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ABSTRACT This paper describes the implementation of a comprehensive clinical decision support system
(CDSS) for the risk factors prediction of comorbidities related to obesity and for the characterization of
indirect connections between such comorbidities and non-communicable diseases. In particular, the direct
correlation between obesity, diabetes, cardiovascular, and heart disease is analyzed by using machine
learning (ML) predictive models, while the connection of the co-occurring disorders to the numerous
additional non-communicable diseases is analyzed via a graph-based user interface. The CDSS here
proposed is, therefore, structured with three main components: ML predictive models based on publicly
available datasets, explainable artificial intelligence (XAI) local and global model interpretation, and
graph-based representation of non-communicable disease connections. Multiple ML models are presented
for risk assessment and a comparison is carried out based on performance key performance indicators. The
best-performing model for each disease was proved to be: the multi-layer perceptron for diabetes and heart
disease, and extreme gradient boosting for cardiovascular disease. Comorbidities risk factor prediction and
a XAI local model explanation is performed on significant case studies. In addition, XAI global model
interpretation is given for the entire dataset providing insights on the features’ contribution to the models’
implementation. Moreover, the graph-based visualization of indirect disease co-occurrence is performed by
filtering connections according to different relative risk factor thresholds. This interface can be exploited by
healthcare professionals to obtain, according to the needs and the clinical approach, a global perspective on
obesity and its associated pathologies prevention as well as long-term treatment and care provision.

INDEX TERMS Clinical decision support system, explainable artificial intelligence, multi-node graph,
machine learning, obesity comorbidity, predictive models.

I. INTRODUCTION
Numerous health issues, including type 2 diabetes, dyslipi-
demia, cardiovascular disease, respiratory issues, and various
types of cancers are all closely correlated with obesity
and overweight [1], [2], [3]. Such comorbidities raise the
risk of several non-communicable diseases (NCDs) [4],
which can cause mortality [5]. Due to its link to significant
chronic diseases and the consequent financial burden on the
health care system, the treatment and prevention of obesity
constitute a key issue in the public health system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

For healthcare professionals (HCPs) working in this
context, clinical decision support systems (CDSSs) can be
essential tools for predicting and preventing comorbidities
and the associated NCDs.

Most CDSSs are not knowledge-based; they are not pro-
grammed to adhere to medical knowledge, but they need data
sources to feed statistical pattern recognition or train machine
learning (ML) algorithms. Artificial intelligence (AI) is
widely used in the field of decision support and specifically
in obesity studies, either for cross-sectional studies, as in this
paper, or retrospective/prospective studies [6]. NumerousML
methods were analyzed and compared in literature, each of
them suited to specific needs or datasets [7]. Most of the
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issues related to such spreadingAI are due to data availability,
heterogeneous data structure [8], and the comprehension
of the logic behind most of the AI algorithms producing
recommendations where the operator can access only the
final decision without an insight into the process (black
boxes) [9].

Methods that explain how AI systems work can be
incorporated into the CDSS, implementing the paradigm of
explainable artificial intelligence (XAI), with the following
goals for both the end user and the designer:

• enabling HCPs to evaluate whether the system’s output
is reliable,

• improving trust in the HCP-patient relationship,
• revealing new insights regarding what the AI system
learned from the data,

• finding possible weaknesses while discovering the
underlying causes of faults more efficiently,

• recognizing what the algorithm was tuned for and
managing the associated choices.

In this work, we propose and thoroughly analyze the imple-
mentation of a comprehensive CDSS based on XAI (hereafter
referred to as XAI-CDSS) consisting of the integration of the
following three components: ML predictive models, based on
publicly available datasets, for the calculation of obese sub-
jects’ risk factors for the selected comorbidities (i.e. diabetes,
cardiovascular, and heart disease); XAI plots interpretation of
the local prediction and of the global model; an interactive
multi-node graph interface, fundamental to highlight indirect
links between obesity, the selected comorbidities, and NCDs.

II. MATERIALS AND METHODS
A. DATA DESCRIPTION
Data for pathologies such as diabetes, cardiovascular,
and heart disease were extracted from public datasets
as documented in this section. In the selection of such
datasets, attention was focused on those including features
characterizing the obesity condition. In particular the body
mass index (BMI) was considered and, when missing, the
height and weight for BMI calculation. The increasing BMI
is indeed associated with the development of numerous
comorbidity [5]. The percentage of the overweight and obese
categories, based on the BMI feature, was calculated for each
comorbidity dataset in order to verify their suitability to the
scope of the work.

1) DIABETES
A dataset of the Behavioral Risk Factor Surveillance System
(BRFSS) 2015 from the Center for Disease Control and
Prevention (CDC) survey was downloaded from Kaggle [10].
The diabetes target is binary, classifying subjects as affected
by prediabetes or diabetes or healthy. The original dataset
consists of 253,680 records with 21 feature variables (high
blood pressure, high cholesterol, cholesterol check, smoker,
heart disease or attack, physical activity, fruit, veggie, heavy
alcohol consumption, any health care, no documentable costs,

general health, mental health, physical health, difficulty in
walking, sex, age, education, income) and is not balanced
with respect to the binary target feature diabetes.

2) CARDIOVASCULAR DISEASE (CVD)
The dataset from Kaggle [11] consists of 70,000 records
of patient data, 11 features, and the binary target. The
included features are objective (age, height, weight, gender),
from examination (systolic blood pressure, diastolic blood
pressure, cholesterol, glucose), subjective (smoking, alcohol
intake, physical activity), and the binary target (presence of
cardiovascular diseases). Data were collected simultaneously
with the medical examination.

3) HEART DISEASE (HD)
Data come from the 2020 annual CDC survey data of 400,000
adults related to their health status. A selection of 18 features
out of the 279 original ones was extracted from the Kaggle
dataset [12]. The included features are the following: BMI,
smoking, alcohol drinking, stroke, physical health, mental
health, difficulty in walking, gender, age category, race,
diabetes, physical activity, generic health, sleep time, asthma,
kidney disease, skin cancer), and the target binary feature
(heart disease).

4) DISEASE CO-OCCURRENCE GRAPH
The data underlying the long-term disease co-occurrence
graph comes from the Danish Disease Trajectory Browser
(DTB) [13] and downloaded from [14]. It explores 25-year
longitudinal population-wide disease progression patterns
from the entire population of Denmark. The trajectories
include diseases classified by the ICD-10 [15] as cardio-
vascular (I48-Atrial fibrillation and flutter), heart disease
(I51-Complications and ill-defined descriptions of heart
disease), and diabetes (E14-Unspecified diabetes mellitus)
are extracted in JSON format, including nodes and edge
parameters. The nodes represent the pathology ICD10 code
and the edges are the directional connection between couples
of diseases that were developed by the subject simultaneously
in a 5-year time horizon. Such information includes, for each
path going from the selected comorbidity to an NCS: the
number of patients following the path and the associated
relative risk (RR) which compares the risk of a disease among
one group with the risk among another group.

B. PRE-PROCESSING AND FEATURE ENGINEERING
Features selection was based on:

• features with missing values removal,
• exploratory data analysis (EDA), for dataset analysis and
selection of the most significant features using statistical
graphics and other methods including Principal Com-
ponent Analysis to exclude elements with low variance
significance, heat maps in order to exclude elements
with high correlation, and cluster analysis for group
identification.

107768 VOLUME 11, 2023



G. V. Aiosa et al.: EXplainable AI for Decision Support to Obesity Comorbidities Diagnosis

• variance threshold [16], to remove features with variance
lower than 0.05,

• codebook’s study, to remove the characteristics with no
valid answers (e.g. ‘ever told’) in the description,

• experts’ opinions, to select relevant information based
on the enrollment protocol,

• class balancing based on the target feature.

A one-hot-encoding procedure was used to encode categor-
ical variables creating a binary column for each category.
This is needed for feeding categorical data to ML models.
Moreover, numerical variables were scaled using a min-max
scaler (for Heart disease datasets) and a standard scaler (for
diabetes and cardiovascular disease datasets) in order to adapt
the datasets to ML learning algorithms, which prefer data
covering small ranges. The choice of the specific scaler was
performed based on the single model performance.

1) DIABETES DATASET
The first step of data cleaning was performed by removing
24,206 duplicate lines and outliers based on statistical
information; no observations withmissing values were found.
A target class unbalance was detected in the original dataset
(84.7% healthy, 15.3% diabetic). A random undersampling
procedure was carried out randomly by eliminating records
from the class ‘‘healthy’’ in order to restore the target class
balance. Based on the feature engineering analysis, Table 1
shows the features selected to train the predictive algorithm.
The percentage of overweight and obese categories, based on
the BMI feature, was calculated resulting in the 36.37% and
41.55%, respectively.

2) CARDIOVASCULAR DISEASE DATASET
The first step of data cleaning was performed by removing
duplicate 3,208 lines and outliers based on statistical
information; no observations with missing values were
found. The target variable is approximately balanced (48.8%
healthy, 51.2% cardiovascular disease). Based on the feature
engineering analysis, Table 2 shows the features selected to
train the predictive algorithm.Moreover, the BMI feature was
obtained indirectly from the ‘weight’ and ‘height’ feature
columns as the weight (kg) divided by the height (m) squared.
The percentage of overweight and obese categories, based on
the BMI feature, was calculated resulting in the 35.97% and
28.68%, respectively.

3) HEART DISEASE DATASET
The first step of data cleaning was performed by removing
27,315 duplicate lines and outliers based on statistical
information; no observations withmissing values were found.
A target class unbalance was detected in the original dataset
(90.8% healthy, 9.2% heart disease). An undersampling
procedure was carried out randomly by eliminating records
from the class ‘‘healthy’’ individuals in order to restore
the target class balance. Based on the feature engineering
analysis, Table 3 shows the features selected to train the

TABLE 1. Diabetes features.

TABLE 2. Cardiovascular disease features.

predictive algorithm. The percentage of overweight and obese
categories, based on the BMI feature, was calculated resulting
in the 37.34% and 33.95%, respectively.

C. PREDICTIVE MODELS
ML algorithms for predictive modeling were applied to
the pre-processed datasets in order to assess risk factors
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TABLE 3. Heart disease features.

TABLE 4. MLP best hyperparameters.

associated with the selected obesity comorbidity. A binary
classification (positive or negative to pathology affection)
was performed based on the risk factor (respectively higher
or lower than 50%). The predictive analysis consisted of
applying different ML algorithms: Multi-Layer Perceptron
(MLP), Extreme Gradient Boosting (XGB), Logistic regres-
sion (LR), Nearest Neighbors (NN), Random Forest (RF),
Decision Tree (DT), and Linear Support Vector Machine
(LSV). The performances of the analyzed algorithms are
presented for each pathology in Section III-A. The pre-
processed dataset was divided into training and testing
datasets: random sampling was performed, 75% of the
data was used for training, and the remaining 25% was
held out for testing. Furthermore, models’ calibration was
performed in the training dataset by hyperparameters tuning
using the grid-search procedure [17]. In particular Sklearn
GridSearchCV [16] was used: it includes an internal k-fold
cross-validation technique to calculate the score for each
combination of parameters on the grid.

1) MULTI-LAYER PERCEPTRON (MLP)
The MLP, which belongs to the family of artificial
neural networks, was implemented. The used package is
the Sklearn [18]. The grid-search procedure, including
a k-fold (k=5) cross-validation for model optimization and
hyperparameter tuning, brought to the selection in Table 4,
where:

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

TABLE 5. XGB best hyperparameters.

• Max iter specifies the maximum number of iterations
required for the optimization algorithm to converge.
For stochastic solvers (‘‘sgd’’, ‘‘adam’’) this parameter
represents the number of training periods.

• Learning rate init expresses the initial learning rate
value. It controls the step size in the weight update and
is used only with a solver type ‘‘sgd’’ or ‘‘adam’’.

• Learning rate indicates the strategy to be applied for
weight updating.

• Hidden layer sizes is a tuple in which the i-th value
represents the number of neurons to be inserted in the
i-th hidden layer. In this case, a different hidden layer
size was provided for each of the datasets.

• Activation represents the activation function to be
applied to hidden layers neurons, ‘Relu’ is the rectified
linear unit function, returns f(x) = max(0, x).

2) EXTREME GRADIENT BOOST (XGB)
The XGB model was implemented using the XGB Classifier
of the xgboost package [19]. The grid-search procedure,
including a k-fold (k=5) cross-validation for model optimiza-
tion and hyperparameter tuning, brought to the selection in
Table 5 where:

• Random state is a random number seed for the random-
ness of the estimator; it ensures the reproducibility of the
results.

• Learning rate is a parameter that controls the step size at
which the algorithm updates the weights of the model.

• N. estimators describes the number of trees to be used to
implement the boosting technique.

• Tree method specify the XGB tree construction algo-
rithm to be used.

3) LOGISTIC REGRESSION (LR)
The LR model was implemented using the LR Classifier of
the of the sklearn package [16]. The grid-search procedure,
including a k-fold (k=5) cross-validation for model optimiza-
tion and hyperparameter tuning, brought to the selection in
Table 6 where:

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

• Solver specifies the algorithm to be used for parameter
optimization.

• C is a positive float value, which defines the inverse of
the regularization force. Small values specify a stronger
regularization.
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TABLE 6. RF best hyperparameters.

TABLE 7. NN best hyperparameters.

• Max Iter specifies the maximum number of iterations to
be performed.

• N Jobs specifies the number of parallel jobs to run for
finding nearby points. If set to 1, all CPUs are used.

4) NEAREST NEIGHBORHOOD (NN)
The NN model was implemented using the NN Classifier of
the sklearn package [16]. The grid-search procedure, includ-
ing a k-fold (k=5) cross-validation for model optimization
and hyperparameter tuning, brought to the selection in Table 7
where:

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

• Weights describes the weight function to be used for
predictions. The value ‘‘uniform’’ refers to the fact that
all nearby points are assigned equivalent weights, while
‘‘distance’’ allows to assign a weight equivalent to the
inverse of the distance of the different neighbors.

• p is the parameter used in the Minkowski distance
relationship. The value p = 1 produces a metric
equivalent to the distance of Manhattan, while the value
p = 2 allows to obtain the mathematical relationship of
the Euclidean distance.

• N Neighbors allows you to specify the size of the
parameter k.

• N Jobs specifies the number of parallel jobs to run for
finding nearby points. If set to 1, all CPUs are used.

• Algorithm determines the algorithm used to calculate the
nearest points.

5) RANDOM FOREST (RF)
The RF model was implemented using the RF Classifier of
the of the sklearn package [16]. The grid-search procedure,
including a k-fold (k=5) cross-validation for model optimiza-
tion and hyperparameter tuning, brought to the selection in
Table 8 where:

TABLE 8. RF best hyperparameters.

TABLE 9. DT best hyperparameters.

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

• Criterion represents the criterion used to evaluate the
quality of splits. Two examples are the Gini impurity
index and the entropy measurement.

• Class Weights determines the weights assigned to
the different classes during the training. In particu-
lar, if class_weight equal to ‘‘balanced’’ uses y, the
target label values, to automatically adjust weights
so that they are inversely proportional to the fre-
quency of samples in the different classes in the input
data.

• Max Features represents the number of features to
consider when looking for the best split.

• N Estimators describes the number of trees to be used to
implement the boosting technique.

6) DECISION TREE (DT)
The DT model was implemented using the DT Classifier of
the sklearn package [16]. The grid-search procedure, includ-
ing a k-fold (k=5) cross-validation for model optimization
and hyperparameter tuning, brought to the selection in Table 9
where:

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

• Criterion represents the criterion used to evaluate the
quality of splits. Two examples are the Gini impurity
index and the entropy measurement.

• Class Weight determines the weights assigned to the
different classes during the training. In particular,
if class_weight is ‘‘balanced’’ it uses y, the target label
values, to automatically adjust weights so that they are
inversely proportional to the frequency of samples in the
different classes in the input data.

• Splitter represents the strategy to be used to choose the
type of split in each node.
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TABLE 10. LSV best hyperparameters.

7) LINEAR SUPPORT VECTOR (LSV)
The LSV model was implemented using the LSV Classifier
of the sklearn package [16]. The grid-search procedure,
including a k-fold (k=5) cross-validation for model optimiza-
tion and hyperparameter tuning, brought to the selection in
Table 10 where:

• Random state allows the randomity of the estimator to
be checked, in order to ensure the reproducibility of the
results.

• C is a positive float value, which defines the inverse of
the regularization force. Small values specify a stronger
regularization.

• Max Iter specifies the maximum number of iterations to
be performed.

D. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
The XAI interface was integrated into the CDSS to enhance
the understanding of how the ML algorithm provides
predictions. This integration aims to boost the confidence of
healthcare professionals (HCPs) in utilizing this technology
for clinical decision-making. It is based on Shapley Additive
eXplanations (SHAP) [20]. It exploits the basis of cooperative
game theory matching a model input features with a player
of the game, and the model function with the rules of the
game. The returned Shapley value represents the contribution
that each player (feature) gives, with its participation in any
possible coalition, to the expected value of the game result.
These Shapley values sum up the difference between the
result of the game when all players are present, i.e. the
output of the current model f (x), and the result of the game
when no player is present, i.e. the output of the baseline
model E[f (x)].
The XAI tool was used both for local and global model

explanations. For the local explanation, the models were
tested on specific case study subjects. A waterfall graph is
returned to the user, along with the risk factor prediction, as a
local feature importance plot, where the bars represent the
SHAP values for each feature. The global explanation was
obtained as a bar plot where the global importance of each
feature is the mean absolute value for that feature over all the
given samples in the training dataset.

E. DISEASE CO-OCCURRENCE GRAPH VISUALIZATION
The proposed XAI-CDSS incorporates a user-friendly multi-
node graph-based visualization tool. This tool enables
HCPs to interactively visualize and analyze the directional
connections, referred to as paths or links, between the
selected obesity comorbidities (diabetes, cardiovascular, and

heart disease) and the designated non-communicable diseases
(NCDs). Its integration aims to provide HCPs with an
intuitive interface for exploring and characterizing these
connections.

A new compatible graph implementation, based on data
in Section II-A4, has been developed in order to be
integrated into the proposed XAI-CDSS. The following
Python packages have been used: NetworkX [21] to build
the graph and pyvis [22] for an interactive view. Nodes are
characterized by two attributes: ’label’, which indicates the
ICD10 code of the pathology, and ’group’, representing,
in color, the source node and the degree of connection. The
edges have the following attributes: ’label’, which indicates
the RR, and ’weight’, which indicates the number of patients
following the path from pathology 1 to pathology 2 and
is graphically converted into the link width. In particular,
the edge connecting the obesity node to the three selected
comorbidities will show a weighted relative risk RRw based
on the predicted risk f (x) as a result of the model prediction
and the absolute RR based on data. It will be therefore defined
as RRw = f (x) ∗ RR.

III. RESULTS
This section presents the findings of the proposed XAI-CDSS
in a comprehensive cross-sectional study, focusing on the
selected pathologies associated with obesity: diabetes, car-
diovascular diseases, and heart diseases. In the first place, the
predictive models’ performances are presented. Secondarily,
two case studies are analyzed showing the prediction outcome
and the local XAI explanation. The global model explanation
is then provided, presenting the feature importance for
prediction across the entire analyzed population. Finally, the
integrated graph-based visualization for NCDs connections
to the selected comorbidities is shown.

A. MODEL PERFORMANCES
The predictive models in Section II-C were trained on
pre-processed data as described in Sections II-A and II-B. The
different model performances on the test dataset are reported
in Tables 11, 12, and 13 for the three comorbidities.

TABLE 11. Model performances for diabetes models in the test dataset.

The discrepancy between the models’ performance indi-
cators in the training and in the test datasets was calculated.
The performance in the test phase decreased by a percentage
between the 1% and the 15%, thus, resulting in a low risk
of overfitting. Moreover, given the difficulty in finding new
original and more controlled medical datasets, such results
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TABLE 12. Model performances for cardiovascular disease models in the
test dataset.

TABLE 13. Model performances for heart disease models in the test
dataset.

FIGURE 1. MLP classifier confusion matrices for the training and the test
datasets: Diabetes.

are considered satisfactory as a proof of concept for the
developed methodologies; they are encouraging for future
application to further studies and pathology associations.

The confusion matrices are presented for MLP in
Figure 1, 2, 3 and for XGB models in Figure 4, 5, 6 as they
present the best accuracy for the considered pathologies.

FIGURE 2. MLP classifier confusion Matrices for the training and the test
datasets: Cardiovascular diseases.

Given the comparison among the predictive model perfor-
mances, the MLP was applied to diabetes and heart diseases,
and the XGB was applied to cardiovascular disease due to
their superior accuracy compared to the other considered
predictive models.

B. LOCAL MODEL EXPLANATION
Different case studies are here presented: Case Study 1 is a
subject resulting positive to all three correlated pathologies;
Case Study 2 is a subject presenting a negative risk for
all three correlated pathologies; Case Study 3 is a subject
presenting a positive risk for two comorbidities out of three.
The visualization of the results for the user in terms of
probability and XAI local explanation is presented.

1) CASE STUDY 1: PATIENT POSITIVE TO ALL DISEASE
The subject presented is an obese subject with the following
features: age: 61 years old, gender: male, height: 170 cm,
weight: 115 kg, systolic pressure:120 mmHg, diastolic
pressure: 80 mmHg, cholesterol: 235 mg/dl (normal),
physical activity: active, difficulty in walking: no, cardiac
disease/attack: yes, education: Some college or technical
school. The risk factors given by the predictive model are
84.99% for developing diabetes, 77.65% for developing
cardiovascular disease, and 61.43% for developing heart
disease. Figure 7 (a)(b)(c) represents the XAI waterfall
diagrams with the local explanation of the predicted risk
factor for each pathology.
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FIGURE 3. MLP classifier confusion Matrices for the training and the test
datasets: Heart diseases.

For diabetes analysis, the subject results have a high risk
(84.99%) of developing such a pathology. High BMI, high
blood pressure, education level (Some college or technical
school), and high cholesterol have a significant contribution
to the high risk of developing such a disease. Age and past
heart disease/attack push the prediction toward diabetes with
a moderate contribution. The male gender and the absence of
difficulty in walking give a slightly negative contribution to
the prediction.

For cardiovascular disease, the subject results having a
high risk (77.65%) of developing such a pathology. High
BMI is the main contributor to the high risk of developing
such a disease. Also age, above-normal cholesterol, systolic
and diastolic blood pressure, and height go in the same
direction with a lower contribution. Weight, diastolic blood
pressure, physical activity, and male gender have a negative
contribution to the prediction.

For heart disease, the subject results having a slightly
high risk (61.43%) of developing such a pathology. XAI
waterfall diagrams in Figure 7(c) give an idea of how
each feature contributed to the prediction allowing the
HCP to decide if the model response is reliable. BMI
and male gender are the main contributors to the risk of
developing such a disease. Also, age goes in the same
direction with a lower contribution. The absence of difficulty
in walking gives a slightly negative contribution to the
prediction.

FIGURE 4. XGB classifier confusion matrices for the training and the test
datasets: Diabetes.

2) CASE STUDY 2: PATIENT NEGATIVE TO ALL DISEASE
The subject presented is an obese subject with the following
features: age: 44 years old, gender: male, height: 160 cm,
weight: 100 kg, systolic pressure: 120 mmHg, diastolic
pressure: 80mmHg, cholesterol: 130mg/dl, physical activity:
active, difficulty in walking: no, cardiac disease/attack: no,
education: graduate. The risk factors given by the predictive
model are 50.29% of not developing diabetes, 71.79% of
not developing cardiovascular disease, and 84.97% of not
developing heart disease.

The subject-associated probability of not developing
diabetes is borderline, very close to the 50% threshold. The
XAI waterfall diagrams in Figure 8 (a)(b)(c) are therefore
significant to the HCP for assigning the proper meaning and
trust to the prediction, giving an idea of how each feature
contributed to model results.

For diabetes analysis, the subject results borderline
(50.29%) of not developing such pathology. Young age
(44 years), not having high cholesterol, and college graduate
education are the main contributors to the prediction of
not developing the considered pathology. Moderate contrib-
utors in the same direction are: not having a past heart
disease/attack, the female gender and not having difficulty
walking. The high BMI and high blood pressure push toward
the development of diabetes.

Systolic blood pressure, age, and normal cholesterol are
the main contributors to the probability of the subject
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FIGURE 5. XGB classifier confusion matrices for the training and the test
datasets: Cardiovascular diseases.

being healthy with respect to cardiovascular diseases.
The high BMI, the diastolic blood pressure push instead
to the prediction of developing such pathology. The
other features provide very low contributions to the
prediction.

For heart disease, the subject results have a high probability
(84.97%) of not developing the pathology. The young age
(40-44 years) is the main contributor to such a favorable
prediction. The female gender and the absence of difficulty
in walking push slightly toward a healthy subject. High BMI
is instead a negative contributor to the prediction.

3) CASE STUDY 3: PATIENT WITH DIFFERENT PREDICTION
TO THE COMORBIDITIES
The subject presented is an obese subject with the following
features: age: 50 years old, gender: female, height: 165 cm,
weight: 99 kg, systolic pressure:150 mmHg, diastolic pres-
sure: 110 mmHg, cholesterol: 150 mg/dl, physical activity:
inactive, difficulty in walking: no, cardiac disease/attack:
no, education: some high school. The risk factors given by
the predictive model are 77.59% of developing diabetes,
90.03% of developing cardiovascular disease, and 75.86%
of not developing heart disease. The XAI waterfall diagrams
in Figure 9 (a)(b)(c) are significant to the HCP for
assigning the proper meaning and trust to the prediction,
giving an idea of how each feature contributed to model
results.

FIGURE 6. XGB classifier confusion matrices for the training and the test
datasets: Heart diseases.

For diabetes analysis, the subject results have a high risk
(77.59%) of developing such pathology. High blood pressure,
education level (some high school), and high BMI have a
positive contribution to the high risk of developing such a
disease. Normal cholesterol, the age range (50-54 years),
no difficulty in walking, and no past heart disease push
towards a prediction of a healthy subject.

For cardiovascular disease, the subject resulted in a high
risk (90.03%) of developing such pathology. High systolic
and diastolic blood pressure and no physical activity are the
main contributors to the high probability of developing such
a disease. Normal cholesterol moderately pushes toward the
prediction of a healthy subject.

For heart disease, the subject results have a high probability
(75.86%) of not developing the pathology. A relatively young
age (50-54 years), the female gender, and the absence of
difficulty in walking are the main contributors to such a
favorable prediction. High BMI gives instead a negative
contribution to the prediction.

C. GLOBAL MODEL EXPLANATION
The XAI bees warm test, Figure 10, performed on the
training dataset, gives a global view on how each feature
value contributes in terms of signed Shapley value to the
pathology risk factor calculation for each model. It represents
a scatter plot including cross-information on the normalized
feature values and the correspondent signed Shapley value.
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FIGURE 7. Case Study 1: XAI waterfall graphics for a subject with risk factors: (a) 84.99% of
developing diabetes, (b) 77.65% of developing cardiovascular disease, and (c) 61.43% of developing
heart disease.
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FIGURE 8. Case Study 2: XAI waterfall graphics for a subject with risk factors: (a) 50.29% of not
developing diabetes, (b) 71.79% of not developing cardiovascular disease, and (c) 84.97% of
not developing heart disease.
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FIGURE 9. Case Study 3: XAI waterfall graphics for a subject with risk factors: (a) 77.59% of
developing diabetes, (b) 90.03% of developing cardiovascular disease, and (c) 75.86% of not
developing heart disease.
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The continuous color scale represents the feature values
normalized in the high and low range (high: red, low: blue);
the position of each point on the x-axes, represents the
Shapley contribution for each data point. Such visualization
can give important scientific and clinical insights into the
pathologies, but it also could give important information
to the machine learning algorithm designer in order to
understand how to choose features and find algorithm
faults.

Figure 10(a) is the global XAI for diabetes prediction using
the MLP model. It is possible to notice how significantly
negative Shapley values associated with low values (blue)
of the features ‘‘high blood pressure’’, ‘‘age’’, ‘‘high choles-
terol’’, and ‘‘BMI’’ have a strong impact on the prediction
of healthy subjects. High values of ‘‘High body pressure’’
and ‘‘High Cholesterol’’ push toward diabetes prediction
with moderate impact. According to such global explanation,
the main neat contributors to diabetes prediction are high
values of the features ‘‘age’’, ‘‘BMI’’, and the presence of
‘‘difficultywalking’’ and ‘‘heart disease/attack’’. An outcome
coming from the global XAI is that the feature ‘‘education’’,
coming from the socio-cultural context, gives an interesting
contribution to the prediction: the model shows that low-level
education has an impact on the development of diabetes,
while high-level education pushes toward a health prediction.
Figure 10(b) is the global XAI for cardiovascular prediction
using the XGB model. It is possible to notice how signif-
icantly negative Shapley values associated with low values
(blue) of the features ‘‘systolic blood pressure’’, ‘‘age’’,
‘‘diastolic blood pressure’’ and ‘‘weight’’ have a strong
impact on the prediction of healthy subjects. High values of
‘‘systolic blood pressure’’, ‘‘age’’, ‘‘cholesterol’’, ‘‘BMI’’,
‘‘diastolic blood pressure’’, and ‘‘weight’’ push toward
diabetes prediction. According to such global explanation, the
main neat contributors to cardiovascular disease prediction
are high values of the features ‘‘systolic’’, ‘‘diastolic blood
pressure’’ and ‘‘cholesterol’’, while ‘‘height’’, ‘‘physical
activity’’ and ‘‘gender’’ are not significant since they give
an ambiguous contribution to the prediction. Figure 10(c) is
the global XAI for heart disease prediction using the MLP
model. It is possible to notice how significantly negative
Shapley values associated with low values (blue) of the
feature ‘‘age’’ have a strong impact on the prediction of
healthy subjects. According to such global explanation,
the main neat contributors to diabetes prediction are high
values of the features ‘‘age’’, the presence of ‘‘difficulty
walking’’, and ‘‘BMI’’. ‘‘Gender’’ gives a clear indication
of how the male gender is more prone to heart disease
illness.

D. GRAPH-BASED VISUALIZATION OF COMORBIDITY
As proven by disease trajectories applications in medical
research [23], [24], [25], the multi-node graph user interface
represents an important support to the HCPs and the patient
in order to have a global view of the development of further
pathologies connected to the current obesity condition.

FIGURE 10. Global XAI beeswarm graphics show how each feature
contributes to the model prediction for the entire population of the
training test. (a) Diabetes, (b) Cardiovascular diseases, (c) Heart
diseases.

The ICD10 code legend is fundamental for an immediate
interpretation of such a visual and interactive interface. The
graph can be read starting from the obesity node (orange).
The paths from the obesity node to the selected comorbidity
nodes (yellow), i.e. diabetes, cardiovascular disease, and
heart disease, will be labeled with a weightedRR as a function
of the f (x) predicted risk factor for each disease. The paths
related to the other NCDs connections are labeled with the
RR coming from the dataset as described in Section II-A.
The width of the connections is weighted by the number of
patients included in that path, meaning that they developed
both connected node diseases simultaneously within a time
horizon of 5 years. According to the case study and the
HCP approach, the node and paths visualization could be
filtered by selecting the most significant connections with
high RR or by visualizing the low RR connections. Figure 11
represents the comorbidity graph filtered according to the
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FIGURE 11. Graph-based user visualization according to filters on the relative risk (RR).
(a) RR ≥ 2.5, (b) 1.5 ≤ RR ≤ 2.5, (c) RR ≤ 1.5.
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RR values of the edges. Figure 11(a) includes the diseases
connected with a high probability of obesity comorbidities
(edges with RR ≥ 2.5) and gives the HCP a first view on
the pathologies that might have a high impact on the patient
health and therefore must be taken care of in the short-term
prevention and treatment. Figure 11(b) and (c) includes,
respectively, connections with an intermediate range of RR
(edges with 1.5 ≤ RR ≤ 2.5) and with a low RR (edges
with RR ≤ 1.5). In the latter, given the high number of
connections, the extended name of the diseases is not shown
and can be found in the ICD10 code [15] legend. These
graphs can drive the HCP in medium/long-term prevention
and treatments.

IV. CONCLUSION
This work presents the development of an XAI-CDSS,
a decision support system for predicting comorbidities and
non-communicable diseases associated with obesity. As a
first step, multiple machine learning predictive models
were implemented in order to determine the risk factors
associated with diabetes, cardiovascular, and heart diseases in
association with obesity. The best-performing models, MLP
for diabetes and heart disease, and XGB for cardiovascular
disease were chosen on the basis of a performance compar-
ison in terms of accuracy, precision, recall, F1 score, ROC
AUC, and confusion matrices. In addition, the explanation of
how the best-performing models determined the predictions
was given using XAI plots performed by SHAP and showing
how each feature contributed. Specific case studies were
presented in order to test the model predictions and to
visualize the XAI model local explanation. Moreover, global
SHAP beeswarm plots were presented for interpreting the
impact of each feature value on the prediction and giving an
interesting insight into ML extraction of meaning from data.
Finally, a graph-bases interface was developed and integrated
into the XAI-CDSS to allow the HCP to have a global
view of the impact that obesity could have on patient health
on different time horizons, showing the connections and
the correlated relative risk of developing further pathologies
which are not directly associable to obesity and to the
direct comorbidities. The developed XAI-CDSS represents
valid support to clinicians for predicting widespread patholo-
gies correlated directly and indirectly to obesity, driving
the HCPs from short-term to long-term prevention and
treatment.

REFERENCES
[1] F. J. Félix-Redondo, M. Grau, J. M. Baena-Díez, I. R. Dégano,

A. C. de León, M. J. Guembe, M. T. Alzamora, T. Vega-Alonso,
N. R. Robles, H. Ortiz, F. Rigo, E. Mayoral-Sanchez, M. J. Tormo,
A. Segura-Fragoso, and D. Fernández-Bergés, ‘‘Prevalence of obesity and
associated cardiovascular risk: The DARIOS study,’’ BMC Public Health,
vol. 13, no. 1, p. 542, Dec. 2013.

[2] F. Javier Basterra-Gortari, M. Bes-Rastrollo, M. Seguí-Gómez, L. Forga,
J. Alfredo Martínez, and M. Ángel Martínez-González, ‘‘Tendencias
de la obesidad, diabetes mellitus, hipertensión e hipercolesterolemia en
España (1997–2003),’’ Medicina Clínica, vol. 129, no. 11, pp. 405–408,
Sep. 2007.

[3] D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and
A. H. Anis, ‘‘The incidence of co-morbidities related to obesity and
overweight: A systematic review and meta-analysis,’’ BMC Public Health,
vol. 9, no. 1, p. 88, Dec. 2009.

[4] K. Zatońska, P. Psikus, A. Basiak-Rasała, Z. Stepnicka,
D. Gaweł-Däbrowska, M. Wołyniec, J. Gibka, A. Szuba, and
K. Połtyn-Zaradna, ‘‘Obesity and chosen non-communicable diseases in
PURE Poland cohort study,’’ Int. J. Environ. Res. Public Health, vol. 18,
no. 5, p. 2701, Mar. 2021.

[5] E. Martin-Rodriguez, F. Guillen-Grima, A. Martí, and A. Brugos-
Larumbe, ‘‘Comorbidity associated with obesity in a large population:
The APNA study,’’ Obesity Res. Clin. Pract., vol. 9, no. 5, pp. 435–447,
Sep. 2015.

[6] R. An, J. Shen, and Y. Xiao, ‘‘Applications of artificial intelligence to
obesity research: Scoping review of methodologies,’’ J. Med. Internet Res.,
vol. 24, no. 12, Dec. 2022, Art. no. e40589.

[7] A. Chatterjee, M. W. Gerdes, and S. G. Martinez, ‘‘Identification of
risk factors associated with obesity and overweight—A machine learning
overview,’’ Sensors, vol. 20, p. 2734, May 2020.

[8] D. Liu, D. Dligach, and T. Miller, ‘‘Two-stage federated phenotyping and
patient representation learning,’’ in Proc. 18th BioNLP Workshop Shared
Task Stroudsburg, PA, USA: Association for Computational Linguistics,
2019, pp. 283–291.

[9] Á. Torres-Martos, M. Bustos-Aibar, A. Ramírez-Mena, S. Cámara-
Sánchez, A. Anguita-Ruiz, R. Alcalá, C. M. Aguilera, and J. Alcalá-
Fdez, ‘‘Omics data preprocessing for machine learning: A case study in
childhood obesity,’’ Genes, vol. 14, no. 2, p. 248, Jan. 2023.

[10] A. Teboul. (2015). Diabetes Health Indicators Dataset. [Online].
Available: https://www.kaggle.com/datasets/alexteboul/diabetes-health-
indicators-dataset

[11] S. Ulianova. (2018). Cardiovascular Disease Dataset, Version 1. [Online].
Available: https://www.kaggle.com/datasets/sulianova/cardiovascular-
disease-dataset

[12] K. Pytlak. (2020). Personal Key Indicators of Heart Disease. [Online].
Available: https://www.kaggle.com/datasets/kamilpytlak/personal-key-
indicators-of-heart-disease

[13] T. Siggaard, R. Reguant, I. F. Jørgensen, A. D. Haue, M. Lademann,
A. Aguayo-Orozco, J. X. Hjaltelin, A. B. Jensen, K. Banasik, and
S. Brunak, ‘‘Disease trajectory browser for exploring temporal, population-
wide disease progression patterns in 7.2 million Danish patients,’’ Nature
Commun., vol. 11, no. 1, p. 4952, Oct. 2020.

[14] (2020). Danish Disease Trajectory Browser. [Online]. Available:
http://dtb.cpr.ku.dk/

[15] International Statistical Classification of Diseases and Related Health
Problems, World Health Org., Geneva, Switzerland, 10th Revision, 5th ed.,
2016.

[16] (2023). Scikit-Learn. [Online]. Available: https://scikit-learn.org/
[17] S. Pattanayak and T. Singh, ‘‘Cardiovascular disease classification based

on machine learning algorithms using gridsearchcv, cross validation and
stacked ensemblemethods,’’ inAdvances in Computing andData Sciences,
M. Singh, V. Tyagi, P. K. Gupta, J. Flusser, T. Ören, Eds. Cham,
Switzerland: Springer, 2022, pp. 219–230.

[18] MLP Algorithm—Scikilearn. Accessed: Jan. 2022. [Online]. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.neural-network.
MLPClassifier.html

[19] (2020). Xgboost Documentation. [Online]. Available: https://xgboost.
readthedocs.io/en/stable/

[20] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ in Advances in Neural Information Processing Systems,
vol. 30, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, 2017.

[21] (2023). NetworkX. [Online]. Available: https://networkx.org/
[22] (2018). Pyvis. [Online]. Available: https://pyvis.readthedocs.io/en/latest/
[23] B. J. Kenner et al., ‘‘Artificial intelligence and early detection of

pancreatic cancer: 2020 summative review,’’Pancreas, vol. 50, p. 251–279,
Mar. 2021.

[24] A. J. Webster, K. Gaitskell, I. Turnbull, B. J. Cairns, and R. Clarke,
‘‘Characterisation, identification, clustering, and classification of disease,’’
Sci. Rep., vol. 11, no. 1, p. 5405, Mar. 2021.

[25] N. Haug, J. Sorger, T. Gisinger, M. Gyimesi, A. Kautzky-Willer,
S. Thurner, and P. Klimek, ‘‘Decompression of multimorbidity along
the disease trajectories of diabetes mellitus patients,’’ Frontiers Physiol.,
vol. 11, Jan. 2021, Art. no. 612604.

VOLUME 11, 2023 107781



G. V. Aiosa et al.: EXplainable AI for Decision Support to Obesity Comorbidities Diagnosis

GRAZIA V. AIOSA received the B.S. degree
in computer engineering and the M.S. degree
in telecommunication engineering from Dipar-
timento di Ingegneria Elettrica, Elettronica e
Informatica (DIEEI), Università degli Studi di
Catania, Italy, in 2016 and 2019, respectively. She
is currently an Early Stage Researcher with DIEEI.
Her research interests include machine learning
and artificial intelligence.

MAURIZIO PALESI (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in com-
munication and computer engineering from Uni-
versità degli Studi di Catania, Catania, Italy, in
1999 and 2003, respectively. He is an Associate
Professor of computer engineering with Università
degli Studi di Catania, and a Visiting Associate
Professor with the Indian Institute of Technology
Guwahati, Guwahati, India. His current research
activity is focused in the area of domain specific

architectures. He is a member of HiPEAC. He has served as the general chair
and the TPC co-chair for several international conferences and workshops.
He has served as a guest editor for 20 special issues in top-level journals.
He serves as an associate editor for 12 international journals.

FRANCESCA SAPUPPO (Member, IEEE) was
born in Catania, Italy, in 1979. She received the
M.S. degree in electronic engineering and the
first Ph.D. degree in electronics and automation
from Università degli Studi di Catania, Italy, in
2003 and 2007, respectively. She is currently
pursuing the second Ph.D. degree in industrial
and information engineering with Università degli
Studi diMessina, carrying out research on explain-
able data-driven model identification and artificial

intelligence. From 2008 to 2016, she carried out research with Università
degli Studi di Catania, covering topics including multiphysics models
for composite materials, model order reduction methods applied on
MEMS and electronic circuits, real-time electro-optical instrumentation,
cellular nonlinear networks, image processing for biomedical applications,
microfluidics and micro-optics based on polymeric materials. From 2017 to
2022, she worked with industry as data scientist of green energy monitoring,
optimization and control, and in education.

Open Access funding provided by ‘Università degli Studi di Messina’ within the CRUI CARE Agreement

107782 VOLUME 11, 2023


