI signal is that the
amplitude and phase of the CSI signal generated by human
movement or object differ from the regular measurement
without movement, through which we can analyze the
received signals, in particular their amplitude and phase
information, to recognize human activities. Furthermore,
existing research demonstrates that CSI signals perform
better in complicated situations than RSSI (see Section II)
because, in interior environments, the amplitude and phase
information provided by CSI can clearly distinguish between
moving and steady signal patterns. This article applies Wi-Fi
CSI signals for the HAR study.

There are challenges associated with employing CSI sig-
nals to recognize human activities. The relationship between
various human movements, surrounding environments, and
antenna placement results in different antenna sensitivities to
different activities. Antennas are easily affected by external
factors due to changing environment and different human
activities. Hence, in this article, an adaptive antenna elim-
ination algorithm is proposed to eliminate nonsusceptible
antennas and keep the most sensitive antenna signals related
to human activities. Moreover, several statistical features are
computed from each selected antenna’s amplitude and phase.
The correlation of the extracted features is analyzed, and
to reduce the data overfitting, the wrapper feature selection
technique has been used to find the most informative features.
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Three machine learning (ML) models are trained with the
optimal feature set on two open datasets, evaluated by a ten-
fold cross-validation. The experimental results demonstrated
that the proposed HAR performs better than or on par with
state-of-the-art methods for recognizing human activity with
respect to accuracy, precision, recall, and F1-score, with a
significant enhancement of efficiency and simplicity. The
main contributions of this article are:
• We proposed an adaptive antenna elimination algorithm
to automatically eliminate non-sensitive antennas and
keep critical antennas, which reduces unnecessary data
and enables efficient HAR;

• Unlike previous studies that solely employ either
amplitude or phase information, we jointly utilize
the amplitude and the phase information in the CSI
sequence to enhance the recognition accuracy;

• Our proposed system, erected on a set of experimentally
selected superior features, outperforms the existing
state-of-the-art works on two widely-applied datasets
in terms of its high-level activity recognition capability
with a low time cost.

II. BACKGROUND AND RELATED WORK
Because of the availability and numerous advantages of Wi-
Fi communication, Wi-Fi signal-based HAR methods have
become popular recently. In this section, we review existing
Wi-Fi-basedHARmethods, where those existingmethods are
divided into RSSI and CSI.

A. HUMAN ACTIVITY RECOGNITION BASED ON RECEIVED
SIGNAL STRENGTH INDICATOR (RSSI)
RSSI signal-based HAR approaches rely on the change in
the received signal strength introduced by different human
movements. Sigg et al. [43] designed a HAR approach in
which a mobile phone collected RSSI signals to recognize
human activities. They acquired data from the three cases of
a mobile phone: lying on a table in an empty room, lying on
a table while a subject is moving around the room, and being
held and managed by a subject. They extracted and selected
features, based on which the system achieved recognition
accuracy of 52% for 11 gestures and 72% for four chosen
gestures.

An online HAR system by Gu et al. [14] analyzed RSSI
fingerprints from various human activities. Gu et al. [13]
presented a unique recognition case utilizing the RSSI signal
and developed a fusion approach with k-nearest neighbor to
identify human activities at an average accuracy of 92.58%.
A hardware device was applied in Sigg et al. [44] to obtain
RSSI signals from the surrounding environment for the
recognition of four different activities, including walking,
standing, crawling, and lying down, which reported an
accuracy greater than 80%. Youssef et al. [57] presented
a localization system using an RSSI signal, which detects
different environmental changes and tracks passive entities.

So far, RSSI has been less effective in complex operations
since it only provides coarse information about channel

variations and can often be influenced by multipath effects
and noise [7], [51].

B. CHANNEL STATE INFORMATION (CSI)
CSI describes the channel characteristics of a communication
link, referring to the propagation of the signal affected by
human movement between the transmitter and receiver to
indicate distance, scattering, the effect of power, and fading,
among others. CSI can be applied in cognitive scenarios such
as HAR, gesture recognition, and location tracking by virtue
of its distinguished sensitivity to the environment. Modern
wireless technology adopts the multiple-input multiple-
output (MIMO) system consisting of multiple transmitting
and receiving antennas. Each transmitter-receiver antenna
pair forms a communication channel to send adjacent
information over the established channel using various
modulation techniques, the most widespread of which is
orthogonal frequency-division multiplexing (OFDM) that
uses a MIMO channel’s bandwidth to send information on
several concurrent orthogonal subcarrier frequencies. Each
of these subcarriers can be identified using CSI. In CSI
metric/wireless systems, the MIMO-OFDM technique can be
modeled as

yi = Hixi + v, i = 1, 2, 3, . . . ,N , (1)

where Hi ∈ CNR×NT represents the CSI matrix of the ith

subcarrier, v denotes the noise term, N denotes the number
of OFDM subcarriers, and yi ∈ RNRx and xi ∈ RNTx are the
ith received and transmitted signals, respectively.

Hi =


h11i h12i · · · h1NRi
h21i h22i · · · h2NRi
...

...
. . .

...

hNT 1i hNT 2i · · · hNTNRi

 , (2)

where hjki is the CSI of the ith subcarrier for the link
between the jth transmitted antenna and the k th receiving
antenna.

Using the CSI matrix Hi, CSI describes the signal
attenuation factor along each transmission line. This includes
signal scattering, power decay with distance, multipath
fading, and other details. The amplitude-frequency and
phase-frequency properties of a signal are used by the channel
frequency response to characterize the multipath propagation
of the signal. The mathematical expression of the frequency
response is given as

hjki = |h
jk
i |e

j̸ hjki , (3)

where |hjki | and ̸ h
jk
i denote amplitude and phase, respec-

tively.

C. HUMAN ACTIVITY RECOGNITION BASED ON CSI
Compared to RSSI, which measures only power over the
entire channel bandwidth, CSI provides a set of channel
estimates for each subcarrier of each transmission link.
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Wang et al. [52] designed a CSI-based human action
recognition and monitoring method (CARM) using time-
frequency features such as torso and limb velocities. CARM
consists of two models: a CSI-speed model describing the
connection between CSI kinematics and human motions and
a CSI-activity model explaining the relationship between
human activities and movement speed. CARM performed
a recognition rate of 96% and can withstand environmental
changes. Yousefi et al. [56] created the StanWiFi dataset
from Wi-Fi-based CSI signals, on which statistical features
were extracted for the modeling research of long short-
term memory (LSTM), hidden Markov model (HMM), and
random forest. Chen et al. [7] proposed an attention-based
bidirectional LSTM (ABLSTM) model to identify passive
human activities utilizing CSI signals, outperforming other
benchmarks. A Wi-Motion system was proposed in [26] to
recognize five activities in line-of-sight (LOS) and non-line-
of-sight (NLOS) scenarios. Moshiri et al. [11] presented
a deep learning-based HAR approach on Raspberry Pi by
collecting CSI signals of seven human activities. They trans-
formed CSI signals into 2-D images using pseudocolor plots
and evaluated four convolutional neural networks (CNN)
or LSTM models, namely 1D-CNN, 2D-CNN, LSTM, and
bidirectional LSTM, among which 2D-CNN reached 95%
accuracy. Alsaify et al. [2] constructed a multi-environmental
HAR system using CSI signals at an overall recognition
rate of 91.27% through denoising, activity segmentation,
statistical feature extraction and selection, and support vector
machine training. Salehinejad and Valaee [41] introduced a
LiteHARmodel with a random convolution kernel for feature
extraction, achieving 93% accuracy on a public dataset.
Yadav et al. [55] presented an advanced version of the
InceptionTime network, named CSITime, and evaluated it on
three public datasets. Shalaby et al. [42] studied four deep
learning models on the StanWiFi dataset, among which the
CNN gaited recurrent unit (CNN-GRU) model acquired an
accuracy of 99.31% with a time cost of 0.0033 seconds per
sample. The accuracy of the attention model on CNN-GRU
is 99.16%, but the sample-wise time consumption drops to
0.0019 seconds. Very recently, Islam et al. [22] proposed a
deep learning model, called spatio-temporal convolution with
nested LSTM (STC-NLSTMNet), which reaches 99.88% and
98.20% accuracies on two public datasets.

The literature listed above delivers that several researchers
have worked on recognizing human activity using diverse
Wi-Fi signal-based approaches in signal processing, ML, and
deep learning. One issue that has not yet received enough
attention is that the mapping of human activities with Wi-
Fi CSI signals on multiple antennas is affected by different
sensitivities due to the fact that the Wi-Fi signals received
by the antenna can be reflected during the transmission. The
study on sensitivity changes in response to different activities
in a multi-antenna scenario, including amplitude and phase
variations, should help enhance HAR, motivated by which
we analyzed the antenna’s sensitivity following different
activities and proposed an adaptive antenna elimination

(AAE) algorithm that can eliminate non-sensitive antenna
data during signal processing.

AAE aspires to reduce complexity and improve training
and recognition efficiency by eliminating the least sensitive
antenna. Pursuing the model simplification is also a reason-
able consideration in the spirit of further reducing complexity.
We found that most Wi-Fi-based HAR studies are based on
deep learning, which is known to be more complex and time-
consuming than regular ML in principle. Therefore, three
non-deep ML models are applied in this article, aiming to
• Confirm whether AAE is effective with plain ML
models rather than deep learning. The latter might
naturally lead to better results;

• Provide a lightweight Wi-Fi-based HAR scheme, which
not only minimizes redundancy in data utilization but
also engages minimalism in the model, thus ensuring
simplicity, low consumption and high efficiency, and
partial interpretability.

III. DATASETS
Data corpus is an essential and critical resource in all
aspects of ML and deep learning. We employed two publicly
available Wi-Fi signal-based datasets for our HAR study:

STANWIFI
Yousefi et al. collected a dataset in an LOS environment of
an indoor area [56]. We refer to this dataset as StanWiFi,
following the name given in [41] and [55]. Six partici-
pants performed each of the six activities (Fall, Run, Lie
down, Walk, Sit down, and Stand up) twenty times. The
experimenters used one Wi-Fi router with one antenna as
a transmitter and a laptop equipped with an Intel
 5300
NIC with three antennas as a receiver to collect data. The
receiver was located three meters from the transmitter, and
the sampling rate was 1000 Hz. Each subject completed each
session within 20 seconds, starting and ending in a stationary
state.

MULTIENVIRONMENT
The dataset [3] was collected from three indoor environments.
The provider did not name this dataset; for the sake of
narrative, we will call it ‘‘MultiEnvironment’’ in this article.
One of the LOS scenarios, the office, set the distance between
the receiver and the transmitter at 3.7 meters. The NLOS
scenario had a barrier (an eight-centimeter wall) between
the transmitter and the receiver. Thirty persons were asked
to perform five sessions: falling from a standing or sitting
position, walking, sitting down and standing up from a chair,
and picking a pen from the ground, each repeated 20 times.
Subsequently, each sessionwas divided into several activities.
For example, falling from a sitting position was divided into
three activities: sitting, falling, and lying. The authors of [2]
and [4], who belong to the group of dataset owners, identified
12 classes from these five sessions and reorganized them
into six labels for HAR, listed in Table 1. We followed the
data provider’s work by applying the six-category activity
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TABLE 1. Human activities and their descriptions in the
‘‘MultiEnvironment’’ dataset [3].

FIGURE 1. Overall workflow of the proposed Wi-Fi signal-based HAR
system.

labeling in our study on both the LOS (office) and the NLOS
scenarios. The total number of samples is 3,000 (30 subjects
× 5 experiments × 20 trials). Two computers were used to
collect data, one as a one-antenna transmitter and the other as
a three-antenna receiver.

IV. METHODS
Figure 1 portrays the overall workflow of the proposed HAR
system in this article, which consists of five primary aspects:
data preparation, antenna analysis, signal processing, feature
research, and modeling.

A. ANTENNA ANALYSIS FOR ADAPTIVE ELIMINATION
AMIMO system consists of multiple transmitter and receiver
antennas. Both the StanWiFi and ‘‘MultiEnvironment’’
datasets have one transmitting and three receiving antennas.
The Wi-Fi signals from the transmitting antenna can be
reflected by the human body during the propagation route to
the receiving antenna. In the context of the variety of human
movements and the surroundings, antennas are sensitive to
external information like human movement direction and the
antenna’s vertical dimension. As a result, receiving antennas
have different susceptibilities to different activities, for which
previous works concentrated on subcarrier selection and
fusion techniques [46]. However, subcarrier selection on non-
sensitive antennas does not show any significance, which
indicates that various antennas exhibit varying sensitivity to
the same human activity.

FIGURE 2. Example of three antennas’ signal visualization for the
activities running (top) and walking (bottom). Each antenna has
30 subcarriers indicated in different colors.

Figure 2 (Running) diagnoses that for the activity run-
ning in such a case, the first and second antennas are
more sensitive, while the third does not show significant
perceptibility. Similarly, the first and third antennas exhibit
more sensitivity for walking, as Figure 2 (Walking) evinces.
It can be witnessed that the amplitude signal of a sensitive
antenna changes substantially, while that of a non-sensitive
antenna keeps relatively stable. Hence, eliminating non-
sensitive antennas should be a potential way to enhance HAR.

The signal that the non-sensitive antenna receives is
severely corrupted by the surrounding noise and only vaguely
depicts human activities. Possible reasons are a combination
of factors such as environments, antenna positioning, and
human body movement. Our goal is to distinguish the
sensitive and non-sensitive antennas. Therefore, we proposed
an adaptive antenna elimination algorithm that adaptively
eliminates antennas based on their sensitivity to different
human activities:
1) Let CSIa,s,p(i) denote the ith sample’s CSI value in

packet p of antenna a’s subcarrier s. Antenna a’s mean
value sequence of all its subcarriers is computed as

µa(p) =
∑
s∈a

∑
i∈p

CSIa,s,p(i), (4)

where in our applied datasets, a = 1, 2, or 3 and s = 1,
2, . . ., 30, respectively.
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FIGURE 3. Example of an adaptive antenna elimination (AAE) procedure
on a CSI data stream: (a) average values of each antenna’s 30 subcarriers;
(b) standard deviation values based on the signals in (a) using sliding
window; (c) the elimination of the non-sensitive antenna based on values
in (b).

2) To distinguish the antenna’s sensitivity to human
activities, the sliding window-based standard deviation
sequence of antenna a’s µa(p) is calculated with a
window size l. The nth standard deviation value in the
sequence is

σa(n) =

√
(
∑n+l−1

i=n (µa(i)−
∑

i µa(i))2

l − 1
, (5)

where in this work, l and the sliding step equal 3 and 1,
respectively. Let σa = [σa(1), σa(2), · · · ] denote the
standard deviation sequence.

3) Antenna a’s sensitivity is the maximum minus the
minimum of its [σa]:

sensitivitya = max σa −min σa, (6)

based on which the antenna with the lowest sensitivity
should be eliminated.

The procedure elucidated above provides a reasonable
basis for selecting between sensitive and non-sensitive anten-
nas, as displayed in Figure 3 (b), a visualization perspective
preliminarily validating the possibility of eliminating non-
sensitive antennas: The proposed AAE algorithm eliminates
one antenna based on the lowest values and keeps the other
two antennas, as resulted in Figure 3 (c). The pseudocode of
AAE is given in algorithm 1.

In the current version of AAE, two of the three antennas are
retained and one is eliminated. Questions may arise. What if
all three antennas are sensitive, one is sensitive, or all are non-
sensitive? More sophisticated selections can be made, but at
the current stage they are not necessary because
• If a selection algorithm screens out three non-sensitive
antennas, no data is left to use. In this case, it makes
sense to eliminate the least sensitive one and keep two
to provide some helpful information;

Algorithm 1 Pseudocode of Adaptive Antenna Elimination
(AAE)
1: Input: CSI data sequence D containing multiple anten-

nas with multiple subcarriers each
2: Output: Remaining antennas after eliminating the least

sensitive antennas
3: function AAE (D):
4: window size l← 3
5: step← 1
6: for a in all antennas do
7: mean value sequence µa ← mean values of

antenna a’s data sequence D(a) (see Equation 4)
8: window no. n← 0
9: standard deviation sequence σa← [ ]
10: while n+ l ≤ Length(D(a)) do
11: sliding window w(n)← µa[n : n+ l]
12: calculate the standard deviation σ (w(n)) (see

Equation 5)
13: append σ (w(n)) to σa
14: n← n+ step
15: end while
16: Sensitivitya = max σa −min σa (see Equation 6)
17: end for
18: eliminate antenna argmina Sensitivitya; return the

rest
19: end function

• If a selection algorithm determines that all three
antennas are sensitive, it is evidenced from numerous
signal visualizations that the three antennas have a
high mutual correlation. Eliminating one should have
minimal effect on the results. In our work, it even
improves the recognition performance (see Table 7);

• If a selection algorithm judges only one antenna to
be sensitive, keeping one of the other two insensitive
ones may provide additional information, evidenced in
Table 7, while the negative impact of the least sensitive
one is reduced;

• Most importantly, excellent recognition rates were
achieved in the experiments (see Sections V-D and V-E)
using the current AAE algorithm that eliminates one
non-sensitive antenna. Therefore, we do not propose a
more sophisticated elimination scheme at this stage.

This work aims to validate the novel idea of antenna
elimination for HAR by confirming whether the classifier
performs well when eliminating the most insensitive antenna.
After successful validation, future tasks include designing
reasonable threshold metrics to eliminate or retain more
antennas, especially for datasets that contain a large number
of antennas.

B. DENOISING, SMOOTHING, AND SEGMENTATION
Based on the AAE approach, the antenna that is calculated
as less sensitive to human activities is eliminated. Since Wi-
Fi-based CSI signals are intervened by signal attenuation,
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TABLE 2. Feature applied in this study. x1, x2, · · · , xN is a sequence of N samples for feature extraction; a1 and a2 indicate the two selected antennas.

multipath propagation, and other environmental factors, it is
necessary to remove noise, outliers, and other irrelevant
information from raw CSI data to improve the credibility
of activity-related signal patterns. The most common Butter-
worth bandpass filter denoises the raw CSI signal, expressed
by the following equations:∣∣Hlow-pass (jω)

∣∣ = 1√
1+ ( ω

ω0
)2n

. (7)

∣∣Hhigh-pass (jω)
∣∣ = 1√

1+ ( ω
ω0
)−2n

. (8)

After denoising, some burrs on the human activity signal
envelopes may still exist because of surrounding and equip-
ment impacts, for which the Gaussian smoothing function
further diminishes the interference of irrelevant information:

g(x) =
1

√
2πσ

e
−x2

2σ2 . (9)

The signal becomes cleaner after denoising and smoothing,
which guarantees reliable feature extraction to enhance
training and classification. Furthermore, segmentation sep-
arates signals into smaller pieces, commonly referred to as
windows or frames, which helps resolve constraints during
data preprocessing with the aim of training and recognition
[23], [32]. The first difficulty is that the data from different
participants may have different lengths of recorded trials.
Another problem is that processing a long time series
consumes resources significantly. Our experiments applied
a window size of 512 samples with a stride of 64 samples
(12.5% overlap ratio) to segment the processed CSI signal.

C. FEATURE EXTRACTION, CORRELATION, AND SELECTION
Feature extraction plays a crucial role in ML. Publicly
available code libraries, such as TSFEL [6], assist in the
extraction of time-series features in the temporal, statistical,

and spectral domains. For each window of 512 samples (see
Section IV-B), 10 handcrafted feature types (see Table 2)
were extracted on the amplitude and phase of each of the
two selected antennas, bringing the dimension of the feature
vectors to 40.

The extracted features related to every human activity are
not always correlated with each other. Correlation is a metric
which measures the similarity between two features. If two
features are linearly dependent, the correlation coefficient
value lies between -1 and +1, while no correlation is indicated
with a zero. Pearson’s correlation coefficients (PCC) [8]
analyze the extracted features.

Figure 4 details the feature correlation matrix for both the
amplitude and phase of the CSI signal. The matrix’s entries
display the PCC between each pair of features. Some features
are highly correlated, suggesting that they should be essential
for recognition tasks.

Some earlier work used feature space reduction to enable
the training and recognition of HAR with decreasing
dimensionality [17]. Feature selection is another way to
comprehensively study the decline in the number of features
for HAR, which cuts down on computational expenditures
and potentially improves recognition performance. Addi-
tionally, it tends to decrease overfitting and facilitate data
visualization. In this study, sequential forward selection
(SFS) [9], a wrapper approach based on a greedy top-down
search algorithm, generated the optimal feature set. The
algorithm begins with an empty subset, adds the feature that
resulted in themost significant improvement in each iteration,
and halts when the performance of the validation set cannot
be further improved.

The importance of features was computed in terms of
weights using SFS, as illustrated in Figure 5. Seventeen
features do not significantly affect classification (weight
< 0.2), and the remaining features are considered advan-
tageous. Empirically and experimentally, features with a
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FIGURE 4. Matrix of the Pearson correlation coefficients (PCC) between each pair of features.

weight greater than 0.4 perform well. We selected fourteen
features from the two antennas, specifically, ten features
from amplitude and four from phase, reducing the use
of handcrafted features by 65% according to the feature
selection experiments.

D. MACHINE LEARNING MODELS
The random forest (RF) is based on ensemble learning and
the collection of decision trees constructed using portions
of all data [28], forecasting hypotheses from each tree to
finally predict according to the majority vote. Generally,

RF minimizes the overfitting problem, and as the number of
learners increases, the generalization errors decrease.

The support vector machine (SVM) is a set of super-
vised learning methods characterized by kernel functions
[45], which works based on a hyperplane dividing an n-
dimensional space into different data classes. The maximal
margin determines the ideal hyperplane, although the margin
itself refers to the distance between two support vectors. The
data points closest to the hyperplane are the support vectors
and are referred to as critical points.

The K -nearest neighbor (KNN) stores all available data
and classifies a new sample according to the K nearest
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FIGURE 5. Importance of the extracted features for HAR.

samples by calculating different types of distances [10], such
as the Euclidean. KNN handles both linear and non-linear
scenarios, capable of unknown morphological data.

This work used all the default settings of the above-
mentioned three ML models in the Python package scikit-
learn [38].

E. EVALUATION
We used a ten-fold cross-validation procedure, which ran-
domly splits the whole dataset into ten non-overlapping
parts. Each experimental session took nine folds for training,
and the rest one fold for recognition and evaluation.
We have evaluated the overall recognition performance of the
proposed system using well-known performance evaluation
metrics, such as accuracy, precision, recall, and F1-score,
based on the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN):

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(10)

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1-score = 2×
Precision× Recall
Precision+ Recall

(13)

TABLE 3. AAE-based HAR results on the StanWiFi dataset. To keep more
valid digits, the precision, recall, and F1-score values are expressed using
percentages. The percent sign is omitted from all statistics.

V. RESULTS AND DISCUSSION
The results of the AAE-based HAR experiments on the
two datasets were summarized and supplemented with a
comparison of the state-of-the-art results.

A. EXPERIMENTS ON THE STANWIFI DATASET
Table 3 reports the experimental results of our proposed
HAR system on the StanWiFi dataset, where the RF classifier
achieves the highest performance with an average of more
than 99.80% accuracy/F1-score/precision/recall. Among the
ten-fold sessions, the first fold shows the lowest accuracy
(99.76%), and the 7th obtains all correct (100%). The
SVM and KNN classifiers reach average accuracies of
97.20%±0.15% and 96.08%±0.49%, respectively.

Figure 6 shows the confusion matrix of the RF classifier on
the StanWiFi dataset. RF accurately classifies the activities
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FIGURE 6. RF classifier’s confusion matrix of the ten-fold AAE-based HAR
results on the StanWiFi dataset.

TABLE 4. AAE-based HAR results on the ‘‘MultiEnvironment’’ dataset’s
LOS (office) scenario. To keep more valid digits, the precision, recall, and
F1-score values are expressed using percentages. The percent sign is
omitted from all statistics.

TABLE 5. AAE-based HAR results on the ‘‘MultiEnvironment’’ dataset’s
NLOS scenario. To keep more valid digits, the precision, recall, and
F1-score values are expressed using percentages. The percent sign is
omitted from all statistics.

Run, Sit down, Stand up, and Walk without failure, whereas
the recognition rate is over 99% for Fall and Lie down.

B. EXPERIMENTS ON THE ‘‘MULTIENVIRONMENT’’
DATASET
Table 4 and Table 5 record the experimental results of the
RF classifier in the LOS and NLOS scenarios, respectively,
while Figures 7 and 8 convey the confusion matrices of
the RF classifier for both scenarios. The LOS HAR tasks
witness an over 97.61% overall accuracy/precision/recall/F1-
score, while SVM and KNN perform 95.10%±0.57% and
93.88%±0.55% recognition rates, respectively.

It is observable from Figures 7 and 8 that Sitting
down/Standing up is the key factor pulling down the

FIGURE 7. RF classifier’s confusion matrix of the ten-fold AAE-based HAR
results on the ‘‘MultiEnvironment’’ dataset’s LOS (office) scenario.

FIGURE 8. RF classifier’s confusion matrix of the ten-fold AAE-based HAR
results on the ‘‘MultiEnvironment’’ dataset’s NLOS scenario.

global recognition rate, followed by Falling and Turning.
Recognition errors for these three activities were mainly
concentrated on No movement, for which a possible reason
could be that there is a stationary state (‘‘No movement’’)
of the body prior to performing Sitting down, Standing up,
Falling, or Turning. The application of sequential modeling
like HMMmay enhance universal recognition accuracy [29],
[31], which should be one of the potential follow-up studies.
Furthermore, it should not be overlooked that the class
Sitting down/Standing up combines two activities in opposite
directions, which follows the data providers’ labeling (see
Section III) but undoubtedly increases recognition difficulty.
A strong contrast is that the StanWiFi dataset does not
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TABLE 6. Summary of our proposed method’s results with other state-of-the-art published results.

TABLE 7. Experimental results of applying 1–3 receiving antennas on the RF classifier.

merge these two activities, enabling both to be entirely
correctly recognized (see Figure 6). Direction-related high-
level features may be beneficial for such a problem [16], [19].

C. PERFORMANCE COMPARISON AND DISCUSSION
Applying different models on the same dataset is a com-
pelling criterion to judge. We compare the performance
of our proposed system with state-of-the-art peer work-
pieces on the same two datasets, resulting in the statistics
in Table 6.

The first issue to be noted overall is that [22], a recent
publication, used more sophisticated deep learning, whose
ten-fold cross-validated recognition accuracies are higher
than this article by 0.04%, 0.55%, and 1.33% on Stan-
WiFi, ‘‘MultiEnvironment’’-LOS, and ‘‘MultiEnvironment’’-
NLOS, respectively. However, such results do not affect the
success of validating the proposed AAE algorithm. With a
slight loss of accuracy, AAE-based non-deep learning brings
not only less complexity and more interpretability but also
a considerable reduction of training and recognition time.
As described in Section II-C, non-deep learning models are
applied in this work to validate AAE’s usefulness reason-
ably; hence, the almost on-par accuracies and significantly
lower time cost compared to deep learning confirm AAE’s
effectiveness and contribution to efficient, low-consuming,
lightweight Wi-Fi-based HAR.

Yousefi et al. [56], the provider of the StanWiFi dataset,
applied RF, HMM, and LSTM based on feature extraction
to validate the dataset, among which LSTM achieved the
optimal accuracy of ∼90% according to [41] and [55]. Since

then, there have been several HAR studies on the StanWiFi
dataset. In [7], the authors proposed the ABLSTM model
that helps focus on essential features, which reached 97.30%
accuracy on a random-selected ten-fold cross-validation.
The advanced InceptionTime model, put forward in [55]
and named CSITime, attained an accuracy of 98.00%.
A lightweight HAR model (LiteHAR) [41] had a 93.00%
accuracy rate on ten-fold cross-validation. In comparison,
our work presented a promising recognition result of 99.84%
better than or on par with most state-of-the-art works using
the AAE-based RF classifier on the StanWiFi dataset, with
significantly lower time consumption.

On the ‘‘MultiEnvironment’’ dataset, in addition to [22],
there are two published referential results on the LOS
scenario. In [4], features were extracted from the time
and frequency domains, and the optimal set of features
was selected. With SVM, an accuracy of 94.00% was
reported on a 100-fold purely person-dependent experiment
(ten-fold cross-validation for each of the ten subjects).
In [2], after outlier removal and signal smoothing, an SVM
classifier based on feature extraction and selection achieved
91.27% accuracy for LOS on a ten-fold leave-one-out
cross-validation. Our work reached 97.65% accuracy on
a random-selected ten-fold cross-validation in the LOS
scenario.

To our knowledge, the up-to-date publicly available
HAR work on the ‘‘MultiEnvironment’’ dataset’s NLOS
scenario is the recent publication [22]. The AAE-based
recognition results in this work can serve as the first
benchmark for non-deep learning, with comparable accuracy
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FIGURE 9. Increase in recognition accuracy of AAE for each activity compared with using all three antennas (red) and using only the most sensitive one
(yellow) on all datasets.

and significantly lower time consumption to the deep learning
model.

Time complexity is a challenging factor for any model
or classifier, should one desire to implement it to solve
real-world problems. We also compare training and testing
time costs. Our work took 45.12 seconds for training and
0.29 seconds for testing on the StanWiFi dataset, while
[41] took 157.80/5.46 seconds. ABLSTM [7] spent even
more. Again, the 49.20/0.35 seconds for training/testing

can be regarded as a benchmark of time cost for ‘‘Mul-
tiEnvironment’’. Admittedly, the time statistics are rele-
vant to hardware, but the efficiency of our method is
evident.

The following factors contributed to the outstanding
recognition performance of our work:
• The proposed AAE algorithm eliminated the antennas
that are non-sensitive to human activities, significantly
reducing irrelevant information.
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• Statistical features were extracted from both the ampli-
tude and the phase of the selective antennas.

• The correlation between the extracted features was
analyzed using PCC. The feature selection using the
SFS technique further endowed ML tasks with the most
informative input.

• Following non-deep ML approaches on several publicly
available datasets, AAE-based HAR achieved com-
parable performance to deep learning methods, with
significantly reduced time complexity.

D. IMPACT OF THE NUMBER OF ANTENNAS RETAINED
All the datasets applied in this paper applied three receiving
antennas. Therefore, the current process of eliminating one
antenna, which we used to verify whether eliminating the
antenna impacts recognition, implies the preservation of two
antennas. To further confirm the optimality of the derived
results, experiments employing all three antennas as well
as retaining only the most sensitive antenna on the RF
classifier, which performs best among the three applied ML
models, were also performed on all datasets, as summarized
in Table 7.

The advantages of AAE are self-evident in Table 7.
With the elimination of one antenna, which saves one-third
of the data usage, the recognition rates and F1-scores, in turn,
improve by about 2–3 percentage points. When one more
antenna is eliminated, that is, only the most sensitive antenna
is kept, the performance drops by 5–6 percentage points. The
time complexity is understandably close to proportional to the
number of retained antennas, while the time cost pro sample
is constant. Since the time expenditure of our algorithm is
already exponentially better than the state-of-the-art models
(see Table 7), AAE is apparently superior to keeping only the
most sensitive antenna: Doubling the time at the millisecond
level brings about a significant increase in recognition rate.

The current work verifies that under reasonable algorithms,
such as the proposed AAE, eliminating antenna can even
bring gains to the applied datasets instead of impairing the
recognition performance. When there are more antennas
involved, how many antennas should be retained/eliminated
to achieve the optimal accuracy-efficiency balance is a
topic depending on the dataset and purpose. Future work
includes designing a generalizable threshold scheme to
automatically or semi-automatically determine the number of
eliminated/retained antennas.

E. IMPACTS OF ANTENNA ELIMINATION ON EACH
ACTIVITY
To explore the impact of antenna elimination on the
recognition rate of each activity, Figure 9 summarizes the
accuracy statistics of individual activities from the nine
experiments involved in Table 7. The red bars indicate
the incremental accuracies brought about by applying AAE
compared to using all three antennas, while the yellow bars
represent AAE’s recognition rate increment compared to
using only the most sensitive antenna.

The noteworthy points found in Figure 9 are listed below.

• Eliminating one least sensitive antenna, i.e., the pro-
posed AAE, had no negative impact on any activity.

• AAE achieved a 100% recognition rate for several
activities (see Figures 6–8); the other two settings never
reached 100% on any individual activity.

• On the ‘‘MultiEnvironment’’ dataset’s NLOS scenario,
AAE did not gain an increase in accuracy (nor did
it get worse) for Sitting down/Standing up and Turn-
ing. Besides, AAE brings only tiny gains on Sitting
down/Standing up in the LOS scenario. As analyzed in
Section V-B, these two activities are inherently chal-
lenging to recognize compared to the others. However,
when this label is split into two separate classes, that is,
in StanWiFi, AAE can perform significantly better.

• AAE earns good gains for Walking and Falling that are
involved in all datasets.

• The most positively affected activity by AAE is Picking
up a pen in the ‘‘MultiEnvironment’’ dataset’s NLOS
scenario. For such an activity of localized details, the
elimination of an insensitive antenna greatly helped
recognition. Eliminating one more antenna on top of
AAE, the most considerable decrease in recognition rate
was as well for Picking up a pen (in the LOS scenario),
which suggests that one antenna is far from enough to
characterize this activity of localized details.

• When only the most sensitive antenna was retained, the
results were much worse than when all antennas or AAE
were applied, with one exception: the Falling in the
‘‘MultiEnvironment’’dataset’s LOS scenario favors only
one antenna over all antennas. Of course, AAE is still
better than both.

VI. CONCLUSION
This article presents a Wi-Fi CSI signal-based HAR system
with superior HAR performance for both LOS and NLOS
scenarios. An adaptive antenna elimination (AAE) algorithm
has been proposed to keep the most sensitive antennas related
to human activities, and various features were extracted from
the amplitude and phase of the selected sensitive antennas.
Feature correlation analysis and feature selection are applied
to obtain the best subset of features. Three non-deep ML
classifiers were applied and compared rather than deep
learning models in order to confirm AAE’s effectiveness
generally. The proposed HAR system with RF classifiers
has achieved a classification accuracy of 99.84% on the
StanWiFi dataset and 97.65% (LOS) / 93.33% (NLOS) on the
‘‘MultiEnvironment’’ dataset, outperforming or on par with
the recognition performance of state-of-the-art studies, with
a significantly lower time cost.
Currently, our research involves two datasets with different

types of daily activities as an AAE’s proof of concept.
A further investigation of our proposed system on other
available datasets with more types of human activities
will be a future direction. Additionally, recognizing
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multi-user activities based on Wi-Fi signals is realistic but
more challenging.
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