
Received 29 August 2023, accepted 23 September 2023, date of publication 27 September 2023, date of current version 4 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3319814

IGWO-SoE: Improved Grey Wolf Optimization
Based Stack of Ensemble Learning Algorithm for
Anomaly Detection in Internet of Things Edge
Computing
J. MANOKARAN 1, AND G. VAIRAVEL2, (Senior Member, IEEE)
1Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
2Directorate of Learning and Development, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India

Corresponding authors: G. Vairavel (vairavelg@protonmail.com) and J. Manokaran (manoraj3@gmail.com)

ABSTRACT With the tremendous growth and popularization of the Internet of Things (IoT), the number
of attacks targeting such devices has also increased. Therefore, enhancing the anomaly detection model
to maximize detection accuracy and mitigate cyber-attacks in time-critical IoT edge scenarios is essential.
Furthermore, there is a lack of vivid, precise, cross-layered, and diverse datasets in IoT for evaluating these
anomaly detection models. This paper aims to develop an improved anomaly detection model based on an
optimized stacked ensemble learning algorithm at edge computing. Initially, a novel synthetic dataset with
multiple cross-layer attacks is generated using the Cooja simulator to train our proposed model. In addition,
by introducing an improved grey wolf optimization (IGWO) approach, the parameters of ensemble learning
algorithms, such as number of trees, learning rate, and sample rate, are tuned precisely, and the stacking
ensemble concept is applied to the optimized ensemble learning algorithms to enhance their prediction
capabilities. The experimental results demonstrate that the developed model produces a detection accuracy
of 99.44% for our proposed Cooja simulated dataset, which is higher than the contemporary methods. The
generalizability of the proposed model is expressed explicitly using four different datasets: NSL KDD,
UNSW NB 15, MQTTset, and CICIDS 2017. Finally, we assess the befitting of the proposed model using
a chi-square statistical significance test, thereby providing an enriched contribution to the recent works in
anomaly detection.

INDEX TERMS Anomaly detection, cooja simulator, edge computing, ensemble learning, improved grey
wolf optimization, Internet of Things, statistical significance test.

I. INTRODUCTION
A. BACKGROUND
Due to the widespread deployment of the IoT and 5G
technology, billions of smart devices are interconnected,
making our lives smarter. The IoT has created tremendous
opportunities for innovation in various applications, such
as intelligent transport, smart homes, e-healthcare, smart
agriculture, and Industry 4.0 [1], [2]. It enhances the quality
of life, productivity, and profitability. Cisco estimates that
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75 billion smart devices will be interlinked with the Internet
by 2026 [3]. According to the IDC report, the global IoT
expenditure is anticipated to cross $1.2 trillion in 2023 [4].
Figure. 1 (a) shows the number of interlinked devices to
IoT globally from 2020 to 2025 [5]. The extended use of
IoT leads to the misuse of IoT services, and it becomes
a threat to critical information. Security and privacy are
the two major concerns that must be considered for IoT
to become a universally adopted technology [6]. Compared
to the traditional system of security measures, IoT network
security is very complex because of its vast volume, ad-
hoc nature, heterogeneity, multi-dimensionality, and less
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FIGURE 1. (a) Number of connected devices in billions (2020-2025) [5] (b) IoT security market size in billion US dollars
(2020-2025) [7].

computation memory. The market size of the IoT security
from 2020 to 2025 is represented in Figure. 1 (b) [7].

IoT development is tremendous and ubiquitous in modern
cultures, where intruders create malicious activity towards
the IoT system hence security failure is a serious topic.
The development of new technology aims to tackle these
issues by reducing attacks and defending existing services
by regulating abnormal behaviors [8]. Intrusion detection
systems (IDS), which are frequently used to observe network
behavior and abnormal activity, have a noteworthy place
in the IoT. There are two distinct sets of IDS based
on their detection methodologies: anomaly-based detection
and signature-based detection. A signature-based detection
using predefined traffic patterns can efficiently distinguish
legitimate activities from fraudulent ones [9]. Despite the
effectiveness of signature-based detectors for recognizing
known attacks, they cannot detect unprecedented attacks.
Anomaly-based detection detects irregularities in regular
network traffic. Although anomaly-based IDS are better at
detecting recent attacks, the accuracy of predicting anomalies
could be better [10].
Numerous studies have shown that machine learning

(ML) algorithm can provide better detection mechanisms
against new attacks across all cyber-security domains in
IoT. The automation and quick learning capabilities of the
ML algorithm make it the backbone of an IDS. In previous
research, individual ML algorithms have been examined,
but their false alarm rates and detection rates are not more
effective. Many ML algorithms have been considered for
building IDS, such as decision tree (DT) [11], dimensionality
reduction algorithms [12], random forest (RF) [13], swarm
intelligence techniques [14], support vector machine (SVM)
[15], K-nearest neighbor (KNN) [16], logistic regression
(LR) [16], and naive Bayes (NB) [17]. However, designing a
robust anomaly detection model using a single ML algorithm
is a challenging endeavor.

Nowadays, ensemble learning algorithms have been
introduced to increase the performance and robustness of
ML algorithms. Ensemble learning can be used in various

real-time prediction problems, and IDSs are no exception to
this. The core idea behind the ensemble learning algorithm
is that when several ML algorithms are used, the detection
errors of a single ML algorithm are balanced by other ML
algorithms. As a result, an ensemble’s final prediction will
be more accurate than that of a single classifier [18]. Several
ensemble learning algorithms are used to develop an effective
IDS, such as extra trees (ET) [19], light gradient boosting
machine (LGBM), adaptive boosting (Ada Boost), gradient
boosting (Gr Boost), extreme randomized trees (ERT), and
extreme gradient boosting (XG Boost) algorithms [20].

The ensemble learning algorithm provides better predic-
tion accuracy, but there is still a need to improve its detection
accuracy. Hyper-parameter tuning is vital for improving
detection accuracy and reducing training time. The tuned ML
algorithm’s parameter produces better performance than the
normal parameter. Finding the ideal hyper-parameter values
is a tedious and expensive computation. Random search,
Bayesian optimization algorithm, and grid search are themost
utilizable tuning techniques [21].

Recently, the grey wolf optimization (GWO) strategy has
emerged as a potential meta-heuristic method for resolving
various optimization issues by imitating the social structure
and propensity for hunting grey wolves [22]. Although
the performance of the GWO is good, it has a limitation
of imbalance between exploitation and exploration. It is
easily trapped into the local best value while cracking
multi-dimensional problems. Hence, an improved grey wolf
optimization is proposed, which integrates two principles:
survival of the fittest (SOF) and opposition-based learning
(OBL).

B. MOTIVATION AND CONTRIBUTION
Most of the existing anomaly detection models have been
implemented in the cloud. Still, modern fields like smart
cities, smart agriculture, connected cars, and Industry
4.0 need the detection of anomalies at the edge, an emerg-
ing and less explored area. Furthermore, several current
techniques are evaluated using an obsolete data set (i.e.,
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FIGURE 2. Network geography of IoT-edge: construction and placement.

NSL-KDD), which has limitations regarding the most recent
IoT-based attack vectors. Based on the ‘‘no free lunch
theorem’’, there isn’t a universal optimization algorithm that
can resolve all optimization issues, whereas it is always
feasible to enhance the existing optimization algorithms. This
study aims to fill these gaps by creating and using a novel
Cooja-simulated dataset and a modern data source that is
publicly accessible and comprises several IoT-based network
threat vectors. The significant anomaly detection challenge
was solved using an improved grey wolf-optimized stack
of ensemble classifiers. We have analyzed the developed
system with five different datasets, namely Cooja simulated,
NSL KDD [23], UNSW NB 15 [24], CICIDS 2017 [25],
and MQTTset [26] dataset. Finally, the proposed system
is evaluated using standard classification metrics. Figure. 2
shows the IoT edge computing framework; here, the node
information is processed near the user and sent to the cloud.

The objective of this study is to develop an effective
anomaly detection model using an optimized ensemble
learning algorithm. The key contributions of this work is as
follows.
(i) To create many IoT attack scenarios using the Cooja

simulator, the novel dataset is generated to train and
test our developed algorithm.

(ii) Using recent efficient ensemble learning algorithms
such as Ada Boost, Gr Boost, LGBM, and RF
algorithm for anomaly detection and their performance
is compared.

(iii) Using IGWO, the hyper-parameters of the ensemble
learning algorithms, such as number of trees, learning
rate, and sample rate are optimized to enhance the
detection accuracy.

(iv) The final model is built with a stack of optimized
ensemble learning algorithms and the performance is
analyzed using a simulated dataset and then compared
with the open-source dataset.

(v) A chi-square statistical test verifies the developed
model’s goodness-of-fit.

The arrangement of this paper is as follows: Section II
explains the recent related studies for anomaly detection
systems. Section III illustrates the proposed methodology,
ML algorithms, and optimization techniques used for our
proposed system. Section IV creates a different experimental
setup and investigates the results. Finally, sectionV concludes
the work.

II. RELATED WORK
The protection system of IoT devices is highly prone to
attack due to increased cyber-attacks. Recent studies present
numerous ways for the identification of these attacks with the
use of ML algorithms and soft computing techniques. Some
of the related research in a similar direction is discussed in
this section.

Ensemble learning algorithms have shown a significant
expansion over single ML algorithm. Recently, Tama et al.
systematically studied a different ensemble learning algo-
rithm for anomaly detection. The author discussed the
current trends in ensemble learning algorithms and developed
an anomaly detection system using advanced ensemble
learning concepts. Finally, the developed ensemble learning
performance is compared with a single ML algorithm [27].
Thakkar et al. surveyed various IDS using ML algorithms
[28]. The author concludes that, compared to a single
ML algorithm, the ensemble learning algorithm’s detection
accuracy and false alarm rate have better performance.

We have discussed various existing anomaly detection
models using ensemble learning and artificial intelligence
methods in Table 1. Based on the classifier used, the ensemble
algorithm is divided into homogeneous and heterogeneous.
In homogeneous, the same type of classifiers are used; in
heterogeneous, different types of classifiers are used. The
classifiers are combined using the concepts of bagging and
boosting for the homogeneous algorithm and stacking for the
heterogeneous algorithm.

In [29], Tama et al. developed abnormality detection in
network traffic using stacking ensemble learning, where
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TABLE 1. Summary of ensemble learning techniques in anomaly detection.

the RF, Gr Boost, and XG Boost algorithms are used as
base learners and using grid search, the parameters are
tuned. A generalized linear algorithm is used as a meta-
classifier. The suggested algorithm performed better, with
an accuracy of 92.45%. Alqahtani et al. created an effective
botnet detection model based on an optimized XG Boost
algorithm and feature selection techniques [30]. The Fisher
score feature selection method is used to identify the
optimum features, and the XG Boost algorithm parameters
are optimized using a genetic algorithm. The suggested
method attained a botnet detection rate of 99.67% by utilizing
three data traffic attributes.

Roy et al. introduced an IDS using a novel B-stacking
algorithm, which is a combination of boosting and stacking
techniques. The author reduces the dimension of the feature
using the auto-encoder technique. The KNN, RF, and SVM
algorithms are used as base learners and combined using
stacking with the XG Boost algorithm. The proposed model
performed better with an accuracy of 99.5% for the CICIDS-
2017 dataset [31]. Maleh et al. developed an IDS using
optimized ML algorithms. The particle swarm optimization

(PSO) algorithm is used to select the optimum attributes. The
author concludes that RF-based IDS have better performance
compared to other ML algorithms [32]. Liu et al. developed
an anomaly detection system using PSO-based gradient
descent algorithms. A one-class SVM algorithm is used to
select the optimum attributes. From this study, we observe
that the hybrid model has good robustness and generalization
in detecting novel attacks [33].

Jiang et al.developed a NIDS using the PSO-XG Boost
algorithm and the parameters are tuned using PSO. Regarding
accuracy and recall, the suggested model performs better
than other comparative models, especially when identifying
attacks from minority groups [34]. In [35], Tama et al.
developed a two-stage anomaly-based IDS using ensemble
learning algorithms. The best features are chosen using a
hybrid optimization technique, which is a combination of
PSO, ant colony optimization (ACO), and genetic algorithm
(GA). Hyper-parameters are tuned using a reduced error
pruning tree algorithm. In the classification stage, rotation
forests and bagging algorithms are combined using the
voting concept. According to statistical significance tests, the
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suggested method outperforms other cutting-edge individual
classifiers and Meta classifier algorithms.

Mishra et al. developed an anomaly detection model
using an LGBM algorithm with optimized hyper-parameters,
where GA is used for parameter optimization. The proposed
GA+LGBM performs better, with a detection accuracy of
99.99% for the DS2OS dataset [36]. Ghanem et al. developed
an anomaly detection model using a multilayer perceptron
(MLP) algorithm with novel feature selection and hyper-
parameter tuning. BAT algorithm is used for feature selection
and parameter tuning. The proposed BAT+MLP performs
better with the detection accuracy of 98.05% for KDD CUP-
99 and 99.16% for NSL KDD and 99.96% for ISCX 2012,
and 97.63% for UNSW NB15 dataset [37].
In [38], Zivkovic et al. developed an intrusion classi-

fication model using the XG Boost algorithm with novel
hyper-parameter tuning. A hybrid firefly algorithm is used
for parameter optimization. In the comparative analysis,
the proposed CFAEE-SCA model produced five percent
higher detection accuracy than the conventional algorithm.
In [39], Kunang et al. established an improved IDS using
a deep learning algorithm with hyper-parameter tuning.
The Bayesian optimization algorithm is used for parameter
optimization. The proposed algorithm performs better with
an accuracy of 99.99% for the BoT-IoT dataset. In [40],
Song et al. developed an intrusion detection model using the
XG Boost algorithm with hyper-parameter tuning. The whale
optimization algorithm is used for parameter optimization.
The proposed algorithm performs better, with a detection
accuracy of 99.06% for the KDD CUP dataset. Verma et al.
developed an ML-based IDS for sensing attacks against IPv6
RPL Networks. The suggested ensemble learning algorithm
has a higher area under the curve (AUC) value than the
existing techniques [41]. I A Zhan developed an efficient
cyber-attack detection system using ML and DL algorithms
for various domains like IIoT [42], Internet ofMedical Things
[43], Industrial control systems [44], [45], and autonomous
vehicles [46].
Several limitations are identified in the existing anomaly

detection model, as discussed in the literature survey. The
bi-classification method used in many current studies can
only determine whether the sample is an anomaly or
legitimate. The single dataset is preferred in many models,
making it impossible to prove model generalization. Besides
these issues, many developed models were not verified
statically by any of the significant tests. Moreover, ensemble
learning algorithms like RF, Gr Boost, Ada Boost, and Light
GBM are used as standalone classifiers rather than base
classifiers in other ensemble models.

Researchers in this study have made valuable contributions
to distinguish this study from earlier investigations. i)
The behaviors of anomalies are identified better with the
multi-classification technique ii) The robustness of the model
is verified by testing the developed model with five different
datasets. iii) Two-step anomaly detection model is imple-
mented by integrating two different ensemble classifiers by

the concept of stacking iv) Effectiveness is verified in the
proposed model by chi-square statistical significance test.

III. PROPOSED ANOMALY DETECTION SYSTEM AND
METHOD
This section explains the proposed ensemble-based anomaly
detection model with several autonomous stages. Figure. 3
shows the proposed framework for anomaly detection. The
Cooja simulated dataset is preprocessed using the widely
available methods, and the synthetic minority oversampling
technique (SMOTE) is used to balance the imbalanced
anomaly dataset. The balanced data is trained using various
ensemble learning algorithms and the performance is eval-
uated. Further, the parameters are tuned using the IGWO
technique to enhance the learning algorithm’s performance.
The optimized learning algorithms are combined using a
stacked concept for better anomaly prediction.

FIGURE 3. Proposed methodology.

A. DATASET GENERATION AND DESCRIPTION
Due to the lack of availability of open-source IoT anomaly
datasets, we generate a new dataset using the Cooja simulator,
part of the Contiki operating system. Cooja is an admirable
RPL(routing protocol for low-power and lossy networks)
simulator. Since it is an open-source software and easy
to learn it is suggested for our model [47]. The impact
of malicious insiders on RPL-based IoT sensor nodes is
examined and the data are extracted in various scenarios in
the simulation setup. The simulation time is fixed to one hour,
and the motes outputs are displayed in the output window
while simulations run, as shown in Figure. 4.
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FIGURE 4. Cooja Scenario for creating the IoT environment.

TABLE 2. IoT framework parameter setting.

TABLE 3. Various attack scenario for data collection.

The dataset has five classes: normal, sinkhole attack,
blockhole attack, DIS (DODAG Information Solicitation)
flood attack, and version attack. Each category has a various
number of legitimate and attack records. A ‘‘Hello’’ packet is
send to their adjacent node with their identification number
in the simulation. In attacks of types such as versions, DIS
floods, sinkholes, and blackhole the attacked nodes send
out DIS packets that make them appear as neighbors. The
parameters for the dataset scenario are shown in Table 2. The

Cooja simulator ‘‘Radio messages’’ tool could collect data
about the network traffic features as a pcap (packet capture)
file. Using wireshark software, the pcap file is exported to
csv (comma-separated values) format. The details of the
stated scenarios and collected samples are listed in Table 3.
Table 4 shows the sample of the raw extracted dataset from the
Cooja simulator. We elicit 15 network features from feature
extraction, which is listed in Table 5.

B. DATA PRE-PROCESSING
Prior to the modelling stage, the acquired data should be eval-
uated and transformed into the proper formats if not, it will
deteriorate the reliability of the model. With label encoding,
distinguishing characteristics are represented by numerical
integers. To increase the speed of the ML algorithm, a well-
knownMin-Max normalization is performed, and the original
features (βmax , βmin) are shifted to the new interval (Nmax ,
Nmin). The formula is given by,

β ′i = Nmin + (Nmax − Nmin) ∗ (
βi − βmin

βmax − βmin
) (1)

C. DATA BALANCING
The real-time IoT data contain multiple classes, which
are unbalanced in nature. The unbalanced samples in the
class directly influence the performance of the classifier.
Before creating an ideal ML-based prediction model, every
data scientist’s primary goal is to balance the dataset.
Manokaran et al. empirically compared malware detection
model performance using various balancing techniques and
concluded that the SMOTE algorithm’s performance is
superior [48]. In SMOTE algorithm, each minimum class
features µ gets its nearest neighbour from other minimum
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TABLE 4. A sample of raw traffic dataset.

.

TABLE 5. List of attributes extracted from Cooja simulation.

FIGURE 5. Synthetic minority sample creation using SMOTE
algorithm [49].

class features. Similarly, another feature µ get its K nearest
neighbour. Finally, the artificial features µnew is generated
from µ, µ, and a random value (rand) is shown in
Equation (2).

µnew = µ+ rand(0, 1)× (µ− µ) (2)

For the implementation of the SMOTE algorithm,
5000 sample points were taken. The proportion of minority
to the majority sample are 1:10, 1:50, and 1:100. Figure 5
shows the working principle of the SMOTE algorithm. In our
SMOTE technique, the closest k value is chosen as three, and
Figure. 6 displays the sample of data before and after SMOTE
oversampling.

FIGURE 6. (a) Data point spreading before SMOTE (b) Data point
spreading after SMOTE.

D. CLASSIFICATION ALGORITHMS
The literature review shows that the ensemble learning algo-
rithms perform better in prediction accuracy than the shallow
learning algorithms. We use dual stage ensemble algorithm
for anomaly detection. Random forest, Ada boost, Gr Boost,
and Light GBM algorithms are used as base learners, and
the XG Boost algorithm is used as a Meta learner. Various
ensemble algorithms used for our classification purposes
are explained below. We employ all the ensemble learning
algorithms (RF, Gr Boosting, Ada Boosting, and Light GBM)
in the sklearn package of the Python environment.

1) RANDOM FOREST (RF)
The RF algorithm is an efficient ML algorithm where
multiple DT are fused using the bagging concept as shown
in Figure. 7 [50]. The detection of the RF algorithm is faster
and more effective in various cases than the other boosting
techniques. The RF algorithm’s significant advantage is that
it does not need a cross-validation process to train all the
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FIGURE 7. Random forest working principle.

Algorithm 1 RF Algorithm
Input: Cooja simulated dataset
Output: Categorized data
Step 1: Select X number of trees to grow
Step 2: Select v number of variables used to separate each
feature points. v ≪ V, Where V is the number of input
attributes
Step 3: Develop the tree structure with the following
operation
Step 4: Total M training samples are replaced with a portion
of new sample size M.
Step 5: To develop a tree at every node select v variables
arbitrarily from V and use them to detect the optimum split.
Step 6: Extend the tree to a maximum level further it has no
pruning.
Step 7: To classify point P gather majority vote of every tree
in the forest and find the final result.

samples. The bootstrap sample is used to construct each tree,
so approximately one-third of the cases are left out and are
not used in training.

2) GRADIENT BOOSTING (GR BOOST)
The Gradient Boosting algorithm is a flexible homogeneous
ensemble learning algorithm that sequentially combines
multiple weak classification and regression trees (CART).
The primary objective of the gradient is to reduce the loss
function. It is an iterative algorithm for every stage; the
error value is calculated and compared with the previous
steps. Based on the error value, a different loss function is
calculated. Given a Cooja dataset X with s sample points
and n variables X = (xi, yi) (|X | = s, xi ∈ M s, yi ∈
M ), a tree ensemble perform 0 additive function to detect
the anomaly [51]. Figure. 8 shows the structure of the Gr
Boosting algorithm.

yî = Q(xi) =
0∑
l=1

fl(xi), fl ∈ λ (3)

where the CART space function,

λ =
{
αp(x)

}
(p : M s

→ τ, α ∈ M τ ) (4)

where p denotes the configuration of each tree, τ denotes tree
size, fl is a tree configuring p and leaf weight denotes as α.

FIGURE 8. Gradient Boosting working principle.

3) ADAPTIVE BOOSTING (ADA BOOST)
Adaptive boosting is an efficient ensemble learning algo-
rithm. The accuracy of the ada boost algorithm is improved
by combing multiple weak classifiers (Decision tree). Ada
boost trains the data sample to predict unusual observations
accurately and adjust classifier weights in each iteration.
Initially, the sample weight is given by W = 1/η, where η

is the record number. The model is generated by combining
several stomps that is one stage decision tree. For each
feature, a stomp will be created to classify the data. The
stomps which have less entropy value is selected as base
learner. The total error (TE) of the stomps is calculated
in each iteration. Next, the performance of the stomps is
calculated using Equation (5). Update the weight based
on the performance of the decision tree in the previous
stage. The weight update formula is shown in Equation
(6,7). Normalize the weight and sequentially execute all
the decision tree algorithm. The weak learner is combined
to produce a robust learning algorithm with less error
[52]. Figure. 9 shows the structure of the Ada Boosting
algorithm.

Performance of stomps(P) =
1
2
loge [(1− TE)/TE] (5)

Weightnew = Weightold ∗ eP

{for incorrect classified point}

(6)

otherwise,

Weightnew = Weightold ∗ e−P

{for correct classified point} (7)

FIGURE 9. Ada Boost working principle.
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4) LIGHT GBM
The Light GBM implementation uses leaf-wise algorithms
and histograms to optimize prediction accuracy and compu-
tation power. Mutually incompatible feature pairs are fused
using a histogram approach. The continuous attributes are
discretized into m integers before constructing an m-width
histogram. As a result, the histogram’s discretized values
are used to test the training data. Histograms reduce the
complexity of time significantly. Light GBM identifies the
leaf with the most significant splitting gain and divides
it leaf-by-leaf. In this way, Light GBM ensures high
efficiency and eliminates inefficiency by limiting the leaf-
wise depth. Currently, tree splitting takes place with the
use of information gain, but in LGBM, gradient-based one-
side sampling is used to find the variance gain [53]. Let D
be the anomaly detection dataset. The training examples’
absolute gradient values are initially sorted in descending
order, and the top a× 100% data samples of gradient values,
designated B, are then selected. B subset E of size b× |Bc| is
then randomly selected from the remaining samples Bc. The
variance gain of the decision tree node split attribute f at point
P is denoted as follows,

Vf
(
P) =

1
m

([(∑
xi∈Bl αi +

1−a
b

∑
xi∈El αi

)2
njl(p)

]

+

[(∑
xi∈Br αi +

1−a
b

∑
xi∈Er αi

)2
njr (p)

])
(8)

where Bl =
{
Xi ∈ B : Xij ≤ P

}
, Br =

{
Xi ∈ B : Xij ≻ P

}
,

El =
{
Xi ∈ B : Xij ≤ P

}
, Er =

{
Xi ∈ E : Xij ≻ P

}
, α is a

negative gradient of loss function, 1−a
b - Normalized sum of

gradient.

5) XG BOOSTING
XG Boost is known as ‘‘Extreme Gradient Boosting’’,
an improved gradient-boosting decision tree that is extensible
and highly scalable. This method constructs classifiers and
regression trees simultaneously using boosted regression.
In this way, the objective function’s value can be optimized.
XG Boost measures the coverage and frequency of a selected
feature’s impact on a function’s output. XG Boost uses
additive training optimization, where each next iteration
depends on the previous one [53]. The method used to
calculate the objective function in the ith iteration illustrates
this:

gj = ∂
Ōk i−1

l
(
Oj, Ōk

i−1
)

(9)

hj = ∂2
Ōk i−1

l
(
Oj, Ōk

i−1
)

(10)

W ∗j = −

∑
gt∑

ht + β
(11)

R(fi) = λTi +
β

2

T∑
j=1

W 2
j (12)

F io =
n∑

k=1

l
(
Ok , Ō

i−1
k + fi (xk)

)
+ R(fi)+ C (13)

where g, h are the 1st and 2nd derivatives, C is the constant, R
is the system formalization term, λ, β are the tree configuring
parameter.F io is the i

th iteration objective function, and l is the
loss term.

E. GREY WOLF OPTIMIZATION (GWO)
GWO is a meta-heuristic optimization technique inspired
from grey wolves and proposed by Mirjalili [22]. GWO
simulates the hierarchical ordering and attacking behavior of
wolves. The grey wolves are ordered into four types: alpha
(α), beta (β), delta (δ), and omega (ω). The three main steps
of attacking implemented in GWO are seeking out the prey,
surrounding the prey, and attacking the prey.

Let the position of the four wolves are expressed in
examination space as Xα , Xβ , Xδ , Xω [54]. The first major
step is prey encircling, i.e.; the wolf surrounds the food. The
mathematical representations are shown in equations (14)-
(18).

D⃗ =
∣∣∣C⃗ · X⃗prey (t)− X⃗ (t)

∣∣∣ (14)

X⃗ (t + 1) = X⃗prey (t)− A⃗ · D⃗ (15)

where X⃗ (t), X⃗prey (t) denotes the position vector of wolves
and prey at present iteration. A⃗, C⃗ are coefficient vectors,
computed as follows,

A⃗ = 2a⃗ · r1 − a⃗ (16)

C⃗ = 2 · r2 (17)

a⃗ = 2−
(

2 ∗ t
Itermax

)
(18)

r1, r2 denotes random value between [0, 1]. a⃗ is a vector
whose value reduces over the iteration, form two to zero.
These three wolves have information of the likely prey zone,
allowing for the development of three excellent search agents
and the subsequent update of the positions of other wolves as
shown in equations (19)-(23).

D⃗α =

∣∣∣C⃗1 · X⃗α − X⃗
∣∣∣ (19)

D⃗β =

∣∣∣C⃗2 · X⃗β − X⃗
∣∣∣ (20)

D⃗δ =

∣∣∣C⃗3 · X⃗δ − X⃗
∣∣∣ (21)

X⃗1 = X⃗α − A⃗1 · D⃗α, X⃗2 = X⃗β − A⃗2 · D⃗β , X⃗3
= X⃗δ − A⃗3 · D⃗δ (22)

X⃗t+1 =
X⃗1 + X⃗2 + X⃗3

3
(23)

The next position is determined by its recent position and
the prey location. The position updating of wolf is shown in
Figure. 10.

Researchers usually abstract GWO as a random search
problem in multi-dimensional space, intending to optimize
the objective function. For each wolf in the group, fitness
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FIGURE 10. Position updating of GWO [54].

value can be calculated according to fitness function to
evaluate the fitness of the wolf. The accuracy value is
considered as a fitness function which is shown in equation
(24), where the parameter terms are explained in section IV.

F(x) = Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(24)

1) IMPROVED GREY WOLF OPTIMIZATION
Though GWO is good at solving many optimization prob-
lems, it can reduce the probability of prematuring and prevent
it from falling into the local best value. To balance exploration
and exploitation properly, we propose an IGWO algorithm
over the traditional GWO algorithm. It has two modifications
like i) the SOF principle and ii) the OBL method. First, the
wolves are arranged depending on the fitness value after each
iteration. The wolves with the most negligible fitness value
are removed, and newwolves are generated based on the OBL
method.

Exploration and exploitation are the twomajor components
of any optimization method. An algorithm can produce better
outcomes in locating global optima and producing superior
convergence profiles by carefully balancing the effects of
the two occurrences. Currently, the notion of OBL has been
utilized to achieve the same. Instead of generating random
wolf for the replacement of least fitness wolf, the wolves are
generated based on the OBLmethod to overcome the problem
of computational expensiveness and time consumption. The
placements of the grey wolves in GWO have a major impact
on the solutions’ outcomes and the convergence rate. OBL
helps the algorithm to change the search positions repeatedly
by generating opposing random numbers to provide diversity
to the original population and locate fresh solutions. Let r ∈
[x, y] be a real number. Its opposite r⃗ is represented as follow:

r⃗ = x + y− r (25)

This principles are also applicable tomulti-dimensions. Let
O = {r1, r2, . . . rD} be a point in the D-dimensional search

FIGURE 11. Flowchart of the proposed IGWO algorithm.

space, and ri {1 ≤ i ≤ D} is a range of xi and yi. The opposite
point O⃗ = {r⃗1, r⃗2, . . . r⃗D} can be obtained using equation (26)

r⃗i = xi + yi − ri (26)

The primary flowchart of the IGWO algorithm is shown in
Figure 11. The procedures of the developed IGWO algorithm
is shown in Figure 12.

2) COMPLEXITY INVESTIGATION
This section discusses the IGWO algorithm’s computational
complexity. Assume that PS is the wolf population size,
Ddim is the dimension of the problem, and Itermax is
the maximum number of iterations. The worst W wolves
are removed after each cycle, and W new wolves are
created following the OBL principle. The OBL evaluation
function needs O(PS), the wolf selection process needs
O(PS), and the position-updating technique needs O(PS ×
Ddim). As a result, each iteration’s overall computational
complexity is O(PS × Ddim). O(PS × Ddim × Itermax) is the
computational complexity of the entire iteration. Therefore,
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FIGURE 12. Pseudo-code of Proposed IGWO algorithm.

the computational complexity has not increased and it is
consistent with the traditional GWO [55].

F. STACKED ENSEMBLE LEARNING
Ensemble learning combines ML algorithms with bagging,
stacking, and boosting principles. Due to its generic nature,
stacking acts as an efficient ensemble approach. There are
bi-level of learners, base learner, and meta-learner. The base
learners are trained using training data. The meta-learner
creates a new dataset after training the base learners. The
meta-learner is then trained using new training data. The test
set is categorized using the trainedmeta-learner. Choosing the
best base learner is an essential component of stacking [56].

This paper has used a stacked ensemble model in which
IGWO-tuned ensemble learning algorithms such as RF, Ada
Boost, Gr Boost, and LGBM are base learners. The XGBoost
algorithm is used as a meta-classifier. Compared to most of
the existing ensemble models, we have selected a better base
learners and a better meta learner. The steps of the stacking
ensemble algorithm is provided in Algorithm 2.

IV. PERFORMANCE EVALUATION
This section evaluates the proposed ensemble-based anomaly
detection model using standard parameters such as accuracy,
precision, recall, ROC (receiver operating characteristic)
curve, and F1 score. The proposed model falls under the
multi-classification problem, which has more than two class
labels. There are five distinct entries in the class label, where
the first four entries represent attack data, and the fifth entry
represents normal data in an IoT environment. Figure. 13 (a)
illustrates the confusion matrix for multi-classification with

Algorithm 2 Stacked of Ensemble algorithm
Input: A training anomaly dataset X with Features set
F = {A1, A2, . . . , An}
Output: Classified dataset
Step 1:

Train the level 1 ensemble learning algorithm,
Number of level 1 classifier = 4

Step 2:
Learn the Random forest algorithm (X, F, Treesize)
G=β

for i=1 to Treesize do
T (i)
= Xi

for i=1 to T (i) do
t= subset of total attributes
ri=best attributes of t
G← G ∪ ri

end for
Step 3:

Learn gradient boosting, LGBM algorithm (X, F,
Treesize)

Assign Treesize = {50, 100, 150, 200, 250}
f0(c) = argmin

∑m
i=1 (χ − di)

Modified the model based on M number of target
values.

for i=1 to m do
fi(c) = fi−1(c)+ gi−1(c)
find residue gi(c)
gi(c) = expected value−orginal vaule

end for
Step 4:

Learn Ada Boost algorithm (X, F)
Assign number of iterations I
Initial weight λi ∈ {1, 2, .n} X ′(i) = 1/n

for i=1 to I do
Train the basic weak learners
Select the proper weight
Update the distribution over the data
Xt+1(i) =

Xt (i).e−λiyiht (xi)

Zt
Zt - Normalization factor
Final vote weight V (x) = sign

∑I
t=1 λiht (xi)

end for
Step 5:

Generate new dataset of detections to Meta classifier
for i=1 to n do

Nh =
(
α′1, β1

)
, where α′1 =

{
h1

(
α′1

)
. . . .hn

(
α′1

)}
end for

Step 6:
Learn Meta classifier (M)
Learn M based on Nh
Predict α′1 . . . .α′n as anomaly or normal

five class labels. Here Z11 to Z44 represent the number
of anomaly data predicted as anomaly, Z55 represents the
number of normal data envisioned as normal. All the
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FIGURE 13. (a) Confusion matrix for anomaly of 5 label classification
problem (b) Confusion matrix for each end every class label (i).

evaluation metrics are calculated from the confusion matrix,
which has four parameters tp (True positive), fp (False
positive), tn (True negative), fn (False negative) represented
in Figure. 13 (b) for each and every class label (i=1 to
c). Similarly, we have to calculate the parameters: average
accuracy, error rate, precision, recall, and F-score for micro
and macro averaging for each and every class (c = 1 to
5) in our five classification problems through the following
equations (Equation 27 to 34) with β = 1 [57].

Average accuracy =

∑c
i=1

(tpi+tni)
tpi+tni+fni+fpi

c
(27)

Error rate =

∑c
i=1

(fpi+fni)
tpi+tni+fni+fpi

c
(28)

PrecisionMacro =

∑c
i=1

(tpi)
tpi+fpi

c
(29)

RecallMacro =

∑c
i=1

(tpi)
tpi+fni

c
(30)

F − scoreMacro =
(β2
+ 1)Precisionmacro ∗ Recallmacro

β2 ∗ Precisionmacro + Recallmacro
(31)

Precisionmicro =

∑c
i=1 (tpi)∑c

i=1 (tpi + fpi)
(32)

Recallmicro =

∑c
i=1 (tpi)∑c

i=1 (tpi + fni)
(33)

F − scoremicro =
(β2
+ 1)Precisionmicro ∗ Recallmicro

β2 ∗ Precisionmicro + Recallmicro
(34)

A. EXPERIMENTAL SETUP AND ANALYSIS
The proposed system effectiveness is analyzed using various
experimental setups such as in setup I the performance
of various base ensemble learning algorithm is compared
with the parameter of accuracy, precision, recall, and
F-score value for different datasets. In setup II, the base
ensemble learning algorithms are optimized using the IGWO
technique and combined with the stacking algorithm for
the performance evaluation. In setup III, the developed
model performance is compared with the recent methods.

FIGURE 14. (a) Power consumption of normal scenario (b) Sinkhole
attack (c) Blockhole attack (d) DIS flood attack (e) Version attack.

Python-based experiments are conducted on an Intel(R)
Core(TM) i5 CPU processor running 64-bit Windows 10 and
16.00GB of RAM in order to evaluate the proposed approach.
Twenty runs of experiments are conducted, and the findings
are averaged. We analyze the effect of different attacks on
Cooja simulated dataset, as shown in Figure. 14.
Figure. 14(a) shows the power consumption of a normal

scenario with 11 nodes. Figure. 14(b) shows the average
power consumption of the sinkhole attack scenario; here,
the node’s rank will be decreased to eight, and their packets
will also drop. Figure. 14(c) shows the average power con-
sumption of the block hole attack scenario; here, the node’s
rank will be decreased to seven, and their packets will also
drop. Figure. 14(d) shows the average power consumption
of the DIS flood attack scenario; from the figure, the power
consumption is 30 times higher than the normal scenario,
which negatively affects IoT nodes. Figure. 14(e) shows the
average power consumption of the version attack scenario;
from the figure, the attacks deteriorate the node resource
and increase the power consumption. From Figure. 14, the
attack scenario’s average power consumption is higher than
the normal scenario.

1) SETUP I
The performance of the base ensemble learning algorithm
before optimization is shown in Tables 6-10. Table 6
shows the interpretation of the Cooja simulated dataset
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TABLE 6. Performance of the Cooja dataset with multi-classification
techniques.

TABLE 7. Performance of the NSL KDD dataset with multi-classification
techniques.

TABLE 8. Performance of the UNSW NB 15 dataset with
multi-classification techniques.

with base ensemble classifiers (RF, Gr Boost, Ada Boost,
and Light GBM). Light GBM has the highest detection
accuracy of 98.71%, and the RF algorithm also has a good
detection accuracy of 98.61%. Ada Boosting and Gr Boosting
algorithms have a lower detection accuracy in the range of
93%. Tables 7 and 8 show the performance of NSL KDD and
UNSW NB-15 datasets with base ensemble classifiers. For
the NSL KDD and UNSW NB 15 datasets, the RF algorithm
outperforms the other algorithms with the detection accuracy
of 98.93% and 93.41%, respectively.

Table 9 shows the performance of the CICIDS 2017 dataset
with base ensemble classifier. The CICIDS 2017 dataset is
large and has unbalanced feature classes. Here also, the RF
algorithm performs better with the highest detection accuracy
of 99.13%. Even on the remaining parameters (precision,
recall, F1-score), the performance of the RF and LGBM is
found to be superior. Table 10 shows the performance of
the MQTTset dataset, a new dataset with the most recent
attack types. In this instance as well, the RF algorithm has
the highest performance metrics compared to the remaining

TABLE 9. Performance of the CICIDS 2017 dataset with
multi-classification techniques.

TABLE 10. Performance of the MQTTset dataset with multi-classification
techniques.

algorithms. Figure. 15 shows the performance comparison of
the base ensemble classifier with default parameter settings.
Though the ensemble learning algorithm provides better
prediction accuracy, there is a need to improve its detection
accuracy. Therefore, we perform two operations i) parameter
optimization by IGWO ii) stacking by combining all the
optimized ensemble classifiers. It is more comprehensively
explained in Setup II.

2) SETUP II
In Setup II, the base ensemble learning algorithms are
optimized using the IGWO technique and combined with
the stacking algorithm for performance enhancement. The
parameter settings of GWO algorithm are shown in
Table 11. Figure. 16 shows the different possible values
of hyper-parameters and selected optimal parameter of
ensemble learning algorithm using IGWO for five different
datasets, namely Cooja (D1), NSL KDD (D2), UNSW NB-
15 (D3), CICIDS 2017 (D4), and MQTTset (D5).

TABLE 11. Parameter settings of GWO techniques.

a: DETERMINING THE OPTIMAL GWO ITERATIONS
Finding the maximum number of iterations necessary to
get a stable and low error rate is a key parameter in the
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FIGURE 15. Performance comparison using base ensemble learning algorithms (a) Cooja (b) NSL KDD (c) UNSW NB 15 (d) CICIDS
2017 (e) MQTTset.

FIGURE 16. The representation of hyper-parameters search and the
optimum values of every dataset.

prediction performance of ML models. To ensure that the
model performs properly throughout numerous iterations, it is
essential to test it extensively.

Figure. 17 plots the minimum error rate evolution along
with the number of iterations for the proposed model with
different datasets. The figure shows that the error rate
decreases when the number of iterations increases for all the
datasets. The optimal iteration point for Cooja, NSL KDD,
UNSW NB 15, CICIDS 2017, and MQTTset datasets are 28,
50, 30, 58, and 60, respectively.

TABLE 12. Performance of the Cooja simulated dataset with optimized
classifier.

TABLE 13. Performance of the NSL KDD dataset with optimized classifier.

The performance of the optimized ensemble learning
algorithms and the proposed stack of ensemble algorithms
are shown in Tables 12-16. Table 12 shows the performance
of the Cooja simulated dataset with optimized ensemble
classifier (IGWO-RF, IGWO-Gr Boost, IGWO-Ada Boost,
IGWO-Light GBM) and the proposed stack of ensemble
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FIGURE 17. Error rate convergence with iteration (a) UNSW-NB15 (b) Cooja dataset, NSL KDD, CICIDS 2017, MQTTset.

FIGURE 18. Performance comparison of proposed method (a) Cooja (b) NSL KDD (c) UNSW-NB15 (d) CICIDS 2017 (e) MQTTset.

TABLE 14. Performance of the UNSW NB 15 dataset with optimized
classifier.

(SoE) classifier. From the table it is evident that the proposed
SoE has the highest accuracy of 99.44% among the other

TABLE 15. Performance of the CICIDS 2017 dataset with optimized
classifier.

classifiers. Tables 13 and 14 show the performance of the
proposed SoE for NSL KDD and UNSW NB 15 datasets.
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FIGURE 19. ROC curve for the different attacks present in the dataset (a) NSL KDD (b) UNSW-NB15 (d)
CICIDS 2017 (e) MQTTset (c) Simulated dataset.

TABLE 16. Performance of the MQTTSet dataset with optimized classifier.

Here also the proposed SoE has the highest detection
accuracy of 99.60% for NSL KDD and 94.64% for UNSW
NB 15 dataset. Further, for the CICIDS 2017 dataset and the

MQTTSET dataset the detection accuracy of proposed SoE
is excellent and it is explained in Tables 15 and 16.

The performance of the ensemble learning algorithms is
greatly influenced by the parameters such as number of trees,
learning rate, and sample rate. When the number of trees in a
model grows, it is more probable that the model may overfit
the training data, which can result in inaccurate predictions
and incapability for different kinds of new data. Here, our
proposed IGWO algorithm is used to find the optimum tree
size to avoid over-fitting and increase the detection accuracy.
IGWO also optimizes the ensemble algorithms’ learning rate,
thus increasing the training speed and reducing the error
function. Further, the sample rate of the ensemble algorithms
is also tuned by the IGWO algorithm to increase the stability
of the model, and the class imbalance problem of poorer
predictive accuracy over the minority attacks is resolved.
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There is a significant effect of hyper-parameter opti-
mization on different datasets. The Cooja dataset has the
performance values of 98.61%, 93.36%, 93.20%, and 98.71%
in the default settings of the RF, Gr Boost, Ada Boost,
and LGBM classifiers, at the same time, the performance
reached 99.11%, 97.84%, 97.22%, and 99.32%, respectively,
after the IGWO optimization process. The RF, Gr Boost,
Ada Boost, and LGBM classifiers initial settings for the
NSL KDD dataset yielded performance values of 98.93%,
98.81%, 86.72%, and 98.84%, respectively; however, after
optimization, the performances increased to 99.30%, 99.27%,
92.48%, and 99.34%. After the IGWO optimization, the
performance of the RF, GR Boost, Ada Boost, and LGBM
classifiers improved form 93.41%, 92.64%, 91.93%, and
93.29% to 93.92%, 93.24%, 92.45%, and 93.79% for UNSW
NB 15 dataset. Similarly, the performance of the RF,
GR Boost, Ada Boost, and LGBM classifiers also exhibits
a notable improvement after IGWO optimization for the
CICIDS 2017 and MQTTset datasets.

Figure. 18 compares the proposed model’s performance
for Cooja, NSL KDD, UNSW NB 15, CICIDS 2017, and
MQTTset dataset. According to the figure, the proposed
SoE algorithm performs better in all parameters than other
algorithms. Figure. 19 shows the multi-classification ROC
curve of Cooja, NSLKDD,UNSWNB15, CICIDS 2017, and
MQTTset dataset. The ROC Curve illustrates how different
probability thresholds impact TPR and FPR. Here, the AUC
value of the different classes are denoted individually. The
micro-average value of the ROC curve shows that our model
has excellent performance. Thus the proposed classifier
outperforms the base classifier and the existing anomaly
detection models based on all the performance metrics.

b: STATISTICAL SIGNIFICANCE TESTS
The two variant objectives of the non-parametric chi-square
test are i) to inquire about the autonomy of the two variables
(ii) to determine the resemblance between the practical
distribution of data and the expected distribution of data. Chi-
square statistic is computed using Equation (35). Where O
indicates observed value and E indicates expected value [58].

χ2
=

n∑
i=1

(Oi − Ei)2

Ei
(35)

Chi-square analysis is done to determine how closely
the experimental samples match the predicted samples. Our
null hypothesis can be widely accepted if the chi-squared
score is low. If the value is discovered to be high, our null
hypothesis can be refuted and it will become clear that a
significant cause is at play. The proposed SoE algorithm
with the bi-classification (Normal, Anomaly) problem and
the chi-square test are explained in this part. The null
hypothesis (H0) denotes no coalition between observed
and expected values. The alternative hypothesis (H1) indi-
cates the coalition between observed and expected values.

TABLE 17. Observed values for computing chi-square statistics.

TABLE 18. Expected values for computing chi-square statistics.

Tables 17 and 18 show the actual and predicted value to
compute the Chi-square test for the developed model.

The expected value (E) for a particular cell can be
determined using the given formula

E =
Row total anomalies× Column total anomalies

Total no.of anomalies
(36)

The degrees of freedom (DOF) between one sample and
another when the comparison is made is given by (number of
columns-1) × (number of rows-1). In this anomaly detection
problem, DOF= (2-1)× (2-1)= 1. The Chi-square value can
be computed from Equation (35), where the value is found
to be 87461.34. chi2contingency() function in a Python is
used to find χ2 value and DOF, here the DOF value equals
1. The ideal value is found to be 0.0000 using the Chi-square
value. For 5% level of significance, we need an alpha level
of 0.05. From the Chi-square distribution table the row with
one DOF and column with 0.05 significance level gives the
critical χ2 (3.841) value and it is lesser than our proposed
χ2 (87461.34) value. The null hypothesis is disproved, or in
another way, the alternate hypothesis is approved because a P
value of 0.00 is less than the generally accepted significance
level of 0.05, at which point it is inferred that the system is
highly significant and have strong correlation between actual
and estimated value.

3) SETUP III
a: PERFORMANCE COMPARISON OF EXISTING PARAMETER
TUNING METHODS
Our proposed stacked ensemble learning algorithms are
optimized using existing hyper-parameter tuning algorithms

TABLE 19. Performance of the Cooja dataset with existing optimizer.
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TABLE 20. Performance of the NSL KDD dataset with existing optimizer.

TABLE 21. Performance of the UNSW NB 15 dataset with existing
optimizer.

TABLE 22. Performance of the CICIDS 2017 dataset with existing
optimizer.

TABLE 23. Performance of the MQTTset dataset with existing optimizer.

like the PSO and GWO algorithm, and their results are
compared and tabulated in Tables 19 - 23. The table shows
that our proposed method has superior accuracy compared to
the existing algorithms.

We also verified the developed method using the bench-
mark dataset and evaluated them by comparing them to
the other existing models, which are tabulated in Table 24.
It demonstrates how the suggested model is very competitive
as an efficient method for the task of anomaly identification.

TABLE 24. A comparison of the proposed IGWO-SoE model with existing
methodologies.

Alongwith performance analysis, statistical significance tests
show that the suggested classifier performs significantly bet-
ter than contemporary methods. Furthermore, no statistical
tests have been included in any of the numerous methods
presented thus far in the literature.

V. CONCLUSION
This study proposes an effective anomaly detection model
using an optimized stack of ensemble learning algorithms,
i.e., RF, Gr Boosting, Ada Boosting, and Light GBM for
IoT edge scenarios. We have demonstrated that the concepts
of stacking combined with the IGWO-optimized ensemble
learning algorithms can effectively detect the different types
of anomalies. A novel synthetic dataset was created using
the Cooja simulator to train and test our proposed model,
whereas the existing studies use standard benchmark datasets.
The robustness of the developed model is also expressed
by four different datasets: NSL KDD, UNSW NB 15,
CICIDS 2017, and MQTTset. The empirical results reveal
that the proposed techniques produce an accuracy of 99.44%,
99.60%, 94.64%, 99.90%, and 99.95% for our Cooja,
NSL-KDD, UNSW-NB 15, CICIDS 2017, and MQTTset
datasets, respectively. Compared to the existing state-of-
the-art method, our proposed algorithm performs better in
terms of accuracy, precision, recall, ROC curve, and F-
score value. The future perspectives of this study aim to
detect the zero-day attack by including more attack datasets.
Furthermore, evaluation can also be performed on real-time
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IoT application scenarios by the stack of deep learning
algorithms.

REFERENCES
[1] S. Kumar, P. Tiwari, andM. Zymbler, ‘‘Internet of Things is a revolutionary

approach for future technology enhancement: A review,’’ J. Big Data,
vol. 6, no. 1, pp. 1–21, Dec. 2019, doi: 10.1186/s40537-019-0268-2.

[2] S. A. Kumar, N. Ahmed, and A. Bikos, ‘‘SWIoTA: Anomaly detection
for distributed ledger technology-based Internet of Things (IOTA) using
sliding window (SW) technique,’’ in Proc. IFIP Int. Internet Things Conf.,
2022, pp. 177–194.

[3] H. F. Atlam and G. B. Wills, ‘‘Technical aspects of blockchain and IoT,’’
in Advances in Computers. Amsterdam, The Netherlands: Elsevier, 2019,
pp. 1–39, doi: 10.1016/bs.adcom.2018.10.006.

[4] M. Suwannakit, ‘‘Aurelia Tamò–Larrieux, designing for privacy and its
legal framework: Data protection by design and default for the Internet
of Things,’’ Int. Data Privacy Law, vol. 9, no. 4, pp. 302–304, Jul. 2019,
doi: 10.1093/idpl/ipz013.

[5] I. Statista. (2018). Internet of Things (IoT) Connected Devices
Installed Base Worldwide From 2015 to 2025 (in Billions). [Online].
Available: https://www.statista.com/statistics/471264/iot-number-of-
connecteddevicesworldwide/

[6] S. A. Kumar, T. Vealey, and H. Srivastava, ‘‘Security in Internet of
Things: Challenges, solutions and future directions,’’ in Proc. 49th
Hawaii Int. Conf. Syst. Sci. (HICSS), Jan. 2016, pp. 5772–5781, doi:
10.1109/hicss.2016.714.

[7] Statista. (2022). Size of the Internet of Things (IoT) Security Market World-
wide From 2016 to 2025. [Online]. Available: https://www.statista.com/
statistics/993789/worldwide-internet-of-things-security-market-size

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things
(IoT): A vision, architectural elements, and future directions,’’ Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

[9] C. Ioannou, V. Vassiliou, and C. Sergiou, ‘‘An intrusion detection system
for wireless sensor networks,’’ in Proc. 24th Int. Conf. Telecommun. (ICT),
May 2017, pp. 1–5, doi: 10.1109/ICT.2017.7998271.

[10] S. Rajasegarar, C. Leckie, and M. Palaniswami, ‘‘Anomaly detection
in wireless sensor networks,’’ IEEE Wireless Commun., vol. 15, no. 4,
pp. 34–40, Aug. 2008, doi: 10.1109/mwc.2008.4599219.

[11] M. Douiba, S. Benkirane, A. Guezzaz, andM. Azrour, ‘‘Anomaly detection
model based on gradient boosting and decision tree for IoT environments
security,’’ J. Reliable Intell. Environ., vol. 2022, pp. 1–12, Jul. 2022, doi:
10.1007/s40860-022-00184-3.

[12] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput,
G. Srivastava, and T. Baker, ‘‘Analysis of dimensionality reduction
techniques on big data,’’ IEEE Access, vol. 8, pp. 54776–54788, 2020, doi:
10.1109/ACCESS.2020.2980942.

[13] P. A. A. Resende and A. C. Drummond, ‘‘A survey of random forest based
methods for intrusion detection systems,’’ ACM Comput. Surv., vol. 51,
no. 3, pp. 1–36, May 2018, doi: 10.1145/3178582.

[14] S. Mishra, R. Sagban, A. Yakoob, and N. Gandhi, ‘‘Swarm intelligence in
anomaly detection systems: An overview,’’ Int. J. Comput. Appl., vol. 43,
no. 2, pp. 109–118, Sep. 2018, doi: 10.1080/1206212x.2018.1521895.

[15] J.Manokaran andG.Vairavel, ‘‘Smart anomaly detection using data-driven
techniques in IoT edge: A survey,’’ in Proc. 3rd Int. Conf. Commun.,
Comput. Electron. Syst. Singapore: Springer, 2022, pp. 685–702.

[16] J. Manokaran and G. Vairavel, ‘‘An empirical comparison of machine
learning algorithms for attack detection in Internet of Things
edge,’’ ECS Trans., vol. 107, no. 1, pp. 2403–2417, Apr. 2022, doi:
10.1149/10701.2403ecst.

[17] N. Ashraf, W. Ahmad, and R. Ashraf, ‘‘A comparative study of data
mining algorithms for high detection rate in intrusion detection system,’’
Ann. Emerg. Technol. Comput., vol. 2, no. 1, pp. 49–57, Jan. 2018, doi:
10.33166/aetic.2018.01.005.

[18] Q. Abu Al-Haija and M. Al-Dala’ien, ‘‘ELBA-IoT: An ensemble learning
model for botnet attack detection in IoT networks,’’ J. Sensor Actuator
Netw., vol. 11, no. 1, p. 18, Mar. 2022, doi: 10.3390/jsan11010018.

[19] I. Abrar, Z. Ayub, F. Masoodi, and A. M. Bamhdi, ‘‘A machine learning
approach for intrusion detection system on NSL-KDD dataset,’’ in Proc.
Int. Conf. Smart Electron. Commun. (ICOSEC), Sep. 2020, pp. 919–924,
doi: 10.1109/icosec49089.2020.9215232.

[20] A. Verma and V. Ranga, ‘‘Machine learning based intrusion detection
systems for IoT applications,’’ Wireless Pers. Commun., vol. 111, no. 4,
pp. 2287–2310, Nov. 2019, doi: 10.1007/s11277-019-06986-8.

[21] M. Feurer and F. Hutter, ‘‘Hyperparameter optimization,’’ in Automated
Machine Learning. Cham, Switzerland: Springer, 2019, pp. 3–33.

[22] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf
optimizer,’’ Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi:
10.1016/j.advengsoft.2013.12.007.

[23] (2014). NSL KDD Dataset for Network-Based Intrusion Detection
Systems. [Online]. Available: http://nsl.cs.unb.ca/nsl-kdd/.html

[24] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6, doi:
10.1109/milcis.2015.7348942.

[25] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. ICISS, 2018, pp. 108–116, doi: 10.5220/0006639801080116.

[26] I. Ullah andQ. H.Mahmoud, ‘‘Design and development of a deep learning-
based model for anomaly detection in IoT networks,’’ IEEE Access, vol. 9,
pp. 103906–103926, 2021, doi: 10.1109/ACCESS.2021.3094024.

[27] B. A. Tama and S. Lim, ‘‘Ensemble learning for intrusion detection
systems: A systematic mapping study and cross-benchmark evalua-
tion,’’ Comput. Sci. Rev., vol. 39, Feb. 2021, Art. no. 100357, doi:
10.1016/j.cosrev.2020.100357.

[28] A. Thakkar and R. Lohiya, ‘‘A review on machine learning and deep
learning perspectives of IDS for IoT: Recent updates, security issues, and
challenges,’’ Arch. Comput. Methods Eng., vol. 28, no. 4, pp. 3211–3243,
Oct. 2020, doi: 10.1007/s11831-020-09496-0.

[29] B. A. Tama, L. Nkenyereye, S. M. R. Islam, and K.-S. Kwak,
‘‘An enhanced anomaly detection in web traffic using a stack of
classifier ensemble,’’ IEEE Access, vol. 8, pp. 24120–24134, 2020, doi:
10.1109/ACCESS.2020.2969428.

[30] M. Alqahtani, H. Mathkour, and M. M. Ben Ismail, ‘‘IoT botnet
attack detection based on optimized extreme gradient boosting and
feature selection,’’ Sensors, vol. 20, no. 21, p. 6336, Nov. 2020, doi:
10.3390/s20216336.

[31] S. Roy, J. Li, B.-J. Choi, and Y. Bai, ‘‘A lightweight supervised intrusion
detection mechanism for IoT networks,’’ Future Gener. Comput. Syst.,
vol. 127, pp. 276–285, Feb. 2022, doi: 10.1016/j.future.2021.09.027.

[32] Y. Maleh, A. Sahid, and M. Belaissaoui, ‘‘Optimized machine learning
techniques for IoT 6LoWPAN cyber attacks detection,’’ in Proc. 12th Int.
Conf. Soft Comput. Pattern Recognit. Cham, Switzerland: Springer, 2021,
pp. 669–677.

[33] J. Liu, D. Yang, M. Lian, and M. Li, ‘‘Research on intrusion detection
based on particle swarm optimization in IoT,’’ IEEE Access, vol. 9,
pp. 38254–38268, 2021, doi: 10.1109/ACCESS.2021.3063671.

[34] H. Jiang, Z. He, G. Ye, and H. Zhang, ‘‘Network intrusion detection based
on PSO-XGBoost model,’’ IEEE Access, vol. 8, pp. 58392–58401, 2020,
doi: 10.1109/ACCESS.2020.2982418.

[35] B. A. Tama, M. Comuzzi, and K.-H. Rhee, ‘‘TSE-IDS: A two-
stage classifier ensemble for intelligent anomaly-based intrusion detec-
tion system,’’ IEEE Access, vol. 7, pp. 94497–94507, 2019, doi:
10.1109/ACCESS.2019.2928048.

[36] D. Mishra, B. Naik, J. Nayak, A. Souri, P. B. Dash, and S. Vimal,
‘‘Light gradient boosting machine with optimized hyperparameters for
identification of malicious access in IoT network,’’ Digit. Commun. Netw.,
vol. 9, no. 1, pp. 125–137, Feb. 2023, doi: 10.1016/j.dcan.2022.10.004.

[37] W. A. H. M. Ghanem, S. A. A. Ghaleb, A. Jantan, A. B. Nasser,
S. A. M. Saleh, A. Ngah, A. C. Alhadi, H. Arshad, A. H. Y. Saad,
A. E. Omolara, Y. A. B. El-Ebiary, and O. I. Abiodun, ‘‘Cyber intrusion
detection system based on a multiobjective binary bat algorithm for
feature selection and enhanced bat algorithm for parameter optimization
in neural networks,’’ IEEE Access, vol. 10, pp. 76318–76339, 2022, doi:
10.1109/ACCESS.2022.3192472.

[38] M. Zivkovic,M. Tair, N. Bacanin, Š. Hubálovský, and P. Trojovský, ‘‘Novel
hybrid firefly algorithm: An application to enhance XGBoost tuning for
intrusion detection classification,’’ PeerJ Comput. Sci., vol. 8, p. e956,
Apr. 2022, doi: 10.7717/peerj-cs.956.

[39] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, ‘‘Improving
classification attacks in IoT intrusion detection system using Bayesian
hyperparameter optimization,’’ in Proc. 3rd Int. Seminar Res. Inf. Technol.
Intell. Syst. (ISRITI), Dec. 2020, pp. 146–151.

106952 VOLUME 11, 2023

http://dx.doi.org/10.1186/s40537-019-0268-2
http://dx.doi.org/10.1016/bs.adcom.2018.10.006
http://dx.doi.org/10.1093/idpl/ipz013
http://dx.doi.org/10.1109/hicss.2016.714
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/ICT.2017.7998271
http://dx.doi.org/10.1109/mwc.2008.4599219
http://dx.doi.org/10.1007/s40860-022-00184-3
http://dx.doi.org/10.1109/ACCESS.2020.2980942
http://dx.doi.org/10.1145/3178582
http://dx.doi.org/10.1080/1206212x.2018.1521895
http://dx.doi.org/10.1149/10701.2403ecst
http://dx.doi.org/10.33166/aetic.2018.01.005
http://dx.doi.org/10.3390/jsan11010018
http://dx.doi.org/10.1109/icosec49089.2020.9215232
http://dx.doi.org/10.1007/s11277-019-06986-8
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1109/milcis.2015.7348942
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1109/ACCESS.2021.3094024
http://dx.doi.org/10.1016/j.cosrev.2020.100357
http://dx.doi.org/10.1007/s11831-020-09496-0
http://dx.doi.org/10.1109/ACCESS.2020.2969428
http://dx.doi.org/10.3390/s20216336
http://dx.doi.org/10.1016/j.future.2021.09.027
http://dx.doi.org/10.1109/ACCESS.2021.3063671
http://dx.doi.org/10.1109/ACCESS.2020.2982418
http://dx.doi.org/10.1109/ACCESS.2019.2928048
http://dx.doi.org/10.1016/j.dcan.2022.10.004
http://dx.doi.org/10.1109/ACCESS.2022.3192472
http://dx.doi.org/10.7717/peerj-cs.956


J. Manokaran, G. Vairavel: IGWO-SoE: IGWO Based Stack of Ensemble Learning Algorithm

[40] Y. Song, H. Li, P. Xu, and D. Liu, ‘‘A method of intrusion detection based
on WOA-XGBoost algorithm,’’ Discrete Dyn. Nature Soc., vol. 2022,
pp. 1–9, Feb. 2022, doi: 10.1155/2022/5245622.

[41] A. Verma and V. Ranga, ‘‘ELNIDS: Ensemble learning based network
intrusion detection system for RPL based Internet of Things,’’ in Proc.
4th Int. Conf. Internet Things, Smart Innov. Usages (IoT-SIU), Apr. 2019,
pp. 1–6.

[42] I. A. Khan, N. Moustafa, D. Pi, K. M. Sallam, A. Y. Zomaya, and B. Li,
‘‘A new explainable deep learning framework for cyber threat discovery
in industrial IoT networks,’’ IEEE Internet Things J., vol. 9, no. 13,
pp. 11604–11613, Jul. 2022, doi: 10.1109/JIOT.2021.3130156.

[43] I. A. Khan, N.Moustafa, I. Razzak,M. Tanveer, D. Pi, Y. Pan, and B. S. Ali,
‘‘XSRU-IoMT: Explainable simple recurrent units for threat detection
in Internet of Medical Things networks,’’ Future Gener. Comput. Syst.,
vol. 127, pp. 181–193, Feb. 2022, doi: 10.1016/j.future.2021.09.010.

[44] I. A. Khan, D. Pi, Z. U. Khan, Y. Hussain, and A. Nawaz, ‘‘HML-IDS:
A hybrid-multilevel anomaly prediction approach for intrusion detection
in SCADA systems,’’ IEEE Access, vol. 7, pp. 89507–89521, 2019, doi:
10.1109/ACCESS.2019.2925838.

[45] I. A. Khan, D. Pi, M. Z. Abbas, U. Zia, Y. Hussain, and H. Soliman,
‘‘Federated-SRUs: A federated-simple-recurrent-units-based IDS for accu-
rate detection of cyber attacks against IoT-augmented industrial control
systems,’’ IEEE Internet Things J., vol. 10, no. 10, pp. 8467–8476,
May 2023, doi: 10.1109/JIOT.2022.3200048.

[46] I. A. Khan, N. Moustafa, D. Pi, W. Haider, B. Li, and A. Jolfaei,
‘‘An enhanced multi-stage deep learning framework for detecting
malicious activities from autonomous vehicles,’’ IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 12, pp. 25469–25478, Dec. 2022, doi:
10.1109/TITS.2021.3105834.

[47] I. Essop, J. C. Ribeiro, M. Papaioannou, G. Zachos, G. Mantas, and
J. Rodriguez, ‘‘Generating datasets for anomaly-based intrusion detection
systems in IoT and industrial IoT networks,’’ Sensors, vol. 21, no. 4,
p. 1528, Feb. 2021, doi: 10.3390/s21041528.

[48] J. Manokaran and G. Vairavel, ‘‘GIWRF-SMOTE: Gini impurity-based
weighted random forest with SMOTE for effective malware attack and
anomaly detection in IoT-edge,’’ Smart Sci., vol. 11, no. 2, pp. 276–292,
Dec. 2022, doi: 10.1080/23080477.2022.2152933.

[49] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

[50] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[51] B. A. Tama and K.-H. Rhee, ‘‘An in-depth experimental study of anomaly
detection using gradient boosted machine,’’Neural Comput. Appl., vol. 31,
no. 4, pp. 955–965, Jul. 2017, doi: 10.1007/s00521-017-3128-z.

[52] W. Hu, W. Hu, and S. Maybank, ‘‘AdaBoost-based algorithm for network
intrusion detection,’’ IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 38,
no. 2, pp. 577–583, Apr. 2008, doi: 10.1109/TSMCB.2007.914695.

[53] M. H. L. Louk and B. A. Tama, ‘‘Dual-IDS: A bagging-based gradient
boosting decision tree model for network anomaly intrusion detection
system,’’ Expert Syst. Appl., vol. 213, Mar. 2023, Art. no. 119030, doi:
10.1016/j.eswa.2022.119030.

[54] R. Mohakud and R. Dash, ‘‘Designing a grey wolf optimization based
hyper-parameter optimized convolutional neural network classifier for skin
cancer detection,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 8,
pp. 6280–6291, Sep. 2022, doi: 10.1016/j.jksuci.2021.05.012.

[55] X. Yu, W. Xu, and C. Li, ‘‘Opposition-based learning grey wolf optimizer
for global optimization,’’ Knowl.-Based Syst., vol. 226, Aug. 2021,
Art. no. 107139, doi: 10.1016/j.knosys.2021.107139.

[56] H. Rajadurai and U. D. Gandhi, ‘‘A stacked ensemble learning model for
intrusion detection in wireless network,’’ Neural Comput. Appl., vol. 34,
no. 18, pp. 15387–15395, May 2020, doi: 10.1007/s00521-020-04986-5.

[57] R. Rajamohamed and J. Manokaran, ‘‘Improved credit card churn
prediction based on rough clustering and supervised learning techniques,’’
Cluster Comput., vol. 21, no. 1, pp. 65–77, Jun. 2017, doi: 10.1007/s10586-
017-0933-1.

[58] E. Sivasankar and J. Vijaya, ‘‘Hybrid PPFCM-ANN model: An efficient
system for customer churn prediction through probabilistic possibilistic
fuzzy clustering and artificial neural network,’’ Neural Comput. Appl.,
vol. 31, no. 11, pp. 7181–7200, May 2018, doi: 10.1007/s00521-018-
3548-4.

[59] T. A. Alamiedy, M. Anbar, Z. N. M. Alqattan, and Q. M. Alzubi,
‘‘Anomaly-based intrusion detection system using multi-objective grey
wolf optimisation algorithm,’’ J. Ambient Intell. Humanized Comput.,
vol. 11, no. 9, pp. 3735–3756, Nov. 2019, doi: 10.1007/s12652-019-
01569-8.

[60] S. S. Kareem, R. R. Mostafa, F. A. Hashim, and H. M. El-Bakry,
‘‘An effective feature selection model using hybrid metaheuristic algo-
rithms for IoT intrusion detection,’’ Sensors, vol. 22, no. 4, p. 1396,
Feb. 2022, doi: 10.3390/s22041396.

[61] Z. Wang, J. Liu, and L. Sun, ‘‘EFS-DNN: An ensemble feature
selection-based deep learning approach to network intrusion detection
system,’’ Secur. Commun. Netw., vol. 2022, pp. 1–14, Apr. 2022, doi:
10.1155/2022/2693948.

[62] J. Liu, Y. Gao, and F. Hu, ‘‘A fast network intrusion detection system
using adaptive synthetic oversampling and LightGBM,’’ Comput. Secur.,
vol. 106, Jul. 2021, Art. no. 102289, doi: 10.1016/j.cose.2021.102289.

J. MANOKARAN received the bachelor’s degree
in electronics and communication engineering and
the master’s degree in applied electronics from
Anna University, in 2009 and 2011, respectively.
He is currently pursuing the Ph.D. degree with
the SRM Institute of Science and Technology,
Kattankulathur, Chennai, India. His list of aca-
demic achievements includes five publications,
two journals, and three conference papers. His
area of interests include the Internet of Things,

computational intelligence, machine learning, deep learning, edge comput-
ing, cluster computing, and intrusion detection. During his post-graduation,
he received the Best Technical Paper Award in the national level conference
on ‘‘Computer Intelligent and Application’’ organized by the CARE College
of Engineering, Tiruchirappalli.

G. VAIRAVEL (Senior Member, IEEE) received
the bachelor’s degree in electronics and com-
munication engineering from Madras University,
India, in 2001, and the master’s degree in com-
munication systems and the Ph.D. degree in
wireless communication from Anna University,
Chennai, India, in 2004 and 2014, respectively.
He is currently a Professor with the Directorate
of Learning and Development, SRM Institute of
Science and Technology, Kattankulathur, Chennai.

His research interests are massive MIMO communication systems, antenna
design, machine learning, the Internet of Things, and engineering education.
He is an Active Member of the American Society for Engineering Education
and the TPACK Special Interest Group and a fellow of the Institute of
Engineers, India. Currently, he is elected as a Member-at-Large with the
CDIO International Council. He is serving as an editor and a guest editor
for reputed journals and chaired reputed conferences.

VOLUME 11, 2023 106953

http://dx.doi.org/10.1155/2022/5245622
http://dx.doi.org/10.1109/JIOT.2021.3130156
http://dx.doi.org/10.1016/j.future.2021.09.010
http://dx.doi.org/10.1109/ACCESS.2019.2925838
http://dx.doi.org/10.1109/JIOT.2022.3200048
http://dx.doi.org/10.1109/TITS.2021.3105834
http://dx.doi.org/10.3390/s21041528
http://dx.doi.org/10.1080/23080477.2022.2152933
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/s00521-017-3128-z
http://dx.doi.org/10.1109/TSMCB.2007.914695
http://dx.doi.org/10.1016/j.eswa.2022.119030
http://dx.doi.org/10.1016/j.jksuci.2021.05.012
http://dx.doi.org/10.1016/j.knosys.2021.107139
http://dx.doi.org/10.1007/s00521-020-04986-5
http://dx.doi.org/10.1007/s10586-017-0933-1
http://dx.doi.org/10.1007/s10586-017-0933-1
http://dx.doi.org/10.1007/s00521-018-3548-4
http://dx.doi.org/10.1007/s00521-018-3548-4
http://dx.doi.org/10.1007/s12652-019-01569-8
http://dx.doi.org/10.1007/s12652-019-01569-8
http://dx.doi.org/10.3390/s22041396
http://dx.doi.org/10.1155/2022/2693948
http://dx.doi.org/10.1016/j.cose.2021.102289

