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ABSTRACT Given the global competitive landscape, it is imperative that businesses maintain and manage
their facilities continuously to enhance efficiency and productivity for sustaining competitiveness. Hence,
a new hybrid model called contrast enhancement convolutional vision transformer (CECvT) was developed
in this study that enables fault diagnosis without physical contact with factory equipment to ensure accurate
initial fault detection without the risk of machine damage or interference. This model leverages thermal
imaging as an apt source for early anomaly detection in equipment. A new contrast enhancement module
employing contrast enhancement techniques was integrated to address the edge information loss when
utilizing thermal images. Moreover, the network performance was enhanced by fusing the advantages of
convolutional neural network (CNN) and Transformer models. Notably, the model design allows deriving
detailed feature information necessary for the initial diagnostics by harnessing multiscale information to
extract and concatenate features. The proposed method’s performance was evaluated using the thermal imag-
ing dataset provided by AI Hub. When juxtaposed with CNN, Transformer, and hybrid CNN–Transformer
models, the proposed model demonstrated a superior accuracy of 96.17%. Furthermore, it achieved the
most accurate diagnosis at the inception of abnormalities than the other networks. The proposed model
thus has potential and is preferrable for various thermal-imaging-based fault diagnosis applications owing
to its excellent performance and precision during initial diagnosis.

INDEX TERMS Deep learning, infrared imaging, anomaly detection, factory equipment, contrast enhance-
ment, multi-scale feature fusion.

I. INTRODUCTION
In recent times, factory equipment has garnered increasing
attention in various sectors, including mobile telecommuni-
cations, automotive, maritime, and railway industries as well
as the academic community, underscoring their pivotal roles
in manufacturing. Ensuring the sustained operations of these
critical facilities necessitate a keen emphasis on the diagnos-
tic assessment of equipment abnormalities. To achieve this
imperative task, real-time sensor data pertaining to parame-
ters, such as temperature, pressure, vibration, and flow rate,
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are gathered meticulously [1]. These data are used to contin-
uously monitor equipment conditions and identify potential
malfunctions or anomalies. Furthermore, using microphones
or alternative auditory sensors to procure acoustic data aids
in detecting irregularities in the sound or noise levels, facili-
tating diagnosis of factory equipment problems [2].

Among the myriad sensor signals, vibration signals stand
out as they can depict the dynamic state of factory equipment
directly and clearly. Consequently, vibration-based diagnos-
tic methods are being researched extensively [3]. Vibration
signals that reflect the vibrational phenomena originating
within the equipment assist in detecting internal defects, such
as interactions between components, wear and tear of parts,
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and gaps. This makes them highly efficient for sensing the
internal conditions of equipment. However, practical indus-
trial applications of conventional vibration-based diagnostics
for factory equipment present challenges; these include the
considerable time and efforts required to install vibration
sensors on each equipment. Moreover, their designs must be
robust against various noise and interference sources, such as
ambient vibrations, electrical noise, or mechanical noise from
adjacent equipment [4].

The second most frequently employed method to diagnose
abnormalities in factory equipment is based on acoustics.
Acoustic data obtained from sounds produced by the equip-
ment can reflect a range of defects and anomalies, facilitating
comprehensive assessment of the equipment’s overall condi-
tion. Furthermore, acoustic data are invaluable for detecting
various defects [5]. However, leveraging acoustic data for
inspection poses challenges, especially within factories. Typ-
ically, factories entail multiple equipment and processes
generating significant background noise, complicating the
isolation and identification of specific acoustic signals asso-
ciated with equipment anomalies. Additionally, given the
nature of acoustic signals that attenuate upon propagation
through air or other media, detecting and analyzing acoustic
data from equipment that are either distant or obstructed
by other structures becomes problematic. Such challenges
compromise the accuracy and reliability of monitoring sys-
tems, and several such problems persist in the current
applications [6].

Utilizing thermal imaging to diagnose abnormalities in fac-
tory equipment offers significant advantages over vibration
and acoustic data. Thermal cameras can capture temperature
data without physical contact with the equipment, thereby
reducing the risk of mechanical damage or interference
during inspection. The visual representation of temperature
distribution allows easy identification of potential equipment
problems, such as hotspots, thermal leakages, or anomalous
heat patterns, thus ensuring a high level of inspection effi-
cacy.Moreover, the ability to detect abnormal temperatures at
the early stages facilitates preventative maintenance, poten-
tially reducing costly operational downtimes [7]. However,
there are inherent challenges in using thermal imaging for
equipment diagnostics. Interpreting thermal imaging data
demands specialized knowledge and experience. Owing to
the data complexities and their subjective interpretability,
rigorous training and expertise are essential for accurate
anomaly detection. Establishing precise criteria to iden-
tify abnormalities in the imaging data is imperative, which
means distinctly defining the temperature patterns and vari-
ations between normal and anomalous states. Given the
equipment characteristics and operating conditions, setting
appropriate benchmarks can be challenging. Lastly, the
spatial resolution of a thermal camera is often limited, pos-
ing difficulties in accurately identifying minute defects or
detailed anomalies. Distinguishing the precise appearances
of parts can be challenging, particularly when diagnosing

small or intricate equipment components [8]. Nevertheless,
the benefits of thermal-imaging-based equipment condition
monitoring are substantial. Recent advancements in fusing
artificial intelligence with thermal imaging diagnostics have
exhibited promising results, with enhanced anomaly detec-
tion performances.

In recent times, machine learning approaches, such
as the hidden Markov model (HMM), support vector
machine (SVM), k-nearest neighbor (KNN), and artificial
neural network (ANN), have been applied for anomaly
detection using thermal imaging. Among these, for anomaly
detection based on deep learning with thermal imagery,
the convolutional neural network (CNN) that has been
applied extensively across various computer vision domains
is actively used [9]. However, there are continuous concerns
regarding CNN’s limitations in utilizing global information.
To address this, recent advancements in computer vision
have integrated Transformer technology actively. Moreover,
compared to CNNs, Transformers demonstrate superior per-
formance on noisy or augmented images; this is due to the
self-attention mechanism of the Transformer, which allows
using image information from the highest to lowest layers
to provide enhanced performance over CNN. However, the
Transformer technology that is rapidly gaining traction in the
computer vision domain also has challenges, such as the vast
amount of data required for training. CNNs can generalize
better with smaller datasets, resulting in greater accuracy,
whereas Transformers necessitate more extensive training
data since the images are divided into smaller patches, intro-
ducing more diverse inter image relationships. Recognizing
these challenges of the CNN and Transformer methods,
there is emerging emphasis on the need for research into
deep-learning networks that integrate both these models.
Current research highlights the potential benefits of such
integration; notably, recent studies have indicated that the
ensemble with CNN and Transformer yields up to 10% higher
accuracy on the ImageNet-C benchmark than various other
networks [10], [11].

To address the challenges of CNN and Transformer tech-
nologies, research is underway to develop deep-learning
networks that integrate the strengths of both techniques for
applications in various fields. In the present study, the convo-
lutional vision transformer (CvT) is used as the base model
for further research [12].

In contemporary research utilizing thermal imaging to
diagnose equipment malfunctions in factories, the primary
focus has historically been on accurately diagnosing equip-
ment failures once they have occurred, rather than early-stage
detection by identifying minor anomalous temperature eleva-
tions. Consequently, extant methods are limited for diagnos-
ing subtle temperature anomalies during the initial phases.
Additionally, the spatial resolution of a thermal camera is
inherently limited, presenting challenges in pinpointing small
defects or diagnosing early-stage abnormalities. Research
endeavors to overcome these constraints have been sparse.
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In this study, to address the problem of edge information
losses in thermal images—a critical feature in early equip-
ment abnormality diagnosis—a new contrast enhancement
module is introduced by leveraging contrast enhancement
techniques. By harnessing the strengths of both CNN and
Transformer, the integrated CvT network structure is pre-
sented. Further, by employingmultiscale information, such as
fully convolutional cross-scale flows (CS-Flow), multiscale
image features were extracted and concatenated to obtain
detailed feature information essential for preliminary diag-
noses [13]. Therefore, the primary aim of this research is
the development of the contrast enhancement convolutional
vision transformer (CECvT) network that can achieve early
abnormality diagnosis efficiently.

The main contributions of the model proposed in this study
over those in literature are summarized below.

1) By introducing a new contrast enhancement module,
the edge information loss problem of thermal images is
addressed successfully.

2) Using multiscale information from the CS-Flow net-
work, the proposed system detects and diagnoses
anomalies even in small-sized regions via extracting
and utilizing detailed features, leading to significant
findings.

3) Through restructuring and optimizing a network that
integrates only the advantages of both the CNN and
Transformer methods, a new network structure that
demonstrates superior performance to the conventional
CNN or Transformer network is developed.

The remainder of this manuscript is organized as fol-
lows. Section II discusses the literature and background
on thermal-imaging-based anomaly detection with deep-
learning techniques. Section III outlines the details of the
thermal image dataset composed of abnormal data from var-
ious cases. Section IV presents detailed descriptions of the
contrast enhancement module and proposed network struc-
ture. Section V explains the proposed experimental approach
and experimental evaluations of different techniques com-
pared to the proposed technique. Section VI presents the
conclusions of this work.

II. RELATED WORKS
A. THERMAL-IMAGING-BASED ANOMALY DETECTION
To date, studies on equipment anomaly detection using ther-
mal imaging have predominantly relied on simple image
processing. Over the past few decades, there has been a global
surge in the installation of photovoltaic (PV) power plants.
The output efficiencies of these stations degrade over time
owing to several factors. Advancements in drone technology
have allowed researchers to employ drones equipped with
thermal cameras to monitor PV power plants. These drones
are often fitted with both red-green-blue (RGB) and ther-
mal cameras. The proposed system identifies defects from
among hundreds or even thousands of PVmodules in a power

plant, extracting details through contour detection algorithms
like the canny edge detector [14]. Furthermore, studies have
been conducted on stainless-steel plates with circular defects
captured using thermal cameras, where filtering was used
to possibly improve the signal-to-noise ratio, followed by
automated defect detection based on thresholding of binary
images [15]. In addition, studies have been conducted on
BLDCmotors whose conditions were captured using thermal
cameras, and the defects were identified through a feature
extraction method called the common part of arithmetic mean
of thermographic images (CPoAMoTI) [16].

However, recent advances include active research deploy-
ing ANN techniques to diagnose anomalies in thermal
images. Using ANNs, the unforeseen anomalies, such as gear
wear in gearboxes, can be detected. Thermal analyses of
thermal images were used as a novel noninvasive approach
to diagnose and categorize uniform wear levels of gears via
automated defect diagnosis using ANNs [17]. Additionally,
detecting thermal bridges in building envelopes is a critical
aspect that needs prioritized resolution to enhance the ther-
mal performances of buildings. Recently, thermal imaging
measurements have been adopted to detect thermal bridges.
There is a proposal for an image-processing- and a machine-
learning-based linear thermal bridge detection method using
images captured by thermal cameras; this methods involves
clustering the thermal anomaly regions, feature extraction,
and thermal bridge detection using ANNs [18].

To accurately identify leak defects in the pipelines of mine
air compressors, wavelet noise reduction and Otsu-GrabCut
image segmentation were employed, followed by defect diag-
nosis using SVM [19]. In another study, an automated diag-
nostic method was applied to inspect PV power plants and
identify anomalies within the panels; this involved capturing
thermal images using an unmanned aerial vehicle (UAV) and
diagnosing defects with SVM [20]. To address the prob-
lem of high failure rates of electric heating devices (EORs)
during rail transportation, thermal imaging was employed
to detect EOR errors and malfunctions using SVM [21].
Thermal images of concrete structures were preprocessed
to emphasize and detect cracks on the exterior walls of
buildings; SVM was then used to compute and classify the
visual characteristics of each region to achieve accurate crack
detection [22].

When employing the generative adversarial network
(GAN) to prevent power system collapse, it is essential to
detect various overheating defects in the operational states of
the power transformers that play crucial roles in the system.
Here, GAN was utilized to recognize and diagnose the over-
heating locations during transformer operation [23].
A deep-learning approach was previously used for

real-time detection of equipment components using CNN
to predict and diagnose the component coordinates, orien-
tations, and grade types [24]. Moreover, the efficacy of the
CNN was validated for diagnosing anomalies in rotating
machinery based on infrared thermographic imaging [25].
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Infrared imagery has been employed in conveyor systems
for binary classification of thermographic images to monitor
the status of belt conveyor idlers using CNN [26]. Many
solar power plants face challenges due to numerous defects
that cause non-negligible power losses; to address these,
drone-based thermographic imaging was utilized along with
CNN-based anomaly detection [27].

The Transformer network has been used to detect small
infrared targets. When the CNN method was used for this
purpose, there was a problem with modeling the long-range
dependencies of the images owing to the locality of the convo-
lutional kernel. Thus, the Transformer was applied to detect
small infrared targets in 640 × 512 field-of-view (FOV)
images [28].

B. THERMAL-IMAGING-BASED ANOMALY DETECTION
WITH COMBINED CNN AND TRANSFORMER
In recent deep-learning research, it has been consistently
reported that the fusion of CNN and Transformer exhibits
the best performance. Following this trend, studies based
on thermal imagery have been conducted, including those
focused on detecting small infrared ships from space. The aim
here was to differentiate small ships from images captured
by Earth-orbit satellites. Owing to the vast image-coverage
area, the potential targets in such images appear much
smaller and fainter than those observed using aerial and
ground-based imaging devices. To extract multistage features
from such images, Transformer and CNN were fused. The
local feature maps were first extracted from several con-
volutional layers; using the Transformer module to derive
long-range dependencies, a high-performance network was
designed [29].

III. MATERIALS
The AI Hub thermal imaging dataset, which is a public
dataset, was used to accurately compare various methods
and studies from literature. Detailed information regarding
this dataset that has been used for the first time is provided
below [30].

A. DATASET
For experiments on equipment malfunction diagnosis using
thermal imaging, the AI Hub thermal imaging dataset was
employed. Each image in the dataset has dimensions of
256 × 256 × 3. For the training dataset, a total of 500,512
normal and 171,708 malfunctioning thermal images were
used. For the validation dataset, a total of 55,612 normal
and 19,079 malfunctioning thermal images were employed.
The evaluation dataset consisted of 69,521 normal and
23,854 malfunctioning thermal images to assess the proposed
network performance. In total, about 625,645 normal and
214,641 malfunctioning thermal images were utilized. The
overall quantity of thermal imaging data used by class is listed
in Table 1.

TABLE 1. Dataset information.

IV. METHODS
The CvT model is one of the popular architectures in lit-
erature for image classification [12]. One of the primary
reasons why the CvT is favored is that it blends the advan-
tages of CNNs, which generalize well even with smaller
datasets to achieve superior accuracy, with the strengths of
Transformers. The latter, with its self-attention mechanism,
is adept at utilizing whole-image information from the high-
est to lowest layers. Hence, the fused model performance
surpasses those of the conventional CNN and Transformer
models. Accordingly, this study adopts the CvT model as
the base with further improvement to the network structure.
The foundational CvT model is first discussed; then, the
enhanced CECvT model obtained by incorporating contrast
enhancement and coupling modules for utilizing multiscale
information is detailed. Optimization of the CECvT network
structure is then elaborated. Thus, the distinctions between
the proposed CECvT and base CvT models are elucidated.
Finally, the performance metrics used to gauge the proposed
system are presented.

A. BASE MODEL: CvT
The CvT integrates the hierarchical architecture, a hallmark
of the CNN, to enhance the locality is lacking in the vision
transformer (ViT). Through the hierarchical architecture,
the CvT learns low-level features like the broad contours
of objects in the low layer, while the high-level features
such as the detailed characteristics of objects are learned
in the high layer. To incorporate the hierarchical nature of
CNNs into ViT, convolutional token embedding and convo-
lutional projection for attention are applied to the network
structure.

Convolutional token embedding applies overlapping
convolution with stride operations to the 2D token map,
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FIGURE 1. Convolutional projection.

harnessing both local information capture and spatial down-
sampling concurrently. Convolutional token embedding is
incorporated to augment the convolutional characteristics of
the CvT and aims to model the local spatial context spanning
from low- to high-level features.

Hi+1 =
Hi + 2p− s

s− o
+ 1, Wi+1 =

Wt + 2p− s
s− o

+ 1 (1)

Equation (1) describes the convolution operation applied
when given a 2D input image or the output token map
from the previous step to derive a new token map with the
corresponding height and width. Here, H represents height,
W denotes width, C signifies channel, s is the kernel size, s−o
stands for stride, and p indicates padding; i is the instance
when the 2D input image or output token map is fed in,
while i+1 is the moment for which the new output token
map is generated. By leveraging convolutional token embed-
ding, the token feature dimensions and number of tokens
at each stage can be adjusted by modifying the convolu-
tional operation parameters. Here, while the token feature
dimensions increase at each stage, the length of the token
sequence progressively decreases; this enables the tokens to
represent increasingly complex visual patterns over larger
spatial extents, akin to the layers of a CNN.

The convolutional projection for attention replaces the
linear projections used in ViT with the depthwise con-
volution operation commonly employed in CNNs, thereby
harnessing the structural characteristics of a CNN. The goal
of the convolutional projection layer is to achieve addi-
tional modeling of the local spatial context and permit
undersampling of the key and value matrices for efficiency.
The original positionwise linear projections for multihead
self-attention (MHSA) are replaced with depthwise convo-
lutions to form the convolutional projections. Figure. 1(a)
depicts the positionwise linear projections used in ViT, while
Figure. 1(b) represents the proposed s × s convolutional
projections, which when articulated in mathematical terms is
given by (2):

xquery,key,valuei = F(CP (Reshape (xi) , s)) (2)

Here, xquery,key,valuei represents the token inputs for the
corresponding query, key, and value matrices. The tokens are
first restructured into a 2D token map; then, a convolutional
projection is implemented using a convolution with a kernel
size of s × s. The Reshape function transforms the tokens
into a 2D map, as seen in Figure. 1(b). The CP function
denotes the depthwise separable convolution implemented
in the order of depthwise Conv2d → BatchNorm2d →

pointwise Conv2d. The function F signifies flattening the
tokens to 1D for subsequent processing. Figure. 1(c) demon-
strates the use of convolution with a stride larger than 1 to
reduce the computational cost of the MHSA operation by
decreasing the numbers of tokens for key and value by a
factor of four. This results in a slight performance degrada-
tion but achieves a fourfold reduction in the computational
cost. Since the adjacent pixels/patches in an image tend to
have redundant shapes/semantics, the performance decline is
minimal. Furthermore, local context modeling of the convo-
lutional projections compensates for the information losses
due to resolution reduction, resulting in only a marginal
performance drop.

B. PROPOSED MODEL: CECvT
The contrast enhancement module is used to address the
problem where all the image pixels in a camera are not
properly exposed due to dynamic range limitations [31].
While increasing exposure can reveal some underexposed
areas, it also risks overexposing other areas that were pre-
viously well-lit. The module not only resolves this problem
but also strengthens edge information, ensuring that the target
edges are distinctly visible. Initially, the contrast enhance-
ment module employs the illumination estimation technique
for designing the weight matrix for image fusion. Subse-
quently, the camera response model is used to composite
multiple exposure images. Then, the optimal exposure ratio
is determined to ensure that the underexposed regions in the
input image are well-exposed in the composite image. Lastly,
based on the weight matrix, the input and composite images
are fused to produce the final result.
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Weight matrix estimation is performed for the exposure
fusion framework, where the estimation algorithm enhances
the low contrast of underexposed areas while preserving the
contrast of well-exposed regions. It assigns higher weights
to the well-exposed pixels and lower weights to under-
exposed ones. The weight matrix is positively correlated
with image illumination; brighter areas that are more likely
to be well-exposed are assigned higher weights to main-
tain their contrast. The camera response model used in
the framework incorporates beta-gamma correction. The
exposure ratio determination for the framework seeks the
optimal exposure ratio to ensure that the composite image is
well-exposed in areas where the original image is underex-
posed. First, an imagewith overall underexposure is obtained,
excluding the well-exposed pixels. The underexposed image
is then rectified using the exposure ratio determination
algorithm.

FIGURE 2. Contrast enhancement module process

Figure. 2 illustrates the previously described contrast
enhancement module. From the input image, both I1 and
J1 images are generated, where I1 is identical to the input
image. However, the J1 image identifies the underexposed
areas of the input image and enhances the low contrast of
these regions. W represents the weight matrix, where the
well-exposed pixels with high weights can be observed. The
1-W image is the inverse of W, where the underexposed
regions have higher weights. The I2 image is produced
by pixelwise multiplication of values of the I1 and W
images. Similarly, the J2 image is derived by pixelwise mul-
tiplication of the values of the J1 and 1-W images. The
final contrast enhanced image is obtained by the addition
of I2 and J2.

Figure. 3 visually presents the contrast enhanced image
resulting from enhancing the input image. The edges of areas
with abnormally high temperatures are defined clearly. Even
in small regions with high temperature anomalies, it is evident
that the contrast is improved, making them visually distin-
guishable.

In the architecture of the CECvT network illustrated
in Figure. 4, the approach deviates from the previously
developed CvT network structure. The input image or 2D
token map is resized to three different dimensions using
the Resize function and subsequently enhanced using the
contrast enhancement module. Then, the contrast-enhanced
output images with three different sizes employ a method

FIGURE 3. Contrast enhancement examples.

inspired by CS-Flow, which leverages multiscale informa-
tion [13]. This method known as cross-scale convolution in
the broader context is referred to as the couplingmodule in the
proposed structure. As depicted in Figure. 5, the cross-scale
convolution inside the coupling module consists of two con-
volutional stages. The first stage is a typical 2D convolution,
while the second is the cross convolution. In the cross con-
volution stage, the differently sized feature maps are adjusted
to the same size before summation and is achieved by alter-
ing the stride or through upsampling. Following the two
convolutional stages, the outputs are summed elementwise,
and the three distinct-sized feature maps are concatenated.
One key distinction here from the conventional CS-Flow
method is that previously, only the second input feature map
leveraged information from the first and third inputs. In con-
trast, the proposed coupling module design allows all three
maps to be added elementwise, enabling richer utilization of
information.

In Stage 1, features are extracted at three distinct scales by
resizing the input image of dimensions 256 × 256 to 256 ×

256, 128 × 128, and 64 × 64. In Stage 2, by resizing these
images to 56 × 56, 28 × 28, and 14 × 14, the architecture
extracts features at three different scales. Similarly, in Stage 3,
features are yet again extracted from three distinct scales with
image dimensions of 28× 28, 14× 14, and 7× 7. This design
ensures that the network architecture can capture a diverse
range of feature information.

C. IMPLEMENTATION DETAIL
The present study was conducted on a workstation equipped
with an i9 processor (i9-13900k), a DDR5 PC5-44800 64GB
RAM, a 64MB cache, CUDA version 11.0 or higher, CuDNN
8.8.1, a 24GB GPU (NVIDIA 3090), and a 64-bit operat-
ing system. The experiments were conducted using Python
3.7 and Pytorch 1.13.0.

D. EVALUATION MEASURES
In this study, six parameters were utilized as the evaluation
measures. ‘‘NG Detection’’ denotes the quantity accurately
identified as defects, while ‘‘OK Detection’’ indicates the
quantity accurately determined as nondefective. ‘‘Overkill’’
refers to instances where a nondefective status is mistakenly
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FIGURE 4. CECvT network structure.

FIGURE 5. Coupling module.

FIGURE 6. Heatmap correct and heatmap miss example.

classified as defective, whereas ‘‘Escape’’ denotes instances
where a defective status is incorrectly classified as nonde-
fective. ‘‘Heatmap Miss’’ is a scenario where a defect is
identified as such, but upon inspection of the heatmap, it is not
precisely activated at the defect location. A heatmap provides
information about the parts of the input image that signif-
icantly influence the final determination. If the influential
areas on the heatmap do not overlap with the defect locations,
it cannot be said that a correct judgment was made. As shown
in Figure. 6, one can distinguish between ‘‘Heatmap Cor-
rect,’’ which accurately pinpoints the defect location, and
‘‘Heatmap Miss,’’ which misidentifies the defect location.
‘‘Accuracy’’ is defined as per (3) and serves as an evaluation
measure for the overall performance of the deep-learning
network. Among the six parameters, the most critical metric
is ‘‘Escape.’’ Incorrectly classifying a defect as nondefec-
tive can have catastrophic consequences for the equipment,

making it the most essential evaluation measure.

Accuracy =
OK Detection+NG Detection+Heatmap Miss

Total Input Image
(3)

V. RESULTS AND DISCUSSION
To compare the superior performance of the proposed
method, CECvT, the infrared camera image dataset from
AI Hub was used. For performance evaluations, a total of
69,521 normal and 23,854 defective infrared images were
used as the test dataset. Performance comparison experi-
ments were conducted in two stages. The first experiment
compared the detection capability based on the infrared
images for anomaly detection. The second experiment
was aimed at early anomaly diagnosis by dividing the
anomalies from infrared images into three stages, namely
initial, middle, and last, and comparing the detection capa-
bility for each stage. All experiments involved perfor-
mance comparisons between CNN-based and Transformer-
based models as well as hybrid networks combining CNN
and Transformer features, against the proposed network
CECvT.

A. DETECTION CAPABILITY COMPARISON WITH
STATE-OF-THE-ART STUDIES
The first experiment focused on performance comparisons
for the accuracies of normal and anomaly judgments as well
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TABLE 2. Detection capability comparison.

FIGURE 7. Heatmaps image of detection capability comparison with state-of-the-art studie.

as the occurrence of Heatmap Miss on an evaluation dataset
consisting of nine classes. To compare the performances,

three CNN-based models (ResNet [32], SEResNet [33],
and EfficientNet [34]), two Transformer-based networks
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FIGURE 8. Heatmap images of detection capability when an initial abnormal occurs comparison with state-of-the-art studie.

(ViT [35] and SwinT [36]), and three hybrid networks
combining the features of CNN and Transformer models
(CvT [12], CMT [37], and CoAtNet [38]) were used. In total,

performance comparisons were conducted against eight net-
works. The results shown in Table 2 indicate that the proposed
network CECvT exhibits the best performance.
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From the numerical results in Table 2, among the CNN-
based models, ResNet had 1 Overkill, 4 Escapes, 8651
Heatmap Miss, and 90.73% Accuracy. For SEResNet,
the results showed 3 Overkill, 4 Escape, 7555 Heatmap
Miss, and 91.90% Accuracy; EfficientNet showed numerical
results of 62 Overkill, 76 Escape, 14349 Heatmap Miss,
and 84.49% Accuracy. Among the Transformer-based net-
works, the numerical results were as follows: 2 Overkill,
36 Escape, 16543 Heatmap Miss, and Accuracy 82.24%
for ViT; 12 Overkill, 28 Escape, 15960 Heatmap Miss, and
82.86% Accuracy for SwinT. For the combined CNN and
Transformer models, the results were as follows: 2 Overkill,
2 Escape, 6590 Heatmap Miss, and 92.94% Accuracy for
CvT; 2 Overkill, 6 Escape, 8166 Heatmap Miss, and 91.25%
Accuracy for CMT; 7 Overkill, 3 Escape, 7250 Heatmap
Miss, and 92.22% Accuracy for CoAtNet. The proposed net-
work CECvT shows numerical results of 3Overkill, 2 Escape,
3572 Heatmap Miss, and 96.17% Accuracy.

Based on the sum of Overkill and Escape, CvT displayed
the best results, with a total of 4; however, the proposed
network CECvT and ResNet both showed comparable per-
formances with a combined total of 5 each. The CNN-based
EfficientNet displayed the poorest performance, yielding
the highest error total of 138. When comparing the CNN-
based, Transformer-based, and combined CNN–Transformer
models, it is evident that the ResNet-based and com-
bined CNN–Transformer methods generally offer superior
performances.

However, when considering the counts of HeatmapMisses,
the proposed network CECvT showed outstanding perfor-
mance with only 3,572 misses. In comparison, CvT, which
had a favorable error performance, had 6,590 misses, while
ResNet yielded 8,651. Based on the Accuracy metric, which
incorporates the Heatmap Miss count, CECvT had 96.17%,
outperforming the second-best CvT with 92.94% by a margin
of 3.23%. Networks based on the Transformer architecture
displayed themost inferior performances, but it is evident that
the combined CNN–Transformer networks were generally
excellent.

Upon examining the heatmaps in Figure. 7, the visual find-
ings align with the quantitative results in Table 2. Heatmaps
from EfficientNet and the Transformer-based networks gen-
erally entail inaccuracies in pinpointing the exact locations.
In stark contrast, CECvT, which displays the best perfor-
mance, accurately detects the precise anomaly locations.
Furthermore, CECvT accurately detects even minor anoma-
lies, suggesting that it has been effectively trained on the
most appropriate features for thermal-image-based anomaly
detection.

B. DETECTION CAPABILITY FOR INITIAL ABNORMALITY
OCCURRENCE AND COMPARISONS WITH
STATE-OF-THE-ART STUDIES
The second experiment assessed the thermal images used
for initial anomaly detection on the evaluation data by

segmenting the anomaly manifestations into three distinct
phases: initial, middle, and last. This evaluation aimed to
test the detection capability performance at each phase. The
proposed network CECvTwas benchmarked against the same
set of eight networks used previously.

Figure. 8 depicts the network-specific heatmaps for each
of the three phases. For ResNet, the anomalies were cor-
rectly identified during the initial phase, but the subsequent
middle and last phases were uniformly classified as normal.
SEResNet consistently detected anomalies across all phases,
but accurate heatmap localization was only evident in the
initial phase; both middle and last phases exhibited heatmap
misses. EfficientNet classified the images as normal across all
phases, with every heatmap outcome demonstrating misses.
ViT identified all phases as defects, and the heatmaps pre-
dominantly focused on inaccurate locations, which was a
trend also observed for SwinT. The CvT heatmap, despite
consistently diagnosing defects across all phases, was pre-
dominantly concentrated around pipelines. CMT identified
defects in all phases, with its heatmap majorly emphasiz-
ing the actual anomaly locations; however, the heatmap’s
significant focus around nearby pipelines hints at reduced
accuracy. CoAtNet classified the initial phase as normal
and detected defects in the middle and last phases; the
heatmaps for middle and last exhibited broader areas of
concentration around the pipelines than for CMT, indicating
lower accuracy. Finally, the proposed network CECvT con-
sistently detected anomalies across all phases and accurately
emphasized the exact anomaly locations via its heatmap;
it is therefore evident that CECvT is the most suitable net-
work for accurately diagnosing and pinpointing anomalies in
each phase.

VI. CONCLUSION
This study presents the development of the CECvT net-
work, which harnesses the structural advantages of both
CNN and Transformer architectures. To address the challenge
of edge information degradation commonly encountered in
thermal images, a contrast enhancement module was intro-
duced. Furthermore, a coupling module designed to leverage
multiscale information was integrated to utilize the finer
feature details. The CECvT network, which is anchored on
thermal imagery, presents significant potential for the early
diagnosis of anomalies in industrial equipment. Through
performance comparisons, it was ascertained that the
CECvT network outperformed the traditional CNN-based,
Transformer-based, and hybrid networks CNN–Transformer
architectures. Additionally, in performance comparisons
across different anomaly emergence phases, CECvT con-
sistently and accurately diagnosed anomalies at all stages,
with its heatmaps effectively pinpointing the precise ano-
maly locations. The research team plans to further val-
idate the efficacy of the proposed network by applying
it to real-world industrial setups in subsequent studies.
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Beyond thermal imaging, the authors also intend to test
CECvT on standard camera imagery to examine its univer-
sality and ability to detect early-stage failures across a broad
spectrum of data.
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