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ABSTRACT In this paper, the problem of consensus tracking of uncertain multi-agent systems (MAS)
with communication faults is addressed. The communication is assumed to be undirected. A reinforced
unscented Kalman filter (RUKF) is employed to adapt the noise covariance matrices and to estimate the
uncertain states of MAS as well as to train neural network internal parameters by providing a set of prior
measurements. A Chebyshev neural network (CNN) is incorporated to learn the uncertain plant. To avert the
neural network approximation errors a hyperbolic tangent function based robust control term is applied. The
stability of the RUKF which is running simultaneously with the robust control term has been proven using
Lyapunov stability approach. Numerical simulations are presented under different fault conditions to show
the effectiveness of the proposed RUKF with 5% less computation power compared to adaptive unscented
Kalman filter (AUKF).

INDEX TERMS Multi-agent systems, uncertain dynamics, reinforcement learning and non-linear filtering,
Chebyshev neural networks, control, communication faults.

I. INTRODUCTION
The popularity of MAS in academia as well as industry
has increased tremendously in recent years [1]. Despite its
increased significance in several different areas [2], there
are still several challenges that must be explored such as
communications issues, uncertain nonlinearity, state estima-
tion, fault diagnosis, health monitoring, smart grids, and
consensus [3]. The uncertainty of system dynamic models
has been dealt with a wide range of methods, and the theory
becomes quite enlightened. On the other hand, in MAS,
graph theory, a common communication topology, is used
such that every agent can interact and exchange informa-
tion with each other. Once a definite way to exchange the
information is determined, the entire dynamics of the net-
work can be established by knowing the dynamics of the
individual agents and their interaction with their neighbors.
The form of the information exchange is often called a
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communication protocol [4]. In real field applications, there
are always some obstructions in the communications such
as uncertain communication, delay, quantization, and limited
channel capacity [5], [6]. Uncertainty in communication is
used to study the robust consensus problem. Therefore, it is
an interesting work, to design a consensus filter forMASwith
more complex dynamics in the presence of communication
faults. There are a few works reported regarding uncertain
communication links forMAS such as [4], [7], and [8]. In [3],
a distributed intermediate observer which can estimate the
states and multiple faults is derived based on the time delay
closed loop system equation. In [4], a distributed consensus
protocol is proposed and designed in terms of linear matrix
inequalities to ensure robust consensus over uncertain com-
munications. The communication uncertainties in [7] have
been modelled as stochastic uncertainties based on which
protocols are validated in the mean square sense. A robust
consensus problem over uncertain network graphs of linear
feedback protocols has been examined by solving a H∞
control problem for a set of 2D subsystems in [8]. Again,
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it is well known that introducing the communication delay
will lead to a reduction of the performance of instability
[9] and thus investigating communication time delays in
MAS is another interesting work. In [9], a sliding mode
control design is proposed for a leader follower MAS to
deal with the uncertainties incurred by unknown time varying
communication delay and disturbances. In [10], consensus
control of MAS with input and communication delay in
the frequency domain is discussed. The considered linear
dynamic model of each agent in [10] involves multiple input
delays. In [11], a distributed coordinated attitude tracking
control problem for spacecraft formation with time-varying
communication delays under the condition that the dynamic
leader spacecraft is a neighbor of only a subset of follower
spacecraft is examined. However, the observation made from
literature, there are a limited work reported regarding the
design of a consensus for nonlinear uncertain MAS in pres-
ence of communication faults via the design of an estimator.
Hence, there are still many open challenges in this area [12].
Motivated by the preceding discussions, an essential and
urgent issue that turns out to be unavoidable is to design
a consensus-based estimator for the uncertain non-linear
MAS in presence of communication uncertainty and
delay.

A basic difficulty in state estimation is to figure out a way
to design a state estimator so that the estimation error can
be assumed to be bounded. Extensive use of the nonlinear
state estimation algorithm, primarily unscented Kalman filter
(UKF), has been seen over the last few years for the estima-
tion of states [13], MAS [14], [15], [16], fault diagnosis [17].
Again, another neural network (NN) based approach is

applied towards estimation of unknown nonlinear dynamics
[18] of second order MAS. Recently, NN based fault tolerant
control (FTC) method is developed for each agent using local
measurements and suitable information exchange between
agents for nonlinear uncertain MAS [19]. Researchers [20]
proposed a distributed fixed-time observer which is designed
for the follower agent to estimate the leader’s state under
directed networks. Then, based on the estimate, a fixed-
time tracking control protocol is developed where novel
approximation and estimation schemes are designed to tackle
the nonlinear functions and disturbances. In [21], proposes
a finite-time consensus FTC tracking problem in the non-
strict feedback form and Lyapunov stability guarantees that
the tracking error converges to zero for non-strict MAS.
The above-mentioned results are combined with adaptive
techniques for adjusting the NNs weight. Reinforcement
learning (RL) such as temporal difference and Q learning
[22] is a famous machine learning (ML) algorithm, that
has been extensively studied from various angles and thor-
oughly applied for several applications [22]. Achievement of
an action selection plan that will make the best use of the
collective reward over the term is the primary goal of the
agent inQ learning [23]. On the contrary, it is understandable
that without accurate statistical knowledge about the process
and measurement noise covariance matrices, it is not easy

to design an optimal estimator. The inexact values of noise
covariance matrices will worsen the estimation performance.
In this case, the filter must bemade in such a way so that it can
continue to get an accurate estimation. This work is driven by
the robustness of the Q−learning method and its successful
implementations [24]. To summarize, the significant advan-
tages and novelty of this paper are as outlined hereby,
(1) Utilizing RL to adjust noise covariance uncertainties

in the UKF is demonstrated to enhance the estimation
performance for nonlinear uncertain MAS. Additionally,
a consensus term is introduced, shedding light on the
core principles of multi-agent coordination using graph
theory.

(2) The primary innovation in this study lies in the creation
of autonomously refining noise covariance uncertainties
in the UKF using Q–learning. We achieve the optimal
noise covariance uncertainties in the UKF within the
framework of Q–learning, and this approach is referred
to as Reinforced UKF. To the best of our knowledge, the
issue ofQ–learning-based noise covariance adaptation in
UKF remains unresolved.

(3) We establish the asymptotic stability of the estimation
error and state error, incorporating a control law based on
Lyapunov stability theorem. This guarantees the leader-
follower consensus tracking of MAS.

(4) The outcomes presented in this paper address uncer-
tainties in MAS model, encompassing communication
uncertainties and delays, demonstrating the practicality
and computational efficiency of our work.

This paper is organized as follows; Section II describes the
problem formulationwith some other preliminaries. Observer
and controller design has been stated in section III. The results
and discussion section have been presented in section IV and
concluding remarks of this work are drawn in section V.

II. PROBLEM FORMULATION
A. MAS DYNAMICS
Consider a group of MAS of n agents (in this paper, n =
6) in which the following second-order differential equation
describes the ith agent as,

ẋi = νi, i= 1, 2, . . .,n (1)

ẍi = fi(xi,νi)+ gi(xi)ui + di, (2)

Here, xi ∈ Rm and vi ∈ Rm is the ith agent position and
velocity vectors,, ui ∈ Rm is the control input acting at the
ith agent, fi(xi,νi) ∈ Rm is the uncertain plant, gi(xi) ∈
Rmxm is a non-singular control gain matrix, di ∈ Rm is the
unknown bounded external disturbance acting at the ith agent.
The measurement model can be written as,

yi = hi (xi(t), νi(t), t)+ϑi(t), i = 1, 2, . . .,n (3)

where yi ∈ Rm is the measurement vector, (xi, νi)∈ Rm is the
state vectors (position and velocity) that gives all information
about the system behavior, hi ∈ Rm is the nonlinear mapping
of measurements, ϑi is the additive measurement noise, t is
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time. Let’s assume that there is a virtual leader, identified as
agent 0, whose state x0 ∈ Rm is the time-varying reference
trajectory for the MAS.
Assumption 1: The reference trajectory x0, its derivatives

ẋ0, ẍ0 are in a compact set [25],

�0≡{(x0ẋ0ẍ0)|∥x0∥2+∥ẋ0∥2+∥ẍ0∥2≤ C1}

where C1 is a positive constant. This assumption states that
for a consensus achievement ofMAS, the reference trajectory
x0, and its derivatives are bounded which is common. A norm
∥ x0 ∥ is a function mapping x0 into nonnegative real.
Assumption 2: The disturbances di(i = 1,2, . . . n) are

bounded s.t. ∥ di∥≤dMi, where dMi is a positive constant.
Here, Eqs.(1)-(3) can be used to represent many practical
systems such as spacecraft attitude dynamics, satellite orbital
control systems, robotic manipulators and so on.

B. COMMUNICATION BETWEEN THE AGENTS
The communication framework is manifested in the Fig. 2
among the agents in the given MAS i is described by a graph,
G = (ϒ , E , A), where {ϒ = ς1, ς2, . . . , ςn} is the set of
interconnected nodes, E ⊆ ϒ×ϒ is the set of edges, and
A = [aij ] ∈ Rn×n is the weighted adjacency matrix with
non-negative elements and aij=aji ≥0 and aii = 0. Node ςi
(i = 1, 2, . . .n) represents the ith agent, and an edge in G is
denoted by an unordered pair (ςi, ςj). (ςi, ςj) ∈ E if and only
if there is an information exchange between the ith agent and
the jth agent that is, (ςi, ςj) ∈ E⇔ (ςj,ςi) ∈ E. For any two
nodes ςi and ςj, if there exists a path between them, then G is
called a connected graph. In this case, the graph is undirected,
(ςi, ςj) ∈ E ⇔ (ςj, ςi)∈ E . It is assumed that aij = aji and
aii = 0.

Now, the information flow between the ith agent and
agent 0 (virtual leader), where ai0 > 0 (i = 1, 2, . . . , n) is
a constant if the ith agent has access to the leader agent that
is agent 0, otherwise ai0 = 0. Let B = diag {b1 . . . bn} be the
leader adjacency matrix associated with G where bi > 0 (i
=1,2, 3. . . . n) is a constant if the ith agent has access to the
leader and bi = 0 otherwise. Using the adjacency matrices,
A and B, we define a lumped state error, αxi and ανi with
communication fault can be expressed as,

αxi =
∑n

j=1
{aij(xi − xJ̇ )+bi(xi − x0)}(1+1i) (4)

ανi =
∑n

j=1
{aij(vi − vJ̇ )+ bi(vi − ẋ0)}(1+1i) (5)

1i denotes the faults associated with the communication
channels where i= 1,2. . . 6 and j= 1,2. . . 6. The control input
ui in Eq. (2) is given by,

ui = gi(xi, vi, x0, αxi, ανi) (6)

where gi is a function and x0 is the reference trajectory of the
ith agent.
Theorem 1: If Ḡ is connected, then the matrix L+B asso-

ciated with Ḡ is symmetric and positive definite [25].

III. OBSERVER AND CONTROLLER DESIGN
A. REINFORCED UNSCENTED KALMAN FILTERING
We have tackled the challenges associated with uncertain
noise covariance’s in the UKF, specifically related to the
Q (process noise covariance matrix) and R (measurement
noise covariance matrix). We have effectively mitigated the
adverse effects of these uncertainties in the UKF by integrat-
ing Q–learning. This adaptation strategy, developed within
the Q–learning framework, enhances the performance of the
estimator, which we refer to as the Reinforced UKF. The
RUKF is less sensitive to noise covariance uncertainty. The
key advantage of the RUKF is its ability to improve esti-
mation accuracy when the actual noise covariance deviates
from its nominal value. Another significant benefit is that the
RUKF can optimize performance matrices without requiring
an explicit optimization algorithm. This is because the RUKF
is entirely based on the principles of RL. It’s important to
note that RL and optimization algorithms, such as genetic
algorithms (GA), are essentially addressing the same cate-
gory of problems, which involve searching for solutions that
either maximize or minimize a given function, reward, or cost
function. In this regard, they share common characteristics.

To understand RUKF, it is necessary to build the state
set as S and corresponding action set as A for Q−learning.
Inspired by grid wise control [23], we construct a grid as
shown in Fig.1(a) in which we have different pairs of noise
covariances matrices as states S and their corresponding
actions up, down, left, and right as A. Let us consider in
the grid their C design values for process noise covariance
matrices as {Q1

design, Q
2
design, . . . . QMdesign} and D design

values for measurement noise covariance matrices {R1design,
R2design, . . . . R

N
design} hence the states composed of C by D

state pairs. The narrow arrows are actions as up, down, left,
and right describes the agents’ state transition.

The grid size is set at 4 by 4, which corresponds to the
number of states and total agents. In Fig. 1(a), each Sij rep-
resents ith row and jth column on the grid, where various
Qdesign and Rdesign sets are employed along with actions. It
is assumed that the agent can move to adjacent states or
remain in its current state based on received actions, with each
transition yielding a certain reward. This paper’s objective
is to determine suitable Qdesign and Rdesign configurations
that can enhance the performance of the UKF. The algorithm
involves three parallel UKF algorithms. Initially, a standard
UKF (UKF) is used to generate filtering results using nominal
noise covariance matrices. Subsequently, a grid-based UKF
(GUKF) is employed to evaluate the impact of different
Qdesign and Rdesign configurations. A scalar reward is calcu-
lated based on absolute and relative error matrices (Eqs. 28
and 29), denoted as ‘res’ (line 14 of Algorithm 1), which
are generated by the UKF with the nominal Q and R, and
the GUKF with Qdesign and Rdesign selected according to the
current state on the grid.

The reward is utilized to indicate the estimation perfor-
mance. The best couple of Qdesign and Rdesign are selected
gradually according to the cumulative reward. Generally,
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FIGURE 1. (a) States and their corresponding action set in a grid
(b) Flowchart of the proposed RUKF.

a smaller and positive reward indicates that the current setting
of the Qdesign and Rdesign in the filter can achieve high accu-
racy. Based on the action selection strategy and cumulative
rewards, the agent attempts to reach the appropriate Qdesign
and Rdesign state. The third filter(line 15 of Algorithm 1)
which is RUKF because Qdesign and Rdesign has been updated
using a Q learning method, is introduced to achieve the
optimized final estimates. In Fig. 1(b), we have shown the
flowchart of the proposed RUKF algorithm.

In this context, T represents the total time required to
attain the reward Rr , and ϵ denotes the probability asso-
ciated with the ϵ− greedy strategy for selecting a random
action. Algorithms 2 outlines the process of the ϵ− greedy
approach, which is employed to determine actions based on
the received rewards. Within this algorithm, the ‘‘rand(.)’’
function generates a random action with a probability of ϵ,
while it selects the action that maximizes cumulative rewards
with a probability of (1 − ϵ). This approach is crucial for
striking a balance between exploration and exploitation.

Algorithm 1 Reinforced UKF

1. Initialize x̂ukf0 = x̂gukf0 = x̂0 and p
ukf
0 = p

gukf
0 = P0

2. k ← 0
3. ∀ s ∈ S and a ∈ A , Initialize Q(s, a)← 0, V (s)← 0;
4. Initialize the state S
5. Initialize Rr←0
6. for each period do,
7. a ←ϵ−greedy (A, Q(s,a), s, ϵ ) choose a in s based on
ϵ−greedystrategy
8. Execute the action a and go to the next state s′

9. for t = 0:T do
10. k←k+1
11. [x̂ukfk , pukfk , residueukfk ]← UKF (x̂ukfk−1, p

ukf
k−1, yk , u,Q,R)

Step 1: Initialize Q and R (nominal)
Step 2: Sigma Points

Xak−1= [x̂ak−1x̂
a
k−1 ±

√
(L + λ)Pak−1]

Step 3: Time Update
Xxk|k−1 = F[X xk−1,X

v
k−1]

x̂−k =
∑2L

i=0W
(m)
i Xxi,k|k−1

P−k =
∑2L

i=0W
(c)
i [Xxi,k|k−1 − x̂

−

k ][X
x
i,k|k−1 − x̂

−

k ]
T
+ Qk−1

yk|k−1 = H [Xxk|k−1,X
n
k−1]

ŷ−k =
∑2L

i=0W
(m)
i yi,k|k−1

Step 4: Measurement update
Pyk ỹk =

∑2L
i=0W

(c)
i [yi,k|k−1 − ŷ

−

k ][yi,k|k−1 − ŷ
−

k ]
T
+Rk

Pxk yk =
∑2L

i=0W
(c)
i [Xi,k|k−1 − x̂

−

k ][yi,k|k−1 − ŷ
−

k ]
T

K = Pxk ykP
−1
yk ỹk

x̂k = x̂−k + K (yk − ŷ
−

k )+Ck
∑

J∈Ni (x̂
j̇
k−1 − x̂

−

k )
Pk = P−k −KPyk ỹkK

T

12. [x̂gukfk , pgukfk , residuegukfk ] ← GUKF (x̂gukfk−1 , p
gukf
k−1 , yk , u,

Qdesign,Rdesign)
Step 1: Initialize Qdesign and Rdesign based on the grid set (Fig. 1a)
Step 2: Repeat step 2 to 4 under line 11 with step 1 under line 12.
13. 13.Qdesign and Rdesign is determined with the current state s′

14. Reward Rr = Rr +[(resukfi )T * resukfi – (resgukfi )T * resgukfi ]
15. [x̂k , pk , residuek ]← RUKF (x̂k−1, pk−1, yk , u,Qdesign, Rdesign)
Step 1: Initialize Qdesign and Rdesign is determined by the current
state s′

Step 2: Repeat step 2 to 4 under line 11 with step 1 under line 15.
16. end for
17. Update Q value, Q (s,a)←Q (s,a) +α (Rr +γV

(
s′
)
−Q (s,a))

18. V (s)←ma
a
x Q (s,a)

19. s←s′ and Rr←0
20. Reset x̂gukfk ← x̂ukfk and pgukfk ← pukfk
21. end for
22. return {x̂k} and {pk }, the resultant estimation

The RUKF has both advantages and disadvantages,
including:

1) When the actual noise covariance’s deviate from
their nominal values, the RUKF’s performance can be
improved. Additionally, unlike the extended Kalman filter,
it doesn’t rely on linearization for state predictions and
covariance’s.

2) Typically, process and measurement noise covariance’s
are manually adjusted through trial and error, often involving
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Algorithm 2 ϵ - Greedy Action Selection
1. function ϵ−greedy (A, Q(s, a), s, ϵ)
2. Choose an action based onQ value
3. If rand(.) < ϵ

4. Choose a in A at random
5. else
6. a = argma

a
x Q (s,a)

7. end if
8. return a
9. end function

tedious tasks guided by empirical rules, consuming time and
yielding only modest results. In contrast, RUKF updates pro-
cess and measurement noise covariance’s without relying on
a trial-and-error approach.

3) Because three filters operate concurrently to generate
residuals, RUKF is computationally more efficient and capa-
ble of achieving optimality in Markov decision processes.

4) RUKFmay experience divergence if the design values in
the grid are not properly selected. The grid’s size and the con-
trol of design values are heuristics that fundamentally impact
RUKF’s performance. The choice of actions within the grid
is another critical factor in determining the precise sequence
of design values; selecting a random action can degrade the
overall performance of RUKF. Additionally, RUKF may fail
to converge if the learning rate is set too high or too low.
Remark 1: Algorithms 1 and 2 depict the structure of the

RUKF algorithm. Line 15 describes the final output of the
RUKF with the updated Qdesign, Rdesign obtained using Q
learning-based approach.

Some initial parameters of Algorithm 1 can be defined as,
x̂0 : Initial state estimate, p0 : Initial covariance
S: state set, s: a particular state of S
s′ : next state, Rr : reward
A: action set, a: particular action of A = {a1 = up, a2 =
down, a3 = left, a4 = right}
Q(s, a) : Q−value with state ‘s’ and action ‘a’
V (s): value function
α : learning rate, γ : discount factor
Q and R : noise covariance matrices
Qdesign, Rdesign: Predetermined set of values in Grid

Remark 2: A linear scalarization function in line 14 has
been used in algorithm 1 to calculate the reward Rr , an impul-
sive approach to evaluate the state-action pair. If we get
a positive reward for the current state-action pair then the
Qdesign and Rdesign for that particular state-action pair for
GUKF are more appropriate than the UKF, otherwise, the
negative reward wont be considered.

B. CONTROL LAW
Suppose the agents are interconnected by static diffusive-type
coupling [25],

ui = g−1i (−Wπiξi − K1isi−K2isνi − ψi) (7)

where, K1i and K2i are constant, diagonal positive def-
inite matrices, ξi is the Chebyshev polynomial, sνi =
(sνi1, s

ν
i2, . . . , s

ν
im)

T , the adaptive neural network compensator
Wπi (i = 1,2. . . n) is used to calculate the unknown nonlinear
function, fi(xi, vi) and the robust control term ψi ∈ Rm (i =
1,2. . . n) is used to prevent the neural network approximation
errors as well as the external disturbances. Next, the robust
controller ψi (i= 1,2,. . . . n) in Eq. (7) can be written as [25],

9ij = ki tan h(
mkukisij
ϵ

) , ku = 0.2785 , j= 1, 2. . . n

(8)

Here, ki is a positive constant and ϵ are positive scalar. The
terminal slidingmanifolds si ∈Rm (i= 1,2. . . , n) is expressed
as [25],

si = αv̂i + σ1iαx̂i + σ2iβi (9)

where, si = (sT1 . . . .sTn )T ∈ Rmn, βi = (βT1 . . .βTn )T ∈

Rmn, σ1i = diag(σ1i Im . . . .σ1n Im) ∈ R(mn)x(mn), and σ2i =
diag(σ2i Im . . . .σ2nIm) ∈ R(mn)x(mn) where, i = 1,2. . . . n. The
term βi, σ1i, σ2i has been mainly discussed in the stability
proof section of this paper. Lumped state errors (αx̂i and
αv̂i, i = 1, 2 . . . n) ∈ Rm that includes the absolute and
relative state errors are necessary to measure the true tracking
errors of the whole system. The ith agent may not obtain all
the absolute state errors (ex̂i and ev̂i,i = 1, 2 . . . n) and all
relative state errors (rx̂ij and rv̂ij where, i = 1, 2 . . . n and
j = 1, 2 . . . n) with the consideration of the above facts, using
the weighted adjacency matrices A and B, we define lumped
state errors as [25],

αx̂i =
∑n

J=1
aijrx̂ij+biex̂i (10)

αv̂i =
∑n

J=1
ai̇jrv̂ij+biev̂i (11)

where, αx̂i ∈ Rm and αv̂i ∈ Rm where i = 1,2, · · · n. aij is
the element of the weighted adjacency, ki is the element of
the weighted matrix K . The lumped state errors are defined
as the summation of the absolute and relative state errors, and
it is only dependent on the ith neighboring agent’s pieces of
information.
Relative Error: It is defined as the estimated state of an

individual agent with respect to another estimated state of an
agent. The relative state error between the ith agent and the jth

agent (i = 1,2. . . n and j = 1, 2. . . . n) is defined simply by,

rx̂ij = x̂i − x̂j (12)

rv̂ij = ν̂i − ν̂j (13)

Absolute Error: It is the difference between estimated state
of individual agent to the reference trajectory. The absolute
errors of the ith agent (i = 1,2. . . . n) are defined by,

ex̂i = x̂i − x0 (14)

ev̂i = ν̂i − ẋ0 (15)

where ex̂i ∈ Rm and ev̂i ∈ Rm where i = 1,2,. . . n. The
commonly reference trajectory (i.e., x0 and ẋ0) is available to
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only a subset of agents, and each agent in the group has access
to information about its neighbor agents that can be expressed
by the adjacency matrices A and B,

B = diag{a10, . . . . ai0} and ai0 > 0 (16)

where i = 1,2,. . . 6 is a constant if the ith agent has access to
the leader, otherwise ai0 = 0.
Remark 3: The control law described in Eq.(7), the adap-

tive neural network compensatorWπi (i = 1,2. . . n) is used to
calculate the uncertain plant fi(xi, vi), the nonlinear feedback
K1isi and K2isνi is used to drive the system states to the sliding
manifold in finite time.

C. STABILITY ANALYSIS
Say Lyapunov candidate [25], [26], [27] for a closed-loop
system can be defined as,

V (x̃, s,w) = V (x̃)+V (s,w) (17)

where,

V (x̃) = χ̃Tk+1|k P̂
−1
k+1|k χ̃k+1|k (18)

V (s,w) =
1
2
sTP2s +

∑n

i=1
Vwi (19)

Our goal is to prove V̇ (x̃, s,w) ≤0
Theorem 2: To prove RUKF stability, let the following

assumptions hold:
Assumption 3: There exist real constants f , h, β, α, α >

0; q, q, q̂, q∗, r, r∗, p, p > 0 such that the following bounds
on various matrices are satisfied for every K > 0:

f 2I≤FkFTk , h
2I≤HkHT

k , βI≤βk
αI≤αk≤αI , qI≤Qk≤qI , q∗I≤Q∗k
Rk≤r̄ Ī , r∗I≤R∗k , pI≤P̂k≤pI

 (20)

There exist real constants overline f , φ, h, β, such that the
matrix norm is bounded via.

∥ϒkFk
∥∥≤ f̄ , ∥φk∥∥ ≤ φ̄, ∥ϒkHk ∥∥≤ h̄, ∥βk∥∥ ≤ β̄ (21)

Now it can be concluded that the estimation error is expo-
nentially bounded in the mean square. Proof of Theorem 2
can be found in Appendix B. For the consensus tracking
control problem for MAS, we consider absolute state errors
and relative state errors. Refer to Appendix C to find a more
detailed explanation of absolute and relative error matrices to
prove the stability using a control law given in Eq. (7).
Theorem 3: The MAS described by Eqs. (1) – (3) and

assumptions 1,2 and C.1 and C.2 (see Appendix C for
assumptions C.1 and C.2) are satisfied. The control law has
been described by Eq. (7) where the projection algorithm
is given by Eqs. (C.35) and (C.36). For a sufficiently large
positive constant smax if the initial conditions satisfy the
following,

sT (0)s(0)≤
2smax

λmax (P2)
(22)

FIGURE 2. Leader-follower MAS communication.

Then s is uniformly bounded. Proof can be found in
Appendix D.

Based on the derivation provided in Appendix A to D,
we get,

V̇ (x̃) ≤ (−λVk
(
χ̃k|k−1

)
+ µ) (23)

V̇ (s,w) ≤ −(λmin(K 1)− C2)sT s + C3 (24)

So,

V̇ (x̃, s,w) ≤ (−λVk
(
χ̃k|k−1

)
+ µ)

+ (−(λmin(K1)− C2)sT s+ C3) (25)

In this paper, the estimation error for RUKF is examined.
It has been shown that, with some given certain conditions,
the estimation error is bounded by the mean square. This
fact is embodied in Theorem 2 provided above. We also have
proven the stability using control law. It is to be noted that s is
uniformly ultimately bounded, and it has been stated in The-
orem 3 and thus, one can conclude that lumped state errors
and ex̂ and ev̂ are bounded. At the same time, the boundedness
of x0, ẋ0 implies that xi and vi (i = 1,2..6) are bounded, and
hence, ξi and ∥w̃π iξi∥ are bounded, respectively. Because the
controller in Eq.(7) in which all signals associated with it are
bounded, so we can say the control input ui(i = 1, 2..6) is
also bounded. Finally, using Eq. (25), we can say that the
overall closed-loop system is asymptotically stable, and this
concludes the proof. We rewrite the stability proof of the
proposed system in Appendix A to D from our paper [28].
In the next sections of the paper, we have shown the numerical
simulations.

IV. RESULTS AND DISCUSSIONS
To assess the execution of the proposed RUKF, the MAS
model is described in Eqs. (1)-(3), was examined for vari-
ous conditions such as 1. uncertainty in the system model,
2. communication uncertainty, and 3. communication delay.
MATLAB based numerical integration of the states is con-
ducted using the classical Runge-Kutta method (RK4) with
a step size of Ts = 0:01s and the total simulation time =
50s. The machine used for the simulations is a Lenovo
ThinkPad 7th generation running on an Intel® Core™ i5-
7200UCPUwith 2.50GHz processing power and 8GBRAM.
The time-varying reference trajectory of a MAS, as shown in
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Fig. 2, is provided by a virtual leader where the reference
trajectory is available to a subset of the agents, and each
agent in the group has restricted access to information of its
neighbor agents only.

The goal is to optimize the reward of RUKF so that the
guaranteed convergence of the absolute (AEMest) and rel-
ative (REMest) error metric for estimator of the MAS can
be obtained. The communication quality between the virtual
leader and each agent as shown in Fig.2 is expressed with a
symmetric weighted adjacency matrix A and B.
The weighted adjacency matrices are given as follows,

A =


0 0.7 0 0 0 0
0.7 0 0.6 0 0 0
0 0.6 0 0.7 0 0
0 0 0.7 0 0.8 0
0 0 0 0.8 0 0.9
0 0 0 0 0.9 0


B = diag[0.8 0.0 0.0 0.0 0.0 0.9]


(26)

where, a12 = 0.7 = a21, a23 = 0.6=a32, a34 = 0.7=a43 =
a12, a45 = 0.8=a54,a56 = 0.9=a65, b11 = 0.8, b16 = 0.9
Unscented Kalman Filter: The composite scaling parame-

ter is λ = α2UKF x (n + κ) – n where, αUKF = 1, βUKF = 2,
κ = 1 and n are the dimension of augmented state. The filter
weights are calculated according to, W (m)

0 =
κ

n+κ ,W (c)
0 =

κ
n+κ +(1 − α

2
UKF + βUKF ) andW

(m)
i =W

(c)
i =

1
2(n+κ) (i =

1,2,. . . 6) where, W (m)
i , W (c)

i are the weight associated with
the mean and covariance matrices accordingly. In the case
of the GUKF, the design values of Qdesign and Rdesign will
be considered specifically in the range of 10−5≤Qdesign≤102

and 10−5≤Rdesign≤102. The Q learning method, learning
rate, discount factor and action selection probability has been
taken as α = 0.2, γ = 0.9, and ϵ = 0.1. The window size
(N ) has been taken as 50, adaptive threshold factor (n) as 3,
adaptive fading factor (ζ ) as 6000, and measurement error
as 0.1. While initiating the filter it is recommended to have
large values of diagonal elements of covariance matrix P,
however as the filter converges, the diagonal elements will
slowly decrease to show more confidence in estimation.
Adaptive Law: The adaptive law has been proposed by Zou

[25]. The adaptive law forWi (i = 1, 2,. . . ..n) is,

Ẇi = δisiξTi (27)

where si is terminal sliding manifold, δi is positive constant
and ξTi is polynomial basis function. The reference trajectory
is given by x0 = 0.5[cos(t) sin(t)]T and some other controller
parameters are p = 3, q = 5, ϵ = 0.01, ki = 0.5,σ1i = 2,
σ2i = 0.2, δi = 100, K1i = diag{4,4}, K2i = diag{1,1}. The
AEMest and REMest can be used to evaluate the proposed
estimator as,

AEMest =

√∑n

i=1
||ex̂i||2 (28)

TABLE 1. Uncertainty in dynamic model.

TABLE 2. Nominal initial system states.

TABLE 3. Parameters of agent’s dynamics.

and the REMest is defined as,

REMest =

√∑n−1

i=1

∑n

j=i+1
||rx̂ij ||2 (29)

Remark 4: The controller parameter K1 and K2 determine
the size of the parameter λmax(P2) in Eq. (C.40). So, the
smaller parameter λmax(P2) the bigger parameter K1 and K2
and bigger λmin(P2) are required. The parameters σ1i, σ2i, p
and q determine the size of the parameter and the terminal
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FIGURE 3. Estimation error under uncertain dynamics using AUKF:
(a) xi1_AUKF (b) xi2_AUKF.

sliding manifolds. So, the smaller parameter for sliding mani-
fold, the higher σ1i, σ2i, and q/p are required. The input vector
of CNN is normalized as (xTi , v

T
i )
T / norm to obtain good

control simulation performance where norm= 5 in this study.
Remark 5: When α is equal to zero, the agent is unable to

acquire new insights from fresh actions. Conversely, when α
is set to 1, the agent can disregard previous information and
exclusively learn from the most recent data. Therefore, α is
consistently maintained within the range of 0 to 1.

In the case of γ , a value of zero implies that the agent
gives no consideration to future rewards and solely focuses on
current rewards. Conversely, when γ is set to 1, the algorithm
prioritizes seeking high rewards over the long term.

The parameter ϵ introduces an element of randomness into
RUKF, encouraging the algorithm to explore different actions
and prevent it from becoming trapped in a local optimal
solution. A ϵ value of 0 signifies a lack of exploration,
relying solely on existing knowledge. In contrast, a ϵ value
of 1 compels RUKF to consistently select random actions,
disregarding any previous information. Typically, ϵ is chosen
as a small value close to 0.
Remark 6: When it comes to tuning parameters for the

UKF, one of these parameters, β, has an influence on the
estimates of covariance. If the spread is larger, β doesn’t
significantly affect the estimates. This suggests that β is not
a highly critical parameter that needs adjustment. On the
other hand, α doesn’t serve to widen the spread of points;
its purpose is to bring them closer to the mean. To counteract
the scaling effect of a small α, a parameter κ , where κ > 0 ,
is introduced.

FIGURE 4. Estimation error under uncertain dynamics using RUKF:
(a) xi1_RUKF (b) xi2_RUKF.

TABLE 4. Communication uncertainty and delay profile.

A. UNCERTAINTY IN DYNAMICS MODEL
This section introduces the uncertainty in the MAS model at
four different intervals given in Table 1. Numerical simula-
tions are conducted with initial conditions given in Table 2
and parameters given in Table 3 during 50s simulation time,
and the external disturbances considered in this case are as
νi = 0.1 [sin ( t2 ), cos ( t2 ) ]T throughout the simulation.
The simulation reflected changes in the magnitude of the
multi-agent dynamics rather than changes in the frequency.

The initial assumption is that no-fault occurs in the time
interval between 0 < t≤ 5 s. The first fault occurs in the time
interval between 5s < t ≤ 10 s and the second fault occurs at
10s < t ≤ 15 s. Finally, in the last time interval t > 15 s, the
MAS is modeled as the same when no-fault occurs between
0 < t ≤5 s.
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FIGURE 5. Performance matrices for estimator under uncertain dynamics:
(a) AEMest (b) REMest.

FIGURE 6. (a) AEMest (b) REMest under communication uncertainty.

Estimation error for this case is illustrated in Figs. 3(a-b)
and 4 (a-b) using AUKF and RUKF, respectively. At the same
time, the performance metrices for estimator (AEMest and
REMest) can be seen in Fig.5(a-b). Referring to Figs. 3 (a-b)

FIGURE 7. (a) AEMest (b) REMest under communication delay.

and 4 (a-b), it can be observed that there is an oscillation
between 5 to 15s because of the uncertain system model.

It can be noted that the state estimation error is converg-
ing to its zero mean after approximately 15s. To illustrate
the advantage of the proposed RUKF, the comparison is
carried out to compare the performance of our RUKFmethod
with well-known AUKF. The comparison results are shown
in Fig.5(a-b). The solid black line represents the RUKF
performance, and the red dotted line represents the AUKF
performance.

From these figures, it can be concluded that RUKF perfor-
mances are better leading to better accuracy and estimation
performances than AUKF because of the adaptation strategy
of UKF. The AEMest and REMest converge to zero after
approximately 15s when there is an uncertainty in the system
dynamics model, that is, the proposed approach can drive the
set of agents to the reference trajectory for the case where
only a subset of agents has access to the leader.

B. COMMUNICATION UNCERTAINTY AND DELAY
In this case, the uncertainty in the dynamicmodel is described
in Table 1, and the external disturbances are considered as
νi = 0.1[sin ( t2 ), cos (

t
2 ) ]

T for this case. The communication
topology among the N agents is modeled by a graph G,
which merely depicts the information flow of the network.
The communication uncertainty and delay profile have been
stated in Table 4. It has been observed from both Figs. 6 (a-b)
and 7 (a-b) that, even in the presence of faults in communi-
cation channels, the proposed estimator RUKF outperforms
AUKF.
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In practice, the information exchange among the agents is
conducted over communication channels, which are subject
to channel noises and communication constraints. In contrast,
RUKF performs well during the simulation, and it converges
smoothly.

This case is a general case to see the estimator’s perfor-
mance even in the presence of communication faults. Hence,
we can conclude from these figures that RUKF is better
compared toAUKFbecause of the adaptation strategy inUKF
which has enhanced the performance in terms of accuracy.

To evaluate the proposed RUKF, comparison results for
communication uncertainty have been shown in Fig.6(a-
b), and comparison results for communication delay have
been shown in Fig.7(a-b). During the simulation, it has been
observed that the AUKF oscillates while converging to its
zero mean.

V. CONCLUSION
This paper delves into the challenge of achieving consen-
sus tracking in a second-order uncertain MAS affected by
external disturbances and communication faults. The pri-
mary innovation of this study lies in the development of
an autonomous MAS control framework, which combines
RL, nonlinear filtering, CNNs, and Terminal Sliding Mode
(TSM). In this proposed control approach, TSM is con-
structed using collective state errors, and CNNs are leveraged
to approximate uncertain nonlinear functions in each agent’s
dynamics. Furthermore, a RUKF algorithm is applied to esti-
mate the states of uncertain agents. The novel RUKF aims to
address the challenging task of tuning of unmanageable noise
covariance’s in the UKF. The design of the tuning algorithm
represents a significant contribution of this research. To mit-
igate neural network approximation errors, a robust control
term based on the hyperbolic tangent function is incorporated.

Of paramount importance is the stability analysis of the
RUKF, which operates in tandem with the robust control
framework, and this stability is demonstrated using the Lya-
punov stability approach. Furthermore, the proposed control
scheme is capable of guiding a group of agents to follow a
reference trajectory even when faced with uncertain agent
dynamics and communication faults. Another noteworthy
advantage of the proposed algorithm is its reduced com-
putational time. On average, the RUKF requires 5% less
computation time compared to the AUKF. Regardless of the
number of states, the RUKF method employs three UKF
filters to generate precise estimations, with the standard UKF
and GUKF running in parallel. To reduce the computational
load, it is advisable to keep the grid size relatively small, as
long as it meets the required accuracy criteria. The third filter
which is known as RUKF, is utilized based on results obtained
from Q−learning, the standard UKF, and GUKF.

In summary, it is evident that the use of RUKF leads
to improved consensus tracking performance in MAS when
compared toAUKF. To conclude, the proposed control frame-
work demonstrates faster convergence and higher consensus
tracking capabilities within MAS. In the future, the authors

intend to explore autonomous navigation challenges in the
context of formation flying spacecraft to further validate the
effectiveness of RUKF.
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The stability analysis of the RUKF is detailed in Appendix
A–D, in our recently published paper as referenced in [28].

APPENDIX A
The mathematical equations of the RUKF can be written
as [28],
Step 1: Initialize Q (s,a) arbitrarily, ∀s ∈ S, a∈ A(s), and

Q (terminal-state, · ) = 0
Initialize state estimates, covariance matrices.
Repeat (for each episode):

InitializeS
Repeat (for each step of the episode):

Choose A from S using policy derived from Q
Step 2: Select the sigma points,
Assume that xk has mean xk and covariance pk .

X0,k = xk ; (A.1)

Xi,k = xk+(a
√
npk )i;i = 1, 2. . .n (A.2)

Xi,k = xk−(a
√
npk )i;i = n+ 1, . . . , 2n (A.3)

where a is proportion parameter, (
√
npk )i is the vector of the

ith column of the matrix square root.
Step 3: Prediction.

Xi,k+1|k = f (Xi,k ); i = 0, 1, 2. . .2n (A.4)

x̂k+1|k =
∑2n

i=0
ωiXi,k+1|k (A.5)

P̂k+1|k =
∑2n

i=0
ωiX̃i,k+1|k X̃Ti,k+1|k+Qk (A.6)

where, X̃i,k+1|k = ( Xi,k+1|k − x̂k+1|k ), ω0 = 1 − 1
a2
;

ωi =
1

2na2
, i = 1, 2 . . . 2n are a set of scalar weights, and∑2n

i=0 ωi = 1
Step 4: Update.

zi,k+1|k = h(Xi,k+1|k ),i = 0, 1, 2. . .2n (A.7)

ẑi,k+1|k =
∑2n

i=0
ωizi,k+1|k (A.8)
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P̂zz,k+1|k =
∑2n

i=0
ωiz̃i,k+1|k z̃Ti,k+1|k + γk+1Rk+1

+ (1−γk+1)σ 2I (A.9)

P̂xz,k+1|k =
∑2n

i=0
ωiX̃i,k+1|k z̃Ti,k+1|k x̂k+1

= x̂k+1|k+P̂xz,k+1|k [
∑2n

i=0
ωiz̃i,k+1|k z̃Ti,k+1|k

+ γk+1Rk+1+(1− γk+1)σ 2I ]−1(zk+1|k−ẑk+1|k )
(A.10)

P̂k+1 = P̂k+1|k − P̂xz,k+1[
∑2n

i=0
ωiz̃i,k+1|k z̃Ti,k+1|k

+ γk+1Rk+1 + (1− γk+1)σ 2I ]−1P̂Txz,k+1
(A.11)

where,
z̃i,k+1|k = zi,k+1|k − ẑk+1|k . Taking the limit as, σ → ∞

then,

x̂k+1 = x̂k+1|k + γk+1Kk+1(zk+1|k − ẑk+1|k ) (A.12a)

P̂k+1 = P̂k+1|k − γk+1Kk+1P̂Txz, k+1 (A.12b)

Kk+1 = P̂Txz, k+1 [
∑2n

i=0
ωiz̃i,k+1|k z̃Ti,k+1|k+ Rk+1 ]

−1

(A.12c)

We model the measurements by a binary stochastic variable
γk . If there are any measurements after k th step, then γk = 1,
otherwise γk = 0. So, define the variance of the output noise
at time k as Rk if γk = 1 and σ 2I if γk = 0 for some σ 2 [26].
Step 5: Update

Q (s, a)← Q(s, a)+ α(Rr + γ ma
a′
xQ∗(s′, a′)

− Q(s, a)), α, γ ∈ [0, 1] (A.13)

α regulates the convergence speed, and γ determines the
future reward.
Step 6: Repeat steps 2–5 for the next sample.
Define the error vectors, x̃k+1, x̃k+1|k and z̃k+1 by

x̃k+1 = xk+1 − x̂k+1, x̃k+1|k = xk+1 − x̂k+1|k
z̃k+1 = zk+1 − ẑk+1|k (A.14)

For convenience, we use the approach described [26] to
simplify the error expression. The unknown matrices αk =
diag{α1k , . . .αnk} and βk = diag{β1k , . . .βnk} are introduced
to model errors due to the first-order linearization technique.
Then,

x̃k+1|k = αkFk x̃k−1|k−αkFkγkKk z̃k+ωk (A.15)

z̃k+1 = βk+1Hk+1x̃k+1|k+νk+1 (A.16)

where,
Fk = ( ∂f (x)

∂x |x = x̂k ) and Hk+1 = ( ∂h(x)
∂x |x = x̂k+1|k )

are Jacobian matrices. The actual covariance matrix of the
modified UKF is Pk+1|k . Define, ∂Pk = P̂k − Pk

P̂k+1|k = [αkFk (I − γkKkβkHk )]P̂k|k−1
× X[αkFk (I − γkKkβkHk )]T+Q∗k (A.17)

Where,Q∗k = Qk+αkFkγ 2
k KkRk (αkFkγkKk )

T
+1Pk+1+

δPk+1 is positive. 1Pk is the difference when the mean is
removed.
Similarly, the following covariance can be obtained:

P̂xz,k+1|k = P̂k+1|k (βk+1Hk+1)T+1Pxz,k+1+∂Pxz,k+1
(A.18)

P̂zz,k+1 = (βk+1Hk+1)P̂k+1|k (βk+1Hk+1)T+(1−γk+1)σ 2I

+ R∗k+1 (A.19)

R∗k+1 = γk+1Rk+1+1Pzz,k+1+∂Pzz,k+1 is positive. Further-
more, we introduce the stochastic matrix φk+1 ∈ Rm. Then,
P̂xz,k+1 = P̂k+1|kφk+1(βk+1Hk+1)T and it is easy to get that,

P̂k+1 = P̂k+1|k − P̂k+1|kφk+1HT
k+1βk+1[βk+1Hk+1)

XP̂k+1|k (βk+1Hk+1)T+(1−γk+1)σ 2I+R∗k+1]
−1

X(P̂k+1|kφk+1HT
k+1βk+1)

T (A.20)

Taking the limit as σ→∞, the following can be obtained:

P̂k+1 = P̂k+1|k − γk+1Kk+1(P̂k+1|kφk+1HT
k+1βk+1)

T

(A.21)

Kk+1 = P̂k+1φk+1HT
k+1βk+1[(βk+1Hk+1)P̂k+1|k

× (βk+1Hk+1)T+R∗k+1]
−1 (A.22)

APPENDIX B [28]
Proof: Define the Lyapunov candidate can be described as

Vk+1
(
χ̃k+1|k

)
= χ̃Tk+1|k P̂

−1
k+1|k χ̃k+1|k . (B.1)

the assumptions in Theorem 2 imply that pα2f 2I ≤ P̂k+1|k ≤

pα2f
2
I + qI . Then we have

∥χ̃k+1|k∥
2

pα2f
2
I+qI
≤ Vk+1

(
χ̃k+1|k

)
≤

∥χ̃k+1|k∥
2

pα2f 2I
. In considering the white noise property, the follow-

ing statements are in force:

E{Vk+1
(
χ̃k+1|k

)
|χ̃k|k−1, ϒ1:k}

= χ̃Tk|k−1[αkFk (1− ϒkKkβkHk )]
T P̂−1k+1|k

X[ϒkFk (1− ϒkKkβkHk )]χ̃k|k−1
+ E{vTk [αkFkϒkKk ]

T P̂−1k+1|k [αkFkϒkKk ]νk |χ̃k|k−1}

+ E{ωTk P̂
−1
k+1|kωk |χ̃k|k−1} (B.2)

(I) From Eq. (A.17), we obtain,

P̂k+1|k = [αkFk (I − ϒkKkβkHk)] P̂k|k−1
+ [αkFk (I − ϒkKkβkHk) ]−1Q∗k
X [αkFk (I − ϒkKkβkHk) ]−T

× [αkFk (I − ϒkKkβkHk) ]T (B.3)

Based on Eq.(21), it can be verified that ∥αkFk(I−ϒkKkβkHk)
Q∗k
−T [αkFk (I−ϒkKkβkHk) ]T ∥≤ (αf+αf K∗βh)2

∥∥Q∗k−T∥∥
Then,[αkFk(I−ϒkKkβkHk)]−1Q∗k [αkFk(I−ϒkKkβkHk)]

−T

≥
q∗I

(αf+αf K∗βh)2
, where ∥Kk+1∥ ≤

pφ hβ
β2h2p+r∗

= K∗ follows

from Eqs. (A.22) and (20). Putting this into Eq. (B.3), and
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taking the inverse operation on both sides of it, it is clear that,
[αkFk (I − ϒkKkβkHk) ]T P̂

−1
k+1|k [αkFk (I − ϒkKkβkHk)] ≤[

1+
q∗I

(αf+αf K∗βh)2−p

]
P̂−1k|k−1.

Let 1 − λ =
[
1+

q∗I

(αf+αf K∗βh)2−p

]
; the first term of

E{Vk+1
(
χ̃k+1|k

)
|χ̃k|k−1, ϒ1:k} is bounded.

(II) Under the assumptions, it can be derived that,

E{vTk [αkFkϒkKk ]
T P̂−1k+1|k [αkFkϒkKk ]νk

+ ωTk P̂
−1
k+1|kωk |χ̃k|k−1}

≤ E{
K∗2α2f

2
q

p
tr

{
vTk vk

}
+

1
p
tr

{
ωTk ωk

}
=
K∗2α2f

2
q

p
nv +

r
p
nω = µ (B.4)

Following the above manipulation, we can get that
E{Vk+1

(
χ̃k+1|k

) ∣∣∣χ̃k|k−1}−Vk (
χ̃k|k−1

)
≤−λVk

(
χ̃k|k−1

)
+

µ. Applying Lemma 2.1from [27], the stochastic process
χ̃k+1|k is bounded.

(III) In the following, we will show that the stochas-
tic process is bounded by the mean square. By Eq.
(A.15), it is yielded that χ̃k+1 is bounded in mean square.
By Eq. (A.15), it is yielded that ∥χ̃k ||

2
≤2α2f 2(∥χ̃k+1|k ||

2
+

∥ωk ||
2). Taking the mean value from both sides yields

E{∥χ̃k ||
2
}≤2α2f 2(E{∥χ̃k+1|k ||

2
}+E{∥ωk ||2}).ωk is bounded

in the mean square with an approach similar to that above.
Therefore, we conclude that the estimation errorχ̃k+1
asymptotically stable.

APPENDIX C [28]
The absolute state reference error of the i (i = 1,2 3,. . . 6)
agents is defined by,

ex̂i = x̂i − x0 (C.1)

ev̂i =
˙̂xi − x0 (C.2)

The dynamic equations for ex̂i and ev̂i can be obtained using
Eqs. (1) and (2) as

ėx̂i = ev̂i (C.3)

ėv̂i = −x̂0 + f̂i
(
x̂i, v̂i

)
+ gi

(
x̂i

)
ui + ϑi (C.4)

Now, this can be represented in compact form as,

ėx̂ = ev̂ (C.5)

ėv̂ = −X0 + F̂ + g
(
x̂
)
u+ ϑ (C.6)

where,

ex̂ = (eTx̂1 , e
T
x̂2
, eTx̂3 . . . . . . . . . .., e

T
x̂n
)T ∈ Rmn,

ev̂ = (eTv̂1 , e
T
v̂2
, eTv̂3 . . . . . . . . . .., e

T
v̂n
)T ∈ Rmn

F = (f̂ T1 , f̂
T
2 , f̂

T
3 . . . . . . . . . .., f̂

T
n )T ∈ Rmn,

X0 = (ẍT0 , ẍ
T
0 , ẍ

T
0 . . . . . . . . . .., ẍ

T
0 )

T
∈ Rmn

u = (uT1 , u
T
2 , u

T
3 . . . . . . . . . .., u

T
n )
T
∈ Rmn,

v̂ = (v̂T1 , v̂
T
2 , v̂

T
3 . . . . . . . . . .., v̂

T
n )
T
∈ Rmn

g
(
x̂
)
= diag (g1, g2, . . . . . . . . . gn) ∈ R(mn)x(mn),

x̂ = (x̂T1 , x̂
T
2 , x̂

T
3 . . . . . . . . . .., x̂

T
n )

T
∈ Rmn (C.7)

The relative estimated state errors between the i (i =
1,2,3. . . 6)) and j (j = 1,2,3. . . 6) follower agents are defined
now as,

rx̂ij = x̂i − x̂j (C.8)

rv̂ij = v̂i − v̂j (C.9)

Based on the discussion provided in [25], each agent in
the group has access to the neighboring agents the lumped
estimated state error can be written as,

αx̂i =
∑n

J=1 aijrx̂ij + biex̂i
=

∑n
J=1 aij(ex̂i − ex̂j )+ biex̂i

}
(C.10)

αv̂i =
∑n

J=1 aijrv̂ij + biev̂i
=

∑n
J=1 aij(ev̂i − ev̂j )+ biev̂i

}
(C.11)

where, aij is the element of the weighted adjacency matrix A.
From Eqs. (C.10) and (C.11), to ease the succeeding concep-
tual analysis, the lumped state errors αx̂ϵRm and αv̂ϵRm (i =
1,2,3. . . 6) can be expressed in terms of the absolute estimate
state errors ex̂i and ev̂i ,

αx̂i =
∑n

J=1
lijex̂j + biex̂i (C.12)

αv̂i =
∑n

J=1
lijev̂j + biev̂i (C.13)

where, lij is the element of the graph Laplacian matrix L.
Define,

αx̂ = (αTx̂1 , α
T
x̂2
, αTx̂3

. . . . . . . . . .., αTx̂n
)T ∈ Rmn (C.14)

αv̂ = (αTv̂1 , α
T
v̂2
, αTv̂3

. . . . . . . . . .., αTv̂n
)T ∈ Rmn (C.15)

Then the lumped state estimation error Eqs. (C.12) and
(C.13) can be expressed as,

αx̂ = P1ex̂ (C.16)

αv̂ = P1ev̂ (C.17)

where, P1 = (L+B) ⊗Im ∈ R(mn)x(mn) is the Kronecker
product. Using Eqs. C.(5) and C.(6) the dynamic equations
for αx̂ are αv̂ are given by,

⇒ α̇x̂ = αv̂ (C.18)

P2α̇v̂ == −X0 + F + gu+ ϑ (C.19)

Respectively, where P2 = P−11
The fast terminal sliding manifold siϵ Rm (i = 1,2,3. . . 6)

is defined based on [25] as,

si = αv̂i + σ1iαx̂i + σ2iβi(αx̂i ) (C.20)

where, σ1i and σ2i are positive constants and βi
(
αx̂i

)
=

(βi1
(
αx̂i,1

)
, . . . ..βim

(
αx̂i,m

)
)T ∈ Rm
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is defined by,

βij

(
αx̂i,j

)
=


α
P
q

x̂i,j
, If si̇j = 0 or sṡj ̸= 0,

∣∣∣αx̂i,j ∣∣∣ > u&

l1αx̂i,j + l2sgn(αx̂i,j )α
2
x̂i,j
, if si̇j ̸= 0,∣∣∣αx̂i,j ∣∣∣ ≤ u

(C.21)

With j = 1,2. . .m, l1 = (2 − p
q )µ

p
q−1, l2 = ( pq − 1)µ

p
q−2,

µ is const.(small positive), sgn(.) is the signum function, and

s̄ij = αv̂ij̇ + σij̈αx̂ij̇+ σ2iα
p
q

x̂ij
. The time derivative of the si in

Eq. (C.20) is given by,

ṡi = α̇v̂i + σ1iαv̂i + σ2iβ̇i, i = 1, 2, . . . , 6 (C.22)

where, β̇i ∈ Rm can be written as,

β̇ij =


P
q
α
P
q−1

x̂i,j
αv̂i,j , If si̇j = 0 or sṡj ̸= 0,∣∣∣αx̂i,j ∣∣∣ > u&l1αv̂i,j + 2l2sgn(αx̂i,j )αx̂i,jαv̂i,j

if si̇j ̸= 0,
∣∣∣αx̂i,j ∣∣∣ ≤ u

(C.23)

with j= 1,2 . . . 6. The terminal sliding manifold in Eq. (C.22)
can be written as,

s = αv̂ + σ1αx̂ + σ2β (C.24)

where,

s = (sT1 , s
T
2 , s

T
3 . . . . . . . . . .., s

T
n )
T
∈ Rmn,

β = (βT1 , β
T
2 , β

T
3 . . . . . . . . . .., β

T
n )

T
∈ Rmn

σ1 = (σ11Im, σ12Im, . . . . . . . . . . . . σ1nIm) ∈ R(mn)x(mn),

σ2 = (σ21Im, σ21Im, . . . . . . . . . . . . σ2nIm) ∈ R(mn)x(mn)

Lemma C.1: If the sliding manifold s = s̄ = 0 is reached
where s̄ = (s̄11, s̄1m, . . . , s̄n1, . . . ., s̄nm)T then the absolute
estimated state error ex̂ converges.

Proof: Lyapunov candidate,

V = 1/2αTx̂ αx̂ (C.25)

If s = s̄ = 0 is reached, then.

αv̂ = −σ1αx̂ − σ2α
ν
x̂ (C.26)

where, ανx ∈ R
mnis defined as

ανx̂ = (αvx̂1,1, . . . ..α
v
x̂1,m, . . . ..α

v
x̂n,1, . . . . . . . . . .., α

v
x̂n,m)

T

and ν = p/q
The time derivative of V is defined by Eqs. (C.25) along

(C.18) and (C.26) results in,

V̇ = −αTx̂ σ1αx̂ − α
T
x̂ σ2α

ν
x̂ (C.27)

which is less than zero, so the lumped estimated state error
converges [25]. Note that,

αx̂ = P1ex̂ (C.28)

and it implies, ex̂ converges to zero in finite time.

Remark 7: ThisLemmaC.1 proves that when the dynamic
system reaches the manifold then it is stable. It will be stable
if it is in the sliding manifold. Thus, one can design a control
law that will steer the system to the sliding manifold. Again,
the time derivative of the sliding manifold can be rewritten
as,

ṡ = α̇v̂ + σ1αv̂ + σ2β̇ (C.29)

where β̇ = (β̇T1 , β̇
T
2 , . . . ., β̇

T
n )

T ϵRmn. In Eq. (C.29) both sides
we would like to multiply P2 and apply Eq. (C.19) we obtain,

P2ṡ = P2(α̇v̂ + σ1αv̂ + σ2β̇) = P2
(
σ1αv̂ + σ2β̇

)
− X0 + F̂ + gu+ ϑ (C.30)

If all the follower agent states approach the reference trajec-
tory then,

P2(σ1αv̂ + σ2β̇) = 0

Now applying CNN approximation property [25],

f̂i
(
x̂i, v̂i

)
= W ∗i ξi

(
x̂i, v̂i

)
+ εi (C.31)

where,W ∗i ϵR
m×N1 withN1 =2mN2 + 1 andN2 is Chebyshev

polynomials order is the optimal weight matrix in the sense
that it will optimize the weight of the CNN byminimizing the
residual of the estimated plant in terms of accuracy, the, εi ϵ
Rm is the CNN approximation error and ξi (Xi) ϵ RN1 is the
Chebyshev polynomial basis function where, Xi = (x̂Ti , v̂

T
i )

T

ξi (Xi)

= (1,T1
(
Xi,1

)
, . . . ,TN2

(
Xi,1

)
, . . . ,T1

(
Xi,2m

)
, . . .TN2

(
Xi,2m

)
)T

(C.32)

where, Ti
(
Xi,1

)
(i = 1, 2 . . . .N2, J = 1, 2 . . . 2m) represent

Chebyshev polynomials, obtained by using the so-called two-
term recursive formula as,

Ti+1
(
Xi,j

)
= 2Xi,jTi

(
Xi,j

)
− Ti−1

(
Xi,j

)
,T0

(
Xi,1

)
= 1
(C.33)

Ti
(
Xi,j

)
has several definitions such as Xi,j, 2Xi,j, 2Xi,j −

1 and 2Xi,j + 1. T1
(
Xi,j

)
is

(
Xi,j

)
.The following assumptions

C.1 and C.2 holds.
Assumption C.1: The optimal weight matrix W ∗i (i =

1, 2, . . . . . . ., 6) is in a known bounded set�ωi that is defined
by,

W ∗i ϵ�Wi =

{
W ∗i : Wimin ≤ W ∗i,jk ≤ Wimax,

j = 1, 2, . . . ., 6, k = 1, 2, . . . .,N1}

(C.34)

where,Wiminand Wimax are constants (known).
Assumption C.2:
The CNN approximation error εi(i = 1, 2, . . . . . . ., 6)

is bounded such that ∥εi∥ ≤ εMi (εMi is positive
constant).

To update CNN weight and get the estimated weights
within some bounded sets, a smooth projection algorithm
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[25] is implemented. Let the estimated weight matrix for
W ∗i (i = 1, 2, . . . . . . ., 6) beWi defined as,

πi (Wi) = Wπ i = (πi,jk
(
Wi,jk

)
) (C.35)

Where, j = 1, 2, . . . ., 6, k = 1, 2, . . . .,N1 and the projection
operator πi,Jk : R → R is a real value smooth nondecreasing
function defined by,

πi,jk
(
Wi,jk

)
= Wi,jk ,∀Wi,jkϵ[Wimin,Wimax]

πi,jk
(
Wi,jk

)
ϵ [Wimin − εwi,Wimax + εwi] ,∀Wi,jkϵR

(C.36)

Where, εwi is positive constant (small) which is deter-
mined by the designer of the controller. The control law has
been defined in Eq. (7)
Define,
w̃i =W ∗i − ŵi(i = 1, 2, . . . . . . ., 6), w̃π i =W ∗i − Ŵπ i, and

VWi =−1/δi
∑m

j=1

∑N1

k=1

∫ W̃i,jk

0
(W ∗i,jk−πi,jk (W

∗
i,jk−ωi,jk ))

× dωi,jk (C.37)

Hence, the time derivative

V̇Wi = −1/δi
∑m

j=1

∑N1

k=1
W̃π i,jkẆi,jk (C.38)

where the adaptive law [25] Ẇi,jk = δi,jksi,jkξTi,jk and δi is a
positive constant.

Substituting the control law defined in Eq. (7) in Eq.
(C.30), we get,

P2ṡ = P2
(
σ1αv̂+σ2β̇

)
−X0+F−Wπξ−K1s−K2sv−ψ+ϑ

= χ + W̃πξ − K1s− K2sv −9 + ϑ + ε − X0 (C.39)

where χ = P2(σ1αv̂ + σ2β̇) ϵRmn and W ∗ = diag (W ∗1 ,
W ∗2 , . . . ,W

∗
n ); Wπ = diag(Wπ1, Wπ1,. . . .Wπn)

W̃π = W ∗ - Wπ , ξ = {ξT1 , ξ
T
2 , . . . .., ξ

T
n }

T, K1 =

diag{K11, K12, . . . , K1n}, K2 = diag{K21, K22, . . . , K2n},
ψ = (ψT

1 , ψ
T
2 , . . . ψ

T
n )

T, ε = (εT1 , ε
T
2 , . . . , ε

T
n )

T

To set up a compress set for adequate large positive con-
stant, smax ,

�s = {s|sT s ≤
2smax

λmax (P2)
} (C.40)

where, λmax(·) denotes the maximal eigenvalue of a matrix
reason the sets �0and �s are compact.

Next, the robust controller ψi(i=1,2,..6) can be defined as
[25],

9ij = ki tanh(
mkuk isij
ϵ

), ku= 0.2785, j = 1, 2 . . . 6 (C.41)

Here, ki is a positive constant satisfying ki ≥ 1Mi + εMi +

∥ẍ0∥ and ϵ are positive scalars. We obtained the following
inequality w.r.t. robust controller ψi (i=1,2..6 ) from [25] as,

0 ≤ sTi (νi + ϵi − ẍ0)− s
T
i ψi

≤

∑n

j=1
|sij|(vMi + εMi − ∥ẍ0∥)− ψ

∑m

j=1
(sij̇9ij) ≤ ε

(C.42)

APPENDIX D [28]
Proof: Let us consider the Lyapunov candidate defined in

Eq.(19) as

V (s,w) =
1
2
sTP2s+

∑n

i=1
Vwi

The time derivative of V is,

V̇ (s,w) = sT x + sT w̃πξ − sT k1s− sT k2sν − sTψ

+ sT (ϑ + ϵ − X0)−
∑n

i=1

(1/δi
∑m

j=1

∑N1

k=1
W̃π i,jkẆi,jk )

= sT x − sT k1s− sT k2sν − sTψ + sT (ϑ + ϵ − X0)
(D.1)

where,
sT w̃πξ −

∑n
i=1(1/δi

∑m
j=1

∑N1
k=1 W̃π i,jkẆi,jk ) = 0 is

applied.
By using Eq. (C.42), the following inequality,

0 ≤ sT (ϑ + ϵ − X0)− sTψ

=

∑n

i=1
(sTi (vi + εi − ẍ0)− s

T
i ψi) ≤ nϵ (D.2)

Can be obtained, and by using the well-known inequality,

(
√
C2s−

x

2
√
C2

)T(
√
C2s−

x

2
√
C2

) ≥ 0 (D.3)

The following inequality can be guaranteed,

sT x ≤ C2sT s+
x2M
4C2

(D.4)

whereC2 is a positive constant satisfyingC2 < λmin (K1) and
λmin(·) is the eigen value of a matrix (min.).

using inequalities Eqs. (D.2) and (D.4) to (D.1), V̇ (s,w) can
be upper bounded by,

V̇ (s,w) ≤ −(λmin(K1)− C2)sT s+ C3 (D.5)

where, C3 = nϵ + X2
M/4C2 is a positive constant. Thus

V̇ (s,w)is strictly negative outside the following compact set
�s1

�s1 =
{
s (t) |∥s (t) ∥ ≤

√
c3

λmin(K1)− C2
} (D.6)

We can now conclude that, when s is outside the compact
set �s1, ∥s∥ decreases and s is uniformly bounded.
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