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ABSTRACT This paper addresses the design of an optimally executed proportional-integral-derivative
(PID) controller, tailored for the speed regulation of a direct current (DC) motor. To achieve this objective,
we present a novel hybrid algorithm, combining the gazelle optimization algorithm (GOA) with the effective
simplex search method known as the Nelder-Mead (NM) technique. The fusion of these algorithms yields
an innovative hybridized version, striking the balance between exploration and exploitation. The proposed
approach, named the gazelle simplex optimizer (GSO), showcases great promise when applied to the task of
controlling the speed regulation of a DC motor using the PID controller. To identify the optimal values
for PID gains, we harness the power of a novel objective function as well, which guides the GSO in
determining the most favorable controller settings. Rigorous comparative simulations are then undertaken,
where we pit the GSO against several other algorithms, namely the reptile search algorithm, prairie dog
optimization algorithm, weighted mean of vectors optimization, and the original GOA algorithm. These
simulations allow us to assess the system’s behavior through various lenses, such as statistical tests, time
and frequency domain responses, robustness analysis, and changes in the objective function. The evaluations
from these comprehensive tests demonstrate the superiority of the GSO-based PID controlled DC motor
speed regulation system. The GSO exhibits better performance than the alternative algorithms, providing
solid evidence of its effectiveness. Furthermore, the proposed GSO approach outperforms other reported
PID tuning methods, affirming its prowess in achieving superior speed regulation for DC motors.

INDEX TERMS Speed regulation, DC motor, gazelle optimizer, Nelder-Mead simplex method, PID
controller.

I. INTRODUCTION
Direct current (DC) motors play a pivotal role in various
real-life engineering applications owing to their ease of con-
trollability, high durability, and cost-effectiveness [1], [2].
These versatile motors find extensive use in electric vehicles,
machine tools, robotic arms, and cranes, among other indus-
trial applications [3]. In most of these applications, precise
speed control is a critical criterion, demanding accurate reg-
ulation as DC motors serve as the primary actuation devices
in dynamic systems [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Giangrande .

To achieve optimal performance, several control structures
such as adaptive controllers, fuzzy controllers, sliding mode
controllers, and notably, proportional-integral-derivative
(PID) controllers have been adopted [5]. The popularity
of PID controllers stems from their simplicity, reliability,
and cost-effectiveness, with a successful track record of
over 80 years in a wide range of industrial applications
[6]. However, the tuning of PID gain parameters is crucial
for achieving desired performance, a task that may not be
effectively handled by traditional techniques for higher-order
systems or systems with uncertainties [7].

In response to the challenges posed by traditional tuning
methods, metaheuristic algorithms have emerged as promis-
ing alternatives, treating problems as ‘‘black boxes’’ and
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exploring the search space for promising regions [8], [9],
[10], [11], [12]. One of the examples of metaheuristic algo-
rithms is the chaotic atom search optimization which is
reported in [13]. The related work introduces two optimiza-
tion algorithms, atom search optimization and its modified
chaotic version, are used for determining optimal parameters
of a fractional-order PID controller employed in DC motor
speed control system. The study evaluates these algorithms
against benchmark problems and compares them with other
existing controllers, demonstrating their superior perfor-
mance in DC motor speed control through various analyses.
In another study [14], grey wolf optimization is introduced as
an alternative to particle swarm optimization for optimizing
PID controller parameters. Comparing the two techniques,
the study concludes that the grey wolf optimizer-based
approach yields superior dynamic performance in brush-
less DC motor control. Other notable examples of these
algorithms for DC motor speed regulation controller design
include improved whale optimization algorithm [15], particle
swarm optimization [16], artificial bee colony algorithm [17],
improved slime mould algorithm [18], flower pollination
algorithm [19], and an enhanced stochastic fractal search
algorithm [20].

Amidst the landscape ofmetaheuristic algorithms designed
for optimizing PID controllers in DC motor speed regulation,
we recognize the need for a new and more effective approach
that can deliver promising results surpassing existing meth-
ods. Recently, the gazelle optimization algorithm (GOA) has
emerged, drawing inspiration from the adaptive qualities of
gazelles, which harness agility and speed for solving complex
optimization problems [21]. In this context, we introduce the
gazelle simplex optimizer (GSO), a pioneering hybrid meta-
heuristic algorithm that intricately combines the exploratory
prowess of GOA with the exploitation capabilities of the
Nelder-Mead (NM) technique [22], a renowned derivative-
free simplex search approach. This integration enhances the
efficiency of PID controller design for DC motor speed reg-
ulation, striking a harmonious balance between exploration
and exploitation, while simultaneously mitigating computa-
tional complexities. Moreover, we propose a novel objective
function in this study, further elevating the efficacy of our
approach. Through the introduction of the GSO and our
innovative objective function, we aim to establish a new
frontier in the optimization of PID controllers for DC motor
speed regulation, offering a potent and promising alternative
to existing methods in the field.

We demonstrate the superior performance of the
GSO-based PID controller through extensive simulations and
comparisons with other algorithm-based PID controllers. The
comprehensive analyses include statistical tests, frequency
and time domain responses, robustness, and changes in the
objective function, reaffirming the effectiveness of the GSO
approach over reptile search algorithm (RSA) [23], prairie
dog optimization (PDO) algorithm [24], weighted mean
of vectors optimization (INFO) algorithm [25] and gazelle
optimization algorithm (GOA) [21].

The statistical analysis demonstrates that the GSO
algorithm excels in minimizing the objective function when
compared to the GOA, RSA, PDO, and INFO algorithms. The
time response analysis reveals that the GSO algorithm outper-
forms the GOA, RSA, PDO, and INFO algorithms in terms
of rise time, settling time, overshoot, and peak time. The
frequency response analysis indicates that all the evaluated
algorithms, including GSO, GOA, RSA, PDO, and INFO,
provide stable PID-controlled DCmotor systemswith infinite
gain margins. The GSO algorithm, in particular, stands out
with a wider bandwidth, enabling the system to effectively
respond to a broader range of frequencies. The robustness
analysis demonstrates that the GSO algorithm consistently
delivers competitive and stable performance across different
sets of motor parameters compared to the GOA, RSA, PDO,
and INFO algorithms. The GSO-based PID controlled DC
motor systems exhibit desirable time response metrics, indi-
cating the algorithm’s resilience in maintaining stable and
efficient control despite fluctuations in motor parameters.

Furthermore, we compare the GSO-based PID controller
with other reported state-of-the-art algorithms-based PID
controllers (listed in Table 10). The comparison with other
reported PID tuning algorithms demonstrates that the GSO
algorithm excels in achieving fast response times and min-
imizing overshoot. It consistently delivers competitive or
superior performance in terms of rise time, settling time, over-
shoot, and peak time compared to a wide range of optimiza-
tion algorithms. These findings highlight the effectiveness
and efficiency of the GSO-based PID tuning algorithm and
establish it as a promising choice for optimizing PID control
parameters in DC motor control systems. The contributions
of this paper can be summarized as follows:

1) A novel hybrid metaheuristic algorithm that combines
GOA and NM algorithms is proposed, resulting in a
new structure (GSO) that achieves a favorable balance
between exploration and exploitation.

2) The proposed GSO is employed to design and imple-
ment an efficient PID controller for a DC motor speed
control system.

3) A newly developed objective function is introduced,
outperforming popular algorithms commonly used for
similar purposes.

4) The effectiveness of the GSO is demonstrated through
various analyses, including frequency and time domain
evaluations, statistical tests, robustness analysis, and
objective function changes. These analyses confirm the
superiority of the GSO-based PID controllers com-
pared to RSA, PDO, INFO, and the original GOA
algorithms-based PID controllers.

5) The efficacy of the proposed GSO-based PID con-
troller is further showcased by comparing it with other
state-of-the-art algorithms-based PID controllers, fur-
ther highlighting its superiority.

The paper’s organization is as follows: Sections II and III
present the structure of the original GOA and the pro-
posed GSO approaches, respectively. Section IV provides an
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overview of the mathematical model of the employed DC
motor and the PID controller, along with their integration
for performing the speed control. The implementation of the
proposed algorithm in the PID controlled DC motor system
is given in Section V. Extensive analyses are performed to
verify the superiority of the proposed algorithm through com-
parisons with previously reported studies, and the respective
results are presented in Section VI. Finally, the paper con-
cludes in Section VII.

II. GAZELLE OPTIMIZATION ALGORTHM
The gazelle optimization algorithm (GOA) is inspired by
the survival abilities of gazelles. It leverages the gazelles’
adaptive characteristics for real-world optimization problems
[21]. This algorithm utilizes gazelles as search agents which
are represented by a randomly initialized n×d matrix given
in (1). To establish the permissible range of values for the
population vector, the algorithm integrates the constraints of
upper bound (UB) and lower bound (LB).

X =


x1,1 x1,2 · · · x1,d−1 x1,d
x2,1 x2,2 · · · x2,d−1 x2,d
...

... xi,j
...

...

xn,1 xn,2 · · · xn,d−1 xn,d

 (1)

In (1), X denotes the position vectors matrix (candidate
population). Each of xi,j, position vector, is generated stochas-
tically using (2) where UBj and LBj are the upper and lower
bounds, respectively, for the problem whereas rand is a ran-
dom number. The variables n and d represent the gazelle
number and the dimension of the problem, respectively.

xi,j = rand ×
(
UBj − LBj

)
+ LBj (2)

The most promising solution found thus far is identified as
the minimum solution after generating candidate solution by
xi,j in each iteration. Drawing inspiration from nature, where
the fittest gazelles demonstrate remarkable skills in threat
detection, alerting others, and predator evasion, we designate
the top-performing gazelle as the best-obtained solution. This
solution is then utilized in (3) to construct an Elite n×d
matrix, acting as a reference for guiding the gazelles in deter-
mining their subsequent steps during the search process.

Elite =


x ′

1,1 x ′

1,2 · · · x ′

1,d−1 x ′

1,d
x ′

2,1 x ′

2,2 · · · x ′

2,d−1 x ′

2,d
...

... x ′
i,j

...
...

x ′

n,1 x ′

n,2 · · · x ′

n,d−1 x ′
n,d

 (3)

In the present scenario, we denote the position vector of the
leading gazelle as x ′

i,j. After each iteration, we dynamically
update the Elite matrix whenever a superior gazelle surpasses
the current top gazelle. To ensure efficient exploration of
the neighboring regions within the domain, we employ a
controlled Brownian motion characterized by uniform and
regulated steps. This random motion is subject to the Gaus-
sian (normal) probability distribution function, having a

variance (σ 2) of 1 and a mean (µ) of 0. The standard Brow-
nian motion [26] can be defined as follows, considering a
specific point x.

fB (x, µ, σ ) =
1

√
2πσ 2

e

(
−

(x−µ)2

2σ2

)
=

1
√
2π

e

(
−
x2
2

)
(4)

During grazing, a Brownian motion pattern is modelled for
the movement of the gazelles. The mathematical model rep-
resenting this behavior is given in (5).

gi+1 = gi + s · R ∗ ·RB ∗ · (Elitei − RB ∗ ·gi) (5)

In the given context, gi+1 denotes the solution achieved in
the subsequent iteration, while gi represents the solution
obtained in the current iteration. The parameter ‘‘s’’ char-
acterizes the grazing speed of the gazelles. The vector RB
comprises random numbers designed to simulate Brownian
motion, whereasR consists of uniform random numbers rang-
ing from 0 to 1. When a predator is detected, the exploration
phase commences. During this stage, the GOA adopts a strat-
egy that involves Lévy flight, incorporating a combination of
short steps and occasional long jumps. The Lévy distribution
is mathematically described as per equation (6) [27].

L
(
xj
)

≈
∣∣xj∣∣1−α (6)

In here, xj denotes the flight distance, and α is the power-
law exponent, which is restricted within the range (1, 2]. The
Lévy stable process, represented as an integral in (7) [21],
is defined as follows:

fL (x; α, γ ) =
1
π

∞∫
0

exp
(
−γ qα

)
cos (qx) δq (7)

Here, the motion is governed by the distribution index (α),
and γ represents the scale unit. GOA generates stable Lévy
motion by adopting α values ranging from 0.3 to 1.99, and its
formulation is provided in (8) [26].

Levy (α) = 0.05 ×
x

|y|
1
α

(8)

The variables α, x, and y are defined as follows: x follows a
normal distribution with variance σ 2

x and mean 0, y follows
a normal distribution with variance σ 2

y and mean 0, and α is
set to 1.5. The values of σx is calculated as given in (9) and
σy = 1 [28].

σx =

(
0(1 + α) sin

(
πα
/
2
)

0
(
(1 + α)

/
2
)
α2((α−1)/2)

)1/α

(9)

This technique has shown enhanced search capability in opti-
mization studies. The gazelle employs Lévy flight for its
escape, while the predator initially adopts Brownian motion
before transitioning to Lévy flight. Themathematical descrip-
tion of the gazelle’s behavior in spotting the predator is given
in (10).

−−→gi+1 =
−→gi + S · µ ·

−→
R ∗ ·

−→
RL ∗ ·

(
−−→
Elitei −

−→
RL ∗ ·

−→gi
)

(10)
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Here, S represents the top speed that the gazelle can achieve,
−→
RL is a Lévy distribution-based vector of random numbers.
The mathematical model in (11) describes the behavior of the
predator as it chases the gazelle.

−−→gi+1 =
−→gi + S · µ · CF ∗ ·

−→
RB ∗ ·

(
−−→
Elitei −

−→
RL ∗ ·

−→gi
)

(11)

In Eq. (11), CF represents the cumulative effect of the preda-
tor, calculated as CF = (1−iter/iterMax)(2∗iter/iterMax). The
predator success rate (PSRs) has an impact on the gazelle’s
ability to escape and prevents local minima trapping. The
effect of PSR is modeled in (12) where

−→
U is a constructed

binary vector generated by a random number r from the
interval [0, 1], such that

−→
U = 0 for r< 0.34; otherwise

−→
U =

1. The gazelle matrix contains random indexes of r1 and r2.

−−→gi+1 =


−→gi +CF

[
−→
LB+

−→
R ∗ ·

(
−→
UB−

−→
LB
)]

∗ ·
−→
U ;

if r ≤ PSRs
−→gi +[PSRs (1 − r)+r]

(
−→gr1 −

−→gr2
)
; else

(12)

III. PROPOSED GAZELLE SIMPLEX OPTIMIZER
The NM simplex method, known as the NM algorithm,
stands as a widely recognized optimization technique, sought
after for uncovering the extremum of a multidimensional
cost function [29]. Its remarkable efficacy emerges when
dealing with nonlinear objective functions devoid of explicit
mathematical forms or derivatives. Rooted in the concept of
a simplex—a geometric shape extending triangles to higher
dimensions—the NM algorithm employs N + 1 points in
N -dimensional space (N being the number of objective
function variables) to construct a convex polytope, each
point representing a potential solution. Iteratively, the NM
algorithm dynamically refines this simplex toward optimal
convergence.

During each iteration, the algorithm assesses the cost func-
tion at all N + 1 simplex vertices, subsequently sorting
them based on their function values. These vertices undergo
a sequence of geometric transformations: reflection, expan-
sion, contraction, and shrinkage. By skillfully employing
these transformations, the algorithm efficiently explores the
objective function landscape.

When a reflected point produces a superior function value
to the second-worst vertex, the reflected point is embraced,
progressing the algorithm. If the reflected point lies between
the second worst and worst vertices, an expansion transfor-
mation is initiated, delving further into that direction. Should
the reflected point be worse than the worst vertex but superior
to all other vertices, a contraction transformation is executed
to venture closer to the favorable points. In the event that the
reflected point is worse than the worst vertex and all others,
a shrinkage transformation ensues, compacting the simplex.
Iteratively, the NM algorithm pursues these transformations
until predefined convergence criteria are met, such as reach-
ing the maximum iterations or attaining a desired tolerance.

FIGURE 1. Process of gazelle simplex optimizer (GSO).

One of the remarkable aspects of the NM algorithm is its
simplicity and robustness, able to handle diverse optimization
challenges without requiring objective function derivatives
[18]. Recognizing this unique attribute, our study ingeniously
employs the NM algorithm as a supporting structure to
enhance the exploitation phase of the GOA. In Figure 1,
we illustrate the detailed process of gazelle simplex optimizer
(GSO), ensuring a seamless integration without incurring
significant computational burdens.

In our proposed hybrid version GSO, the original GOA
initiates the agent positions’ updates. After ten iterations, the
acquired solution fosters the creation of a simplex, wherein
the NM algorithm takes charge of further refinement. This
iterative process of NM advances every ten iterations, per-
forming twice the total number of iterations each time,
culminating in a highly efficient and effective algorithm for
tuning PID parameters employed in DCmotor. This synergis-
tic amalgamation of GOA and NM unlocks new possibilities
for optimizing systems with increased precision and compu-
tational efficiency.

IV. PID CONTROLLED DC MOTOR SPEED REGULATION
A. OPEN LOOP MATHEMATICAL MODEL OF EXTERNALLY
EXCITED DC MOTOR
In this study, we are dealing with a DC motor system,
comprising a DC motor and a mechanical load. The main
objective is to regulate the motor’s speed and torque effec-
tively through a control system. For the purpose of modeling,
we have chosen a separately excited DC motor [30]. Figure 2
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FIGURE 2. Block diagram of DC motor.

depicts the equivalent circuit representing this particular type
of DC motor.

To develop a mathematical model of this system, it is
considered as a linear time-invariant system and mechanical
load is modeled as a constant torque (TL (s)). Besides, the
motor is fed with constant voltage input. With these assump-
tions, the DC motor system can be modeled using a set
of differential equations that describe the dynamics of the
motor’s speed and torque. Let ω denote the motor’s angular
velocity, and τ denote the motor’s torque. The dynamics of
the system can be described by Jm (dω/dt) = τ − Bmω and
La (di/dt) = Ea − RaIa − Kbω where Jm is the motor’s
moment of inertia, Bm is the motor’s damping coefficient,
La is the motor’s inductance, Ra is the motor’s resistance,
Kb is the motor’s back electromotive constant, and Ea is the
voltage applied to the motor. Ia is the motor’s current, which
is related to the torque by τ = Km·Ia, where Km is the
motor’s torque constant. These equations can be simplified by
assuming that the motor’s internal dynamics are much faster
than the mechanical load’s dynamics. Under this assumption,
the motor’s angular velocity ω can be assumed to be constant
and equal to the commanded speed. With this simplification,
the above equations can be reduced to Ia = (Ea − Kbω) /Ra
for the current. This equation shows that themotor’s current is
proportional to the applied voltage and inversely proportional
to the motor’s resistance. This allows control techniques to
be used for designing a control system that regulates the
motor’s speed and torque by adjusting the applied voltage.
Considering this explanation, the open-loop transfer function
of a DC motor can be obtained as follows.

G (s) =
Km

(Jms+ Bm) (Las+ Ra) + KmKb
(13)

B. FUNDAMENTALS OF PID CONTROLLER
The PID controller is a widely used feedback control system
in engineering and industrial applications. It is designed to
maintain a desired setpoint by continuously adjusting a con-
trol variable based on the difference between the setpoint and
the actual process variable. The PID controller achieves this
by considering three components, proportional (KP), integral
(KI ), and derivative (KD), provided in (14) [6].

C (s) = KP +
KI
s

+ KDs (14)

The overall PID control action is the sum of the individual
proportional, integral, and derivative control actions. The

PID controller continuously calculates the control action and
adjusts the system output to maintain the process variable
close to the desired setpoint, ensuring a stable and accurate
control of various industrial processes.

C. PID CONTROLLED SPEED REGULATION OF DC MOTOR
A PID controlled system can be described with the following
expression [31].

W (s) =
�(s)

�ref (s)
=

C (s)G(s)
1 + C (s)G(s)

(15)

In order to comply with earlier reported studies, the DC
motor parameters are selected as 0.40� for Ra, 2.70 H for La,
0.0004kg·m2 for Jm, 0.0022N ·m·s/rad for Bm, 0.015N ·m/A
for Km, and 0.05V ·s/rad for Kb. Using those values and the
transfer function provided in (15), the behavior of the PID
controlled system can be characterized as follows.

WPID (s)

=
15(KDs2+KPs+KI )

1.08s3+(6.1+15KD) s2+(1.63+15KP) s+ 15KI
(16)

V. NOVEL PID DESIGN VIA GSO
Initially, the respective engineering problems must be
described as minimization problems such that the optimiza-
tion algorithm can be used. In terms of the description of those
systems as minimization problems, the following procedure
is adopted in this study so that the parameters of the PID con-
troller can be optimized. Firstly, the problem is represented as
−→
X = [x1, x2, x3] = [KP,KI ,KD] and secondly the following
ITAE (integral of time multiplied absolute error) [32] cost
function can be adopted for appropriate minimization via
GSO.

ITAE =

∞∫
0

t×|e(t)|×dt (17)

In here, e (t) = ωref (t) − ω(t) where e (t) denotes the error
signal between the reference speed, ωref (t), and the actual
speed, ω(t). Alternatively, another cost function, known as
ZLG [33], can also be used as a time domain metrics-based
minimization tool. The ZLG cost function is defined as in
(18):

ZLG =
(
1 − e−ϕ

)
×

(
ess +

OS
100

)
+ e−ϕ

× (tst − trt) (18)

where ϕ is a balancing factor equals to 1, ess is the steady state
error,OS is overshoot, tst is the settling time and trt is the rise
time. In this study, we aim to exploit the benefit of both ITAE
and ZLG, thus, propose a new F objective function provided
in (19).

F = (1 − ρ) × ITAE + ρ × ZLG (19)

In here, ρ stands for the balancing coefficient between ITAE
and ZLG and its value was set to ρ= 0.95. The respective
value of the ρ coefficient was determined after extensive
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TABLE 1. Control parameters and other settings of the employed
algorithms.

evaluations. Meanwhile, the minimization procedure is per-
formed by considering the following constraints for the
controller parameters; 10−3

≤ KP,KI ,KD ≤ 25 [20]. The
proposed novel design strategy in this work is illustrated in
detail with the bock diagram in Figure 3.

VI. SIMULATION RESULTS AND DISCUSSION
A. COMPARED RECENT ALGORITHMS
In order to provide a fair assessment for the performance eval-
uation of the proposed GSO, the state-of-the-art algorithms
that have recently been reported are employed in this study for
comparisons. In this regard, gazelle optimization algorithm
(GOA) [21], reptile search algorithm (RSA) [23], prairie dog
optimization (PDO) algorithm [24] and weighted mean of
vectors optimization (INFO) algorithm [25] are employed
for this study. Table 1 lists those algorithms along with their
respective control parameters. The related control parameters
are chosen with their default values in order to present fair
assessment. Apart from those parameters, each algorithm is
run 25 individual times using iteration number of 50 and
population size of 30 in order to obtain results.

B. STATISTICAL ANALYSIS
Figure 4 presents a comparative boxplot analysis for five
different algorithms, namely GSO, GOA, RSA, PDO, and
INFO, with respect to their efficacy in minimizing the objec-
tive function. The boxplot, given in Figure 4, demonstrates
that the worst value obtained by the GSO algorithm is signif-
icantly lower than the best values obtained by the other four
algorithms (GOA, RSA, PDO, and INFO), thus highlighting
the clear superiority of the proposed GSO algorithm in terms
of performance.

Table 2 provides a statistical summary of the per-
formance of the different algorithms in minimizing the
objective function. The table shows that the GSO out-
performs the others in all three metrics. It achieves the
lowest minimum value (1.0047E−02), which is signifi-
cantly better than the minimum values obtained by GOA
(1.2889E−02), RSA (1.8543E−02), PDO (2.0484E−02),
and INFO (1.4152E−02) algorithms. Similarly, the GSO
algorithm also demonstrates superior performance in terms
of the maximum objective function value (1.0510E−02),
which is remarkably lower than themaximumvalues of GOA,
RSA, PDO, and INFO algorithms. Furthermore, the average
objective function value for GSO (1.0227E−02) is notably
better than the averages of the other algorithms (GOA:

1.3216E−02, RSA: 1.9067E−02, PDO: 2.1105E−02, INFO:
1.4550E−02). These results indicate that the GSO con-
sistently provides better solutions compared to the other
algorithms in terms of the objective function. Table 2 also
reveals that the GSO exhibits a significantly lower stan-
dard deviation (1.4035E−04) and variance (1.9699E−08)
compared to GOA, RSA, PDO, and INFO algorithms. This
indicates that the results obtained by the GSO are less dis-
persed and more stable than those of the other algorithms,
further emphasizing its efficacy in optimizing the objec-
tive function. The GSO algorithm also achieves a median
value of 1.0192E−02, which is better than the medians
of GOA, RSA, PDO, and INFO algorithms (1.3184E−02,
1.9002E−02, 2.0991E−02, 1.4495E−02, respectively). This
result reinforces the consistent and superior performance
of the GSO compared to the other algorithms. Moreover,
we assign a rank to each algorithm based on the collective
evaluation of the statistical metrics. The GSO secures the
top rank (1) among all the evaluated algorithms, signifying
its clear superiority. GOA and INFO algorithms follow with
ranks 2 and 3, respectively. On the other hand, RSA and
PDO algorithms show relatively poorer performance, ranking
4 and 5, respectively.

C. CHANGE OF OBJECTIVE FUNCTION
The convergence curves demonstrating the change of the
objective with respect to iteration numbers are presented in
Figure 5. As depicted in the figure, the GSO is capable of
converging to the lowest objective function value in later
iterations, showing its better capability.
Table 3 displays the controller parameters (KP, KI ,KP)

obtained via GSO, GOA, RSA, PDO and INFO algorithms.
Using those parameter values, the transfer functions provided
in (20), (21), (22), (23) and (24) can be obtained for GSO,
GOA, RSA, PDO and INFO based PID controlled DC motor
systems. The analyses presented in the following subsections
are performed using those transfer functions.

WGSO−PID (s) =
64.95s2+367.6s+95.47

1.08s3+71.05s2+369.2s+95.47
(20)

WGOA−PID (s) =
54.48s2+310.2s+118.6

1.08s3+60.58s2+311.8s+118.6
(21)

WRSA−PID (s) =
45.29s2+305.7s+107.2

1.08s3+51.39s2+307.3s+107.2
(22)

WPDO−PID (s) =
45.52s2+332.9s+74.88

1.08s3+51.62s2+334.6s+74.88
(23)

WINFO−PID (s) =
46.91s2 + 272.4s+ 78.23

1.08s3 + 53.01s2 + 274s+ 78.23
(24)

D. TIME RESPONSE ANALYSIS
The time response analysis provides valuable insights into
the dynamic behavior and performance of PID-controlled DC
motor systems. The step responses of different approaches are
depicted in Figure 6 which are based on the data presented
in Table 4. From Figure 6 and Table 4, it is evident that
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FIGURE 3. Block diagram of proposed GSO-based design for PID controlled DC motor system.

TABLE 2. Statistical performance of different algorithms to minimize objective function.

FIGURE 4. Boxplots of GSO, GOA, RSA, PDO and INFO algorithms.

the GSO-based PID controlled DC motor system exhibits
the fastest rise time of 0.0365 seconds among all the algo-
rithms. In comparison, the rise times for the GOA, RSA,
PDO, and INFO algorithms are 0.0434, 0.0491, 0.0476, and

FIGURE 5. Convergence curves showing the change of the objective
function values for GSO, GOA, RSA, PDO and INFO.

0.0501 seconds, respectively. This result highlights the supe-
rior dynamic response of the GSO algorithm in achieving a
fast rise to the desired output. In addition, the GSO-based
PID controlled DC motor system demonstrates the shortest
settling time of 0.065 seconds. Comparatively, the settling
times for the GOA, RSA, PDO, and INFO algorithms are
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TABLE 3. Controller parameters obtained via different algorithms.

FIGURE 6. Step responses of GSO, GOA, RSA, PDO and INFO based PID
controlled DC motor systems.

TABLE 4. Time response metrics for gso, goa, rsa, pdo and info
algorithms.

0.0765, 0.0782, 0.0735, and 0.0873 seconds, respectively.
The shorter settling time for the GSO algorithm signifies
its ability to stabilize the system’s output faster and reduce
transient oscillations effectively.

Moreover, the GSO-based PID controlled DC motor sys-
tem has zero overshoot, providing a perfect response to the
step input. In contrast, the overshoot values for the GOA,
RSA, PDO, and INFO algorithms are 0.0867%, 1.2753%,
1.759%, and 0.144%, respectively. This result shows that the
GSO algorithm delivers a superior control action with no
overshooting and better control precision. Lastly, it can be
observed that the GSO-based PID controlled DC motor sys-
tem achieves the shortest peak time of 0.1218 seconds. The
peak times for the GOA, RSA, PDO, and INFO algorithms
are 0.1453, 0.1518, 0.1378, and 0.1693 seconds, respectively.
This result further emphasizes the GSO algorithm’s capa-
bility to expedite the system’s response and reach the peak
output faster.

E. FREQUENCY RESPONSE ANALYSIS
In this section, we perform a frequency response analysis
of PID-controlled DC motor systems using different opti-

FIGURE 7. Bode diagrams of GSO, GOA, RSA, PDO and INFO based PID
controlled DC motor systems.

TABLE 5. Frequency response metrics for GSO, GOA, RSA, PDO and INFO
algorithms.

mization algorithms. The Bode diagrams of these systems
are depicted in Figure 7 (which is obtained from open-loop
transfer function), and the corresponding frequency response
metrics are presented in Table 5. From Table 5, we can
observe that all algorithms have an infinite gain margin,
signifying that the PID controlled DC motor systems are
inherently stable under varying gain levels for all the eval-
uated optimization algorithms. In addition, the GSO-based
PID controlled DC motor system has a phase margin
of 89.9898◦. Similarly, the phase margins for the GOA,
RSA, PDO, and INFO algorithms are 89.9469◦, 88.5266◦,
87.7976◦, and 89.7942◦, respectively. These values indicate
that all algorithms provide high phase margins, ensuring
stable system responses even with slight phase lag.

Moreover, we can observe that the GSO-based PID con-
trolled DC motor system exhibits the widest bandwidth of
60.0087 rad/s among all the algorithms. The wider bandwidth
of the GSO algorithm signifies its ability to handle a broader
range of frequencies and respondmore effectively to different
input signals.

F. ROBUSTNESS ANALYSIS
In this section, we conduct a robustness analysis of the
PID-controlled DC motor systems with respect to varia-
tions in motor parameters. Specifically, we investigate the
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FIGURE 8. Comparison of output speed responses for Km= 0.012 and
Ra= 0.30.

TABLE 6. Numerical results of time response analysis for Km = 0.012 and
Ra= 0.30.

performance of the systems for four sets of motor param-
eters: (1) Km= 0.012 and Ra= 0.30, (2) Km= 0.018 and
Ra= 0.30, (3) Km= 0.012 and Ra= 0.50 and (4) Km= 0.018
andRa= 0.50. The comparison of output speed responses and
the numerical results of time response analysis for each case
are presented in Figures 8 to 11 and Tables 6 to 9, respectively.
Figure 8 illustrates the comparison of output speed

responses for Km= 0.012 and Ra= 0.30 set of motor param-
eters. From Table 6, it can be observed that the GSO-based
PID controlled DC motor system achieves a rise time of
0.0455 seconds, a settling time of 0.0804 seconds, an over-
shoot of 0.0382%, and a peak time of 0.1523 seconds.
Comparatively, the GOA, RSA, PDO, and INFO algorithms
yield slightly different time response metrics for the same
motor parameters. The GSO algorithm demonstrates com-
petitive performance with other optimization algorithms,
indicating its robustness in handling variations in motor
parameters.

Figure 9 displays the comparison of output speed responses
for Km= 0.018 and Ra= 0.30 set of motor parameters.
Table 7 presents the corresponding numerical results of the
time response analysis. The GSO-based PID controlled DC
motor system achieves a rise time of 0.0304 seconds, a set-
tling time of 0.0539 seconds, no overshoot, and a peak time of
0.1015 seconds. TheGSO algorithm consistently shows supe-
rior performance in terms of rise time and overshoot, while
maintaining competitive settling and peak times with other
algorithms. This performance demonstrates the robustness

FIGURE 9. Comparison of output speed responses for Km= 0.012 and
Ra= 0.50.

TABLE 7. Numerical results of time response analysis for Km= 0.018 and
Ra= 0.30.

FIGURE 10. Comparison of output speed responses for Km= 0.018 and
Ra= 0.30.

of the GSO algorithm in handling different motor parameter
values.

Figure 10 depicts the comparison of output speed
responses for Km= 0.012 and Ra= 0.50 set of motor param-
eters. Table 8 presents the corresponding numerical results of
the time response analysis. The GSO-based PID controlled
DC motor system achieves a rise time of 0.0457 seconds,
a settling time of 0.0818 seconds, no overshoot, and a peak
time of 0.1521 seconds. Similar to previous cases, the GSO
algorithm consistently exhibits competitive performance in
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TABLE 8. Numerical results of time response analysis for Km= 0.012 and
Ra= 0.50.

FIGURE 11. Comparison of output speed responses for Km= 0.018 and
Ra= 0.50.

TABLE 9. Numerical results of time response analysis for Km= 0.018 and
Ra= 0.50.

all time response metrics, indicating its robustness to varia-
tions in motor parameters.

Figure 11 illustrates the comparison of output speed
responses for Km= 0.018 and Ra= 0.50 set of motor parame-
ters. Table 9 provides the corresponding numerical results of
the time response analysis. The GSO-based PID controlled
DC motor system achieves a rise time of 0.0305 seconds,
a settling time of 0.0545 seconds, no overshoot, and a peak
time of 0.1014 seconds. The GSO algorithm again displays
superior performance in terms of rise time and overshoot,
while remaining competitive in settling and peak times, fur-
ther showcasing its robustness in handling variations in motor
parameters.

G. COMPARISONS WITH OTHER REPORTED PID TUNING
ALGORITHMS
In this section, we compare the performance of the
GSO-based PID tuning algorithm with various other reported
PID tuning algorithms listed in Table 10. The comparison is

based on key time response metrics, namely rise time, settling
time, overshoot, and peak time. To allow the repeatability
tests by the readers, the controller parameters obtained by the
respective algorithms are also provided in the table.

The GSO demonstrates competitive performance across
the time response metrics compared to other reported PID
tuning algorithms. It achieves a rise time of 0.0365 seconds,
a settling time of 0.065 seconds, zero overshoot, and a peak
time of 0.1218 seconds. The GSO outperforms hybrid SFS
in all time response metrics, showing significantly faster rise
and settling times, and no overshoot. It exhibits comparable
or slightly better performance compared to LFDNM and LFD
in terms of rise time, settling time, and overshoot. The GSO
also achieves faster rise and settling times with zero over-
shoot, showcasing its superior performance over CS, GA, and
hASO-SA. Moreover, it demonstrates faster rise and settling
times with no overshoot, surpassing GWO, SCA, and ASO
algorithms. Besides, the proposed GSO exhibits competitive
performancewith SMA, ISCA, and IWO in terms of rise time,
settling time, and overshoot. Lastly, the GSO consistently
outperforms PSO, CMA-ES, AOA, AOA-HHO, SFS, HHO,
HGSO,OBL/HGSO, IKA,MMPA,MPA,GOA,WOA, EOA,
and JAYA algorithms with notably faster rise and settling
times and no overshoot.

H. DISCUSSION
In this study, we conducted a comprehensive analysis of the
GSO’s efficacy in tuning PID control parameters for DC
motor systems. We compared the performance of the GSO
with various other optimization algorithms, namely GOA,
RSA, PDO, and INFO. The analysis encompassed statistical
analysis, time response analysis, frequency response analysis,
and robustness analysis to gain a comprehensive understand-
ing of the GSO algorithm’s capabilities.

The statistical analysis of the objective function minimiza-
tion revealed that the GSO excels in providing superior values
compared to the other algorithms. It consistently achieved
the lowest minimum andmaximum objective function values,
as well as the best average, standard deviation, and variance.
The ranking of the algorithms based on various statistical
metrics also confirmed the GSO’s top performance. These
results emphasize the efficacy of the GSO in achieving opti-
mal solutions for the PID control parameters, making it a
compelling choice for DC motor control optimization.

The time response analysis further substantiated the GSO’s
efficacy. Across different sets of motor parameters, the
GSO-based PID controlled DC motor systems consistently
exhibited faster rise and settling times, zero overshoot, and
shorter peak times compared to other algorithms. These
results demonstrate the GSO’s ability to generate stable and
responsive control actions, indicating its superiority in opti-
mizing PID parameters for dynamic DC motor systems.

In the frequency response analysis, the GSO continued to
demonstrate its prowess. The GSO-based PID controlled DC
motor systems exhibited infinite gain margins, high phase
margins, and wider bandwidths, showcasing the algorithm’s
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TABLE 10. Performance evaluation with respect to other reported pid tuning algorithms.

robustness in handling a broad range of frequencies andmain-
taining stability in the control system. The GSO’s exceptional
performance in frequency domain analysis further under-
scores its efficacy in optimizing PID control parameters for
varying motor dynamics.

The robustness analysis examined the GSO’s perfor-
mance under different motor parameter variations. The
GSO-based PID controlled DC motor systems consistently
delivered desirable time response metrics, demonstrating the
algorithm’s resilience to parameter changes. The ability of the
GSO algorithm to provide stable and efficient control despite
fluctuations in motor parameters enhances its suitability and
reliability for real-world applications.

The comparison with a wide range of reported PID tuning
algorithms highlighted GSO’s superiority. The GSO outper-
formed or displayed competitive performance against other
optimization algorithms across all key time response metrics.
Its consistently faster rise and settling times, coupled with
zero overshoot, set the GSO apart as an effective and efficient
choice for PID parameter optimization.

Considering all the analyses performed in this study, it is
evident that the GSO excels in optimizing PID control param-
eters for DCmotor systems. Its ability to consistently provide
superior objective function values, fast response times, stable
control actions, and robust performance against parameter
variations highlights its efficacy. The GSO offers significant
advantages in terms of control system stability, responsive-
ness, and precision, making it a powerful tool for optimizing
PID control parameters in dynamic systems.

In conclusion, the GSO’s effectiveness in PID tuning for
DC motor systems is demonstrated through comprehensive
analyses and comparisons. Its consistent superiority over
other optimization algorithms indicates its potential as a valu-
able tool for engineering applications where PID control is
crucial. The GSO presents a promising avenue for enhancing
control system performance, reducing operational costs, and
achieving higher efficiency in various engineering domains.

VII. CONCLUSION
In this study, we conducted a thorough investigation into
the efficacy of the GSO (a hybrid version of GOA and NM
with improved capability) in tuning PID control parameters
for speed regulation of DC motor. Through comprehen-
sive analyses and comparisons with other state-of-the-art
optimization algorithms, we sought to assess the GSO’s capa-
bilities and its potential as a valuable tool for engineering
applications. The statistical analysis of the objective func-
tion minimization demonstrated that the GSO consistently
outperforms other algorithms. It provided lower minimum
and maximum objective function values, better averages,
and reduced dispersion, establishing its proficiency in deliv-
ering optimal solutions for PID control parameter tuning.
In the time response analysis, the GSO-based PID con-
trolled DC motor systems exhibited superior performance
with faster rise and settling times, zero overshoot, and shorter
peak times compared to other algorithms. These results
emphasized the GSO’s effectiveness in generating stable and
responsive control actions, making it a promising choice
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for dynamic DC motor control optimization. In the fre-
quency response analysis, the GSO algorithm showcased its
robustness and stability by achieving infinite gain margins,
high phase margins, and wider bandwidths. This capability
enables the GSO to optimize PID parameters for varying
motor dynamics, enhancing its suitability for a wide range
of control applications. Furthermore, the robustness analysis
revealed the GSO’s reliability and adaptability in handling
parameter variations. The GSO-based systems consistently
delivered desirable time response metrics, further enhanc-
ing the algorithm’s attractiveness for real-world applications
where parameter uncertainty is prevalent. The comparison
with other reported PID tuning algorithms across various
time response metrics established the GSO as a frontrunner,
consistently outperforming or displaying competitive perfor-
mance. The GSO’s consistent superiority in terms of stability,
responsiveness, and control precision underscored its poten-
tial as an effective and efficient choice for PID parameter
optimization.

In conclusion, this study has demonstrated the remarkable
efficacy of the GSO in tuning PID control parameters for the
speed regulation of DCmotor systems. The GSO’s consistent
outperformance of other algorithms across a range of metrics
highlights its potential as a powerful tool for engineering
applications. Its ability to provide optimal solutions, stability,
responsiveness, and robustness even in the face of parameter
variations positions it as a significant contribution to the field
of control optimization. As we look ahead, several potential
avenues for future research emerge. One promising direction
could involve the application of the GSO in more complex
andmultifaceted control systems, exploring its adaptability to
different types of motors and diverse operational conditions.
Additionally, investigating the integration of the GSO with
advanced machine learning techniques or exploring its use
in real-time control systems could further enhance its capa-
bilities. Furthermore, the extension of this work to address
multi-objective optimization problems and the incorporation
of hardware experiments to validate the algorithm’s perfor-
mance in practical scenarios represent exciting opportunities
for future research. These potential avenues hold the promise
of advancing the state-of-the-art in control optimization and
strengthening the GSO’s position as a transformative tool for
engineers and researchers in various domains.
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