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ABSTRACT With the advent of autonomous vehicles (AVs) and advanced driving assistance systems
(ADAS), there has been a growing interest in studying driving behaviors within the field of transportation
science. Given that the transition period of mixed traffic is expected to continue for more than 30 years,
it is crucial to evolve AV technology to resemble human driving, especially in the freeway weaving sections.
Lane-changing (LC) maneuvers in these sections could cause problems for traffic flow, such as traffic break-
down, oscillation, or bottleneck activation. This study proposes an interpretable LC implementation model
for naturalistic driving behaviors of AVs based on vehicle-to-vehicle (V2V) communication. To achieve this
objective, a systematic selection process is adopted to find optimal V2V features that resemble how human
drivers assess LC situations. Based on the minimum redundancy maximum relevance (mRMR) algorithm,
seven V2V features have been selected out of 25 candidates. Then, a support vector machine (SVM) is
employed to investigate how these features exhibit in each of LC and lane-keeping (LK) situations. The
proposed model was applied in a field case of a weaving section on freeway US 101. Performance measures
of simple accuracy, precision, recall, and F1-score show high accuracy of 0.9814, 0.9150, 0.7955, and 0.8511,
respectively. Subsequently, a strategy for naturalistic LC behaviors of AVs was simulated. The proposed
model outperforms high prediction accuracy compared to other existing models. Particularly, errors in the
lateral movements have significantly improved. These results suggest that the proposed model effectively
simulates naturalistic LC behaviors based on V2V communication.

INDEX TERMS Autonomous vehicles, vehicle-to-vehicle communication, lane-changing behavior.

I. INTRODUCTION
As vehicle driving systems have advanced, interest in
autonomous vehicle (AV) technology based on wireless com-
munication has increased. Most previous studies on wireless
multi-access technology have been conducted to improve
traffic safety and the travel comfort of passengers. While
Internet-of-Vehicles (IoVs) technology has focused on the
operational efficiency of the central control system [1], [2],
[3], vehicle-to-vehicle (V2V) communication technology has
concentrated on the driving strategy of individual AVs [4],
[5], [6], [7], [8]. V2V devices, alongside existing advanced
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driver assistant systems (ADAS), identify different sensor
measurements for the same target to ensure reliable con-
nectivity [9]. They acquire and assess driving information
for the decision-making process. However, V2V technology
still has some limitations in sharing the driving intentions of
surrounding vehicles unless they have V2V devices attached
[10], [11]. This indicates that there might be a probability
that AVs lack traffic information about surrounding vehicles
during the transitional period of mixed traffic. Therefore,
the technology must be developed that AVs to appropriately
assess and respond within the insufficient information.

Moreover, AVs should be harmonized with surrounding
human-driven vehicles (HVs) during the transitional period,
where mixed traffic is expected to continue for more than
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30 years. Unnatural driving behaviors of AVs can impact the
movements of their surrounding HVs, consequently leading
to an increase in traffic congestion and accident rates. Recent
AV-related accident reports have also pointed out the potential
for human drivers to misjudge unfamiliar driving behav-
iors exhibited by AVs [12]. Therefore, AV driving strategies
should be developed to resemble HV driving behaviors for
better traffic flow in the near future [13].
To address this challenge, an understanding of lane-

changing (LC) behaviors must precede. LCs are usually
performed by drivers seeking improved driving conditions,
such as higher speeds, lower density, or to follow their
specific routes. It is a complicated behavior since both
longitudinal and lateral movements occur simultaneously.
A simple LC by a vehicle can impact the movements of its
surrounding vehicles on the driving and target lanes. If these
maneuvers are recognized as unnatural behavior by surround-
ing vehicles and consequently disturb their driving patterns,
traffic flow problems may occur, such as traffic breakdowns,
oscillations, or queue propagation upstream [14], [15].

Accordingly, numerous studies have employed analytical
approaches to investigate the backgrounds of howHVs imple-
ment LC maneuvers. For example, Park et al. [16] used a
logistic regressionmodel and found that LCs occur frequently
during faster travel or when securing larger spacing. Sim-
ilarly, Toledo et al. [17] suggested that the target lane is
chosen based on higher average speed and lower density
using a logistic regression model. Meanwhile, Lee et al. [18]
developed an exponential probability model and found that
LCs are more likely to occur when there are larger values
of relative velocity and lead gap. Ahmed [19] developed a
forced merging model using the maximum likelihood estima-
tion method and presented that the merging process involves
drivers’ decisions regardingwhether they intend tomerge into
an adjacent gap. Additionally, Wan et al. [20] investigated
the longitudinal and lateral movements of vehicles during
merging to gain a better understanding of the interactions
between vehicles during LC processes. They developed a
series of acceleration-deceleration models for the merging
vehicle and validated them with US 101 observation data
using a genetic algorithm. Kita [21] analyzed the interaction
between merging and pass-through vehicles and modeled
the cooperative behavior of pass-through vehicles. Likewise,
studies with analytical approach have been conducted includ-
ing cumulative prospect theory-based model [22] and utility
theory-based models [23], [24], [25]. However, these analyti-
cal approaches have limitations in distinguishing between LC
and lane-keeping (LK) situations due to driver heterogeneity,
resulting in low accuracy in the classification results.

Subsequently, data-driven methods have gained attention
as alternatives. Machine-learning or deep-learning algo-
rithms, such as Convolutional Neural Networks (CNN)
and Long Short-term Memory (LSTM), have been recently
adopted to develop LC behavior models (for example,
Lee et al. [26]; Xie et al. [27], respectively). Even though

there have been numerous studies to investigate LCs, most
of them have not demonstrated interpretability due to their
black box nature [28].
Meanwhile, support vector machine (SVM) can enhance

model performance while maintaining the interpretability of
driving behaviors [13]. Mandalia and Salvucci [29] utilized
SVM for LC detection and tested five input sets, each contain-
ing four to seven features (e.g., heading, lane position directly
ahead of the vehicle, acceleration, and steering angle).
Wang et al. [30] classified driving styles into aggressive
and normal categories using semi-supervised SVM, reveal-
ing the nonlinear relationship between vehicle speed and
throttle opening for each driving style. Ramyar et al. [31]
used one-class SVM to distinguish normal and abnormal
LC instances. They found that the most dangerous behav-
iors occur at the beginning and final stages of the LC
process. Kumar et al. [32] applied SVM and Bayesian fil-
tering to detect LC intention. Liu et al. [33] presented an
LC decision-making model that outperformed rule-based LC
models, addressing themulti-parameter and nonlinear aspects
of the LC process.

However, some major challenges remain unsolved,
although the abovementioned studies have significantly
achieved improvements in LC classification performance.
First, there exists a gap between the analytical and data-
driven methods. They have strength at solid academic
formulations and causal relationships within informal data,
respectively. Finding connections between these twomethod-
ologies, which are somewhat in opposition, can contribute
for developing LC model. Second, there is no standardized
approach for finding optimal V2V features to describe the
LC process, leading to the selection of different variables
in previous studies. And most of the selected V2V features
are highly detailed and rare data, which makes further study
challenging. These features are not representative of a human
perspective to fully understand HV driving behaviors. Third,
the previous models mainly focused on the movements of
subject vehicle itself, not considering its surrounding HVs
(e.g., lane position 30m directly ahead of the vehicle and
throttle openings). Driving conditions should be assessed
more delicate to develop the V2V communication-based AV
technology.

Indeed, AVs should behave similar to HVs during the
transitional period for traffic safety and operations.Within the
contraints that AVs have insufficient information for driving
intentions of surrounding vehicles, the V2V devices should
be fully utilized to relibly identify movements of surround-
ings and properly assess driving condition based on optimal
features. Moreover, LC models need to be improved by
developing analytical formulations from data-driven method-
ologies for interpretability.

Therefore, this study aims to develop an interpretable LC
implementation model for the naturalistic driving behaviors
of AVs based on V2V communication. The framework of
this study is shown in Fig. 1. First, a systematic process for
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FIGURE 1. Framework of the study.

selecting optimal features for V2V communication is sug-
gested. Based on the optimal V2V features, an LC clas-
sification model based on SVM is proposed to accurately
identify the conditions of V2V features for each of LC and
LK situations. Finally, the LC implementation model for AVs
is proposed and then evaluated through simulations. The per-
formance has shown higher accuracy in driving trajectories
compared to existing models, indicating that our proposed
model has achieved in designing LC behaviors of AVs to
be harmonized with traffic flows. The main contributions are
summarized as follows:

• This study contributes to the development of a natural-
istic LC behavior model for AVs that harmonizes with
surrounding HVs. The HVs should not misjudge AVs’
unfamiliar driving behaviors.

• A standardized systematic process is established to find
the optimal V2V features for describing the LC process.
Seven features out of 25 have been selected that are most
relevant to LCs with minumum redundancy.

• The proposed LC model provides interpretability using
the SVM. The driving strategy is designed for AVs to
target theV2V values in each LC and LKmaneuver. This
strategy informs that how far the implementations have
gone through out of the entire LC process.

• The proposed model outperforms other existing models
with high prediction accuracy. Particularly, errors in the
lateral movements have significantly improved.

The remaining paper is organized as follows. Section II
presents the systematic process of feature selection and
introduces the LC implementation model using SVM.
In Section III, a description of the field trajectory data
NGSIM obtained from Federal Highway Administration
(FHWA) is provided for the model’s application. Section IV
presents the evaluation of the model and provides detailed
estimation results. Section V focuses on simulating strate-
gies for naturalistic LC maneuvers in human-like AVs.
Finally, Section VI concludes the paper with remarks and
discussion.

FIGURE 2. Subject vehicle and surrounding vehicles in the LC situation.

II. DEVELOPING THE LC IMPLEMENTATION MODEL
The LC decision-making process is conducted by the driver’s
judgement regarding the driving conditions of the subject
vehicle and its surrounding vehicles. As shown in the problem
statement of Fig. 2, a total of four surrounding vehicles are
considered. Two front and rear vehicles in each of the driving
and target lanes are included in this study.

A. PROBLEM STATEMENT
The LC implementation process comprises three steps: antic-
ipation, execution, and relaxation. In the LC anticipation
step, the subject vehicle provides preliminary motion signals
before executing the LC maneuver, allowing its surrounding
vehicles to recognize its intention. In the LC execution step,
the subject vehicle visibly moves laterally from the driving
lane to the target lane. In the LC relaxation step, it adjusts its
driving behavior to the LK situation after completing the LC.
Due to driver heterogeneity, it is not easy to clearly separate
these three LC implementation steps with distinct boundaries.
In this study, we assume that the LC implementation con-
sists of the LC execution step only, which has a duration
of 0.5 seconds before and after the moment the driving lane
was changed. Therefore, the entire LC process is defined as
consecutive steps of LK – LC – LK in this study. To secure
the entire driving, the duration time is set as 15 seconds.

Meanwhile, there are two different types of LC: discre-
tionary lane-changing (DLC) and mandatory lane-changing
(MLC). While DLCs commonly occur on the mainline as
vehicles pass through, MLCs are related to the behaviors of
merging or diverging vehicles [19]. This study focuses on
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DLCs due to the fact that MLC vehicles often forcefully
change lanes and cause unreasonable traffic flow situations
accordingly. Among DLCs, only the vehicles that changed
to the left is selected. DLCs to the right are filtered since
those executed on the application site might be part of MLC
procedure to diverge downstream in following their routes.

B. V2V COMMUNICATION FEATURES FOR LC MANEUVER
To investigate level of significance for V2V communica-
tion features in the LC situations, a total of 25 features are
considered in this study. These features are a combination
of some from previous studies and others that have been
newly processed, providing the model with both reliability
and redundancy. The set of features is expressed in (1):

Xn (t) =

{
X0
n (t) ,Xd

n (t) ,Xh
n (t) ,X s

n (t) ,X v̄
n (t) ,X d̄

n (t)
}
(1)

where,

Xn (t) : a set of V2V communication features of subject
vehicle n at time t ,

X0
n (t) : a set of driving information of subject vehicle n

at time t ,
Xd
n (t) : a set of spacing of surrounding vehicles at time

t ,
Xh
n (t) : a set of time headway of surrounding vehicles at

time t ,
X s
n (t) : a set of sensitivity to surrounding vehicles at

time t , and
X v̄
n (t) : a set of subsequent relative speed of surrounding

vehicles at time t .

An input set, denoted asXn (t) at time t , consists of six sub-
sets: one for the subject vehicle n, and five for the surrounding
vehicles. The subset related to the subject vehicle includes
driving information on longitudinal and lateral movements.
The remaining five subsets related to the surrounding vehicles
focus on longitudinal movement. The candidate V2V com-
munication features for the target vehicles are summarized
in Table 1.

TABLE 1. Candidate V2V communication features.

1) DRIVING INFORMATION OF SUBJECT VEHICLE
A set of variables for the subject vehicle ID n at time t ,
denoted as X0

n (t), consists of five V2V communication

features, as shown in (2). The longitudinal information
includes acceleration, an (t), and speed, vn (t), while the lat-
eral information includes acceleration, ān (t), speed, v̄n (t),
and distance from the center of the lane, d̄n (t). The units for
acceleration, speed, and distance are set as [m/s2], [m/s], [-],
respectively. In this study, the distance is calculated as a ratio
ranging from 0 to 1, taking into account the different lane
widths. If the vehicle is on the center, the value is set to zero,
and if the vehicle is on the lane marking, it is set to one.

X0
n (t) = {an (t) , vn (t) , ān (t) , v̄n (t) , d̄n (t)} (2)

where,

an (t) : longitudinal acceleration of vehicle ID n at
time t ,

vn (t): longitudinal speed of vehicle ID n at time t ,
ān (t) : lateral acceleration of vehicle ID n at time t ,
v̄n (t) : lateral speed of vehicle ID n at time t , and
d̄n (t) : lateral distance from the center of lane of vehi-

cle ID n at time t .

2) TIME HEADWAY
A set of variables for the time headway between the respective
surrounding vehicles and the subject vehicle ID n at time t ,
denoted as Xh

n (t), is shown in (3). The time headway at
time t, hn,veh (t), is calculated by dividing the spacing by
actual speed of the following vehicle at time t , as shown
in (4). The subject vehicle becomes the following vehicle
when considering the lead or front vehicles (veh = {1, 2}).
On the other hand, the surrounding vehicle becomes the
following vehicle when considering the lag or rear vehicles
(veh = {3, 4}). The unit of the time headway is set as [s].

Xh
n (t) = {hn,1 (t) , hn,2 (t) , hn,3 (t) , hn,4(t)} (3)

where,

hn,veh (t) =

{
dn,veh (t) ÷ vn (t) , veh = {1, 2}
dn,veh (t) ÷ vveh (t) , veh = {3, 4}

, (4)

vn (t) : speed of vehicle ID n at time t , and
vveh (t) : speed of surrounding vehicle veh at time t .

3) SENSITIVITY
The sensitivity is directly related to drivers’ reaction time.
It has been found to be proportional to the relative speed
but inversely proportional to the spacing [34]. It has been
observed that when the relative speed is small and the spacing
is sufficient, drivers seldom react to the surrounding vehicle
or change their speed. A set of variables for the sensitivity
between the respective surrounding vehicles and the subject
vehicle ID n at time t , denoted as X s

n (t), is shown in (5).
The sensitivity at time t, sn,veh (t), is obtained by dividing the
relative speed,1vn,veh (t), by the spacing, dn,veh (t), as shown
in (6). The unit is set as [1/s]. Here, the relative speed of the
surrounding vehicle can be calculated using (7).

X s
n (t) = {sn,1 (t) , sn,2 (t) , sn,3(t), sn,4(t)} (5)
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where,

sn,veh (t) = 1vn,veh (t) ÷ dn,veh (t) , veh = {1, 2, 3, 4},
(6)

1vn,veh (t) =
∣∣vn,veh (t) − vn (t)

∣∣ , veh = {1, 2, 3, 4} , and

(7)

dn,veh (t) : spacing between surrounding vehicle veh and
subject vehicle n at time t .

4) SPACING
A set of variables for the spacing between the respective
surrounding vehicles and the subject vehicle ID n at time
t , denoted as Xd

n (t), is shown in (8). The spacing at time
t , dn,veh (t), is calculated as the difference between the
position values of the subject vehicle n and the surround-
ing vehicle veh(=1,2,3,4), as shown in (9). The unit is set
as [m].

Xd
n (t) = {dn,1 (t) , dn,2 (t) , dn,3 (t) , dn,4(t)} (8)

where,

dn,veh (t) =
∣∣pn,veh (t) − pn (t)

∣∣ , and (9)

pn,veh (t) : position of surrounding vehicle veh of vehicle ID
n at time t .

5) SUBSEQUENT RELATIVE SPEED
The subsequent relative speed is defined as the estimated
relative speed that will occur in the following time step. A set
of variables obtained for the respective surrounding vehicles
and the subject vehicle ID n at time t , denoted as X v̄

n (t),
is shown in (10). It is calculated as the difference between
the subsequent speed values of the subject vehicle n and the
surrounding vehicle veh (= 1, 2, 3, 4), as shown in (11). The
unit is set as [m/s]. It is assumed that all driving information
remains constant for a unit time 1t . The subsequent speed
of the surrounding and the subject vehicles can be obtained
using (12) and (13), respectively.

X v̄
n (t) = {v̄n,1 (t) , v̄n,2 (t) , v̄n,3 (t) , v̄n,4(t)} (10)

where,

v̄n,veh (t) =
∣∣vn,veh (t + 1t) − vn (t + 1t)

∣∣ , (11)

vn,veh (t + 1t) = vn,veh (t) + an,veh (t) × 1t, (12)

vn (t + 1t) = vn (t) + an (t) × 1t, and (13)

an,veh (t) : acceleration of surrounding vehicle veh of
vehicle ID n at time t .

6) SUBSEQUENT SPACING
The subsequent spacing is defined as the estimated relative
speed that will occur in the following time step. A set of
variables obtained for the respective surrounding vehicles
and the subject vehicle ID n at time t , denoted as X d̄

n (t),
is shown in (14). It is calculated as the difference between
the subsequent position values of the subject vehicle n and

the surrounding vehicle veh (= 1, 2, 3, 4), as shown in (15).
The unit is defined as [m]. The subsequent positions
of the surrounding and the subject vehicles can be obtained
using (16) and (17), respectively.

X d̄
n (t) = {d̄n,1 (t) , d̄n,2 (t) , . . . , d̄n,6(t)} (14)

where,

d̄n,veh (t) =
∣∣pn,veh (t + 21t) − pn (t + 21t)

∣∣ ,
(15)

pn,veh (t + 21t) = pn,veh (t) + 2vn,veh (t) 1t

+ an,veh (t) 1t2, and (16)

pn (t + 21t) = pn (t) + vn (t) × 21t + an (t) × 1t2.

(17)

C. FEATURE SELECTION USING THE MINIMUM
REDUNDANCY MAXIMUM RELEVANCE (mRMR)
ALGORITHM
Selecting input features with a systematic process is a crit-
ical issue in developing the LC implementation model. The
classification performance could be degraded if the selected
features are numerous and highly correlated. Moreover, irrel-
evant input features can increase computational costs and lead
to overfitting.

In this study, the minimum redundancy maximum rele-
vance (mRMR) algorithm is applied to address these con-
cerns. The mRMR algorithm aims to reduce training times,
enhance generalization by reducing overfitting, and simplify
the model for easier interpretation. It identifies a subset of
features that are relevant to the target but not redundant
with each other. In other words, the algorithm penalizes a
feature’s relevancy based on its redundancy in the presence
of other selected features. By assigning feature weights, the
algorithm identifies the significance of features related to
LC maneuvers. The algorithm helps in selecting relevant
and non-redundant features for the SVMmodel, contributing
to improved classification performance and interpretability.
The specific process of the mRMR algorithm is summarized
in Table 2.
The first step is to set a set of m features F =

{x1, x2, . . . , xm}, and initialize an empty subset S that will
contain the selected features. Let the number of selected
features be k . Define yj (j = 1, 2) as the class labels for
LC and LK, respectively. The second step is to calculate
the relevance R(xi, yj) between each feature xi (i = 1, . . . ,m)

and the class label yj using a correlation coefficient or
mutual information. In this study, mutual information is used
to measure relevance. The third step is to find the first
relevant feature that records the highest measure. Include
this feature in the subset S and remove it from set F .
The fourth step is to repeat the process for k times. The
fifth step is to find the weight vector, which represents the
importance of each feature and indicates its correlation with
LC maneuvers.
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TABLE 2. Pseudo algorithm of feature selection.

D. DISTINGUISHING LC AND LK MANEUVERS USING SVM
SVM is an efficient method for estimating boundaries
between different classes. In this study, the LC implemen-
tation model is proposed as a binary classification problem,
distinguishing between LC and LK (hereafter, labeled as
1 and -1, respectively). Themodel separates the two classes in
a multi-dimensional feature space, with the selected features
being the ones that determine the LC. Using the selected
features, x ′

i (i = 1, 2, . . . , n), the point x′
= (x ′

1, x
′

2, . . . ,x
′
n)

represents either the LC or LK class. The basic elements
for SVM, which determines the boundary, are expressed
as follows.

ωT x+ b = w1x1 + w2x2 + . . . + wnxn + b = 0, (18)

D(x′) =
|ωT x′

+ b|

| |w| |
2

=
|w1x ′

1 + w2x ′

2 + . . . + wnx ′
n + b|√

w2
1 + w2

2 + . . . + w2
n

, and (19)

ρ =
2

| |ω| |
2 . (20)

Consider a boundary, or hyperplane, represented as a lin-
ear classifier in (18). ω(= (w1,w2, . . . ,wn)) is the normal
vector (gradient) of the hyperplane, and b represents a bias.
The hyperplane separates the n-dimensional space into two
regions for LC and LK situations. Equation (19) calculates the
shortest distanceD from point x′ to the hyperplane, known as
the ‘‘classification margin.’’ The points closest to the hyper-
plane, called ‘‘support vectors,’’ are critical in estimating
the LC classification boundary. Equation (20) introduces ρ,
which represents the margin of the hyperplane and scales the
distance between the support vectors. Maximizing the margin
is necessary to achieve clear classification between LC and
LK situations. Thus, the objective function and constraints
for SVM are expressed as follows.

Minimize F = (| |ω| |
2
+ C

∑N

i
ξi) (21)

Subject to,

yi
(
ωT xi + b

)
≥ 1 − ξi, for i = 1, . . . ,N, and

(22)

ξi = max
{
0, 1 − yi

(
ωT xi + b

)}
≥ 0,

for i = 1, 2, . . . ,N. (23)

The objective function that optimizes the boundary is for-
mulated in (21), and it consists of two components. The
first component minimizes the inverse number of the mar-
gin, thereby maximizing the margin. The second component
minimizes the penalty for misclassified samples. The penalty
is calculated multiplying the cost, C, by the margin of mis-
classified LC maneuver sample i, ξi. Typically, the cost is set
to one. Equation (22) presents a constraint on N samples. The
term yi= {−1, 1} indicates the LC decision of sample i. It is
set as 1 when the point of sample i is above the hyperplane
and classified as LC; otherwise, it is set as -1. Similarly,
(ωTxi + b) is larger than 1 if the point of sample i is above
the boundary, less than -1 otherwise. The multiplication of
these two terms always yields a value greater than 1 for
proper classification. However, if a sample is misclassified,
margin ξi is subtracted on the right-hand side to satisfy the
constraint. In (23), the margin ξi represents a loss function,
calculated as the maximum value between zero and the term
(1 − yi

(
ωTxi + b

)
). This term is below zero for properly

classified samples and positive for misclassified ones. Thus,
the margin is calculated only for misclassified samples, with
the margin for properly classified samples set to zero.

Solving the objective function generally requires signif-
icant computational power. Therefore, the dual problem is
applied to transform it into a simple form [35]. After alge-
braic calculation, the transformed objective function and
constraints are obtained as follows.

max
α

∑N

i
αi −

1
2

∑N

i

∑N

j
αiαjyiyjK (xixj) (24)

subject to,∑N

j
yjαj = 0, (25)
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0 ≤ αj ≤ C, (26)

K
(
xixj

)
= exp

(
−

|
∣∣xi − xj

∣∣ |22
2σ 2

)
, and (27)

ω =

∑N

i
αiyixi. (28)

The transformed objective function in (24) aims to find a
matrix of Lagrangian multipliers α = (α1, α2, . . . ,αN ) that
maximizes the function. Equations (25) and (26) represent
stationary and feasibility conditions of the Karush-Kuhn-
Tucker method, respectively. In this study, the Gaussian
kernel function K is applied, as shown in (27). Consequently,
the gradient ω of the optimal hyperplane is obtained in (28)
by multiplying the estimated α, with the LC decision class
and driving conditions.

III. DATA DESCRIPTION
The proposed LC implementation model was evaluated
using field data from Next Generation Simulation (NGSIM),
an open dataset provided by the Federal Highway Admin-
istration (FHWA). NGSIM data consist of detailed vehicle
trajectory data recorded by digital cameras every tenth of a
second at the freeway weaving section of US 101 in Califor-
nia. The recording spans a 45-minute period during the peak
morning hour, from 07:50 AM to 08:35 AM, showing traffic
congestion with an average travel speed of around 30 km/h.
The surveillance site has a geometric length of 650 m, com-
prising an upstream section of 187 m, a weaving section
of 213 m, and a downstream section of 251 m. The freeway
consists of 5 main lanes and 1 auxiliary lane, as depicted
in Fig. 3.

FIGURE 3. Geometric configuration of US101 freeway weaving section.

IV. ESTIMATION RESULTS
In this section, we present the estimation results of the pro-
posed model in three steps: (i) the mRMR algorithm for
selecting optimal V2V communication features; (ii) the SVM
model to distinguish the characteristics between the LC and
LK situations; and (iii) performance of the proposed model.

A. ESTIMATED RESULTS OF FEATURE SELECTION
1) CORRELATION BETWEEN V2V FEATURES
Even though the mRMR algorithm is efficient for feature
selection, it has limitations when considering correlations

among the selected features. In this study, the authors adopt
the Pearson correlation method to estimate the level of cor-
relation between the 25 features, thereby complementing the
mRMR algorithm.

Fig. 4 shows the estimated correlation values, represented
by gradient colors. The correlations between subsequent rel-
ative speed features (#18 to #21) and sensitivity features
(#10 to #13) are all estimated to be over 0.5, indicating
a strong correlation between them. For features #3 and #4
(lateral acceleration and lateral speed, respectively), the cor-
relation value is estimated to be near -1, suggesting a high
negative correlation. Conversely, the correlations with other
features are close to zero or exhibit low correlation.

FIGURE 4. Pearson correlations between V2V communication features.

The results of the Pearson correlation analysis are then
incorporated into the feature selection process to minimize
overlapping effects. Generally, a correlation with an absolute
value over 0.5 is considered strongly correlated. Since the
mRMR algorithm ranks the importance of features, we select
the features with high ranks and low correlation in the end.

2) ESTIMATED WEIGHTS OF V2V COMMUNICATION
FEATURES USING MRMR ALGORITHM
The estimated weights of V2V communication features using
the mRMR algorithm are shown in Fig. 5 and Table 3.
Among the five features related to the subject vehicle, lat-
eral acceleration (#3) and lateral distance (#5) are estimated
to have weights of 0.1466 and 0.1153, respectively. This
indicates that they are the most significant features for dis-
tinguishing LC and LKmaneuvers. Regarding time headway,
the feature of the front vehicle is ranked twelfth and has the
most influence on LC implementation among the surrounding
vehicles, while the features of other vehicles rank below
twentieth. Due to the homogeneity of travel speed under
traffic congestion, time headway seems to have little impact
compared to other feature subsets. For sensitivity, the weights
of the front and lag vehicles are estimated to be ninth and
third, respectively. As the value of sensitivity increases with
shorter spacing and larger speed differences, these results
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FIGURE 5. V2V communication features with the estimated weights.

TABLE 3. V2V communication features with estimated weights.

suggest that the subject vehicle drives close to the front or
lag vehicles with a larger speed difference compared to the
lead or rear vehicles. For spacing, the subject vehicle consid-
ers the lag vehicle to be the most influential vehicle in the
LC decision-making process. In terms of subsequent relative

speed, the front vehicle is regarded as the most significant,
as DLC is implemented for higher travel speeds. As for
subsequent spacing, the rear vehicle is estimated to have the
most impact.

The feature selection process is conducted based on three
conditions: (i) features are selected in the order of ranks;
(ii) a feature excluded if it is strongly correlated with at least
one of the previously selected features; (iii) the process stops
when the cumulative sum of weights of the selected features
exceeds 50% of the total sum.

As a result, seven V2V communication features with
ranks 1, 2, 3, 4, 5, 10, and 15 are selected in this study.
Features with ranks ranging from 6 to 9 and 11 to 14 are
excluded as they exhibit strong correlations with the initially
selected features during the process.

The results of the feature selection can be interpreted with
respect to the target vehicles. First, for the subject vehicle,
three features are selected: longitudinal acceleration, lateral
acceleration, and lateral distance (#1, #3, and #5, respec-
tively), while speed-related features are not chosen. This
suggests that acceleration plays a better role in distinguishing
between LC and LK maneuvers compared to speed. The
apparent representation of lateral movement through lateral
distance from the center of the lane differentiates LC fromLK
situations. Second, for the front vehicle, subsequent relative
speed (#19) is selected. Vehicles change lanes to achieve bet-
ter driving conditions, such as higher speed or lower density.
This indicates that the subject vehicle accelerates to move
faster than the front vehicle after implementing the LC. Third,
for the lag vehicle, sensitivity (#12) and spacing (#16) are
selected. It appears that the subject vehicle is aware of the
driving conditions of the lag vehicle, which can significantly
influence the LC decision-making process. The low Pear-
son correlation value suggests that both the speed difference
and spacing of the lag vehicle undergo significant changes
between LC and LK situations. Lastly, for the rear vehicle,
subsequent spacing is selected. The driving conditions of the
rear vehicle change as the subject vehicle accelerates after
executing the LC, similar to the case of the front vehicle.
Interestingly, features related to the lead vehicle are not
selected. This indicates that the driving conditions of the lead
vehicle do not exhibit significant differences between LC
and LK situations. In other words, there are situations where
vehicles do not change lanes even though the conditions of
the lead vehicle are suitable for LC execution.

Fig. 6 shows the changes in the selected feature values
over time, accompanied by the trajectory of vehicle ID 1,147.
The blue lines represent feature values in the LK situation,
while the red lines indicate feature values in the LC situ-
ation. Note that the LC situation consists of anticipation,
execution, and relaxation steps. In Fig. 6(a), prior to the LC
implementation, the value of lateral distance from the center
of the lane remains below 0.4. As the vehicle approaches
a lane line and executes the LC maneuver around the time
frame 290, the value increases to 1.0. After the execution,
the value in the changed lane decreases below 1.0 as the
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FIGURE 6. Values of the selected features along the trajectory of
vehicle ID 1,147.

vehicle adjusts its position within the lane. Furthermore,
as shown in Fig. 6(b), the acceleration value of the subject
vehicle exhibits random fluctuations during the LK situation.

However, throughout the entire LC process, the vehicle
accelerates, and this acceleration continues even after the
maneuver. Fig. 6(c) demonstrates that the value of lag spacing
steadily increases before, during, and after the LC implemen-
tation. It is noteworthy that the lag vehicle is still tracked even
though it is positioned behind the subject vehicle after the
LC maneuver. The increase in value indicates that the subject
vehicle speeds up after executing the LC, as DLC is imple-
mented to create a better driving environment. Similarly,
Fig. 6(d) shows the patterns in the value of front subsequent
relative speed, which aligns with the values of lag spacing.
The front vehicle is still tracked even though it being in the
lead position after the LC maneuver. The subject vehicle
accelerates after the execution, causing the value of relative
speed decrease as time progresses.

B. ESTIMATED RESULTS OF SVM MODEL
The SVM model is developed based on the selected features.
The hyperplane of the model is estimated as a binary linear
classifier that distinguishes the characteristics between the
LC and LK situations. Since the SVM hyperplane sepa-
rates the two classes in a multi-dimensional feature space,
the distance of each LC and LK data from the hyper-
plane is calculated using (19). Note that all feature data is
normalized.

Fig. 7 displays the probability distributions of the distances
to the SVM hyperplane for LC and LK situations. In the case
of LC situations, the distance range is estimated to be from
−12 to 2. The average and standard deviation of the distance
distribution in LC situations are estimated to be −6 and 2,
respectively. Most of the LC data is classified properly as
LC, as they are located on the negative side of the boundary.
Shape of the distribution of LC data is wide and symmetrical,
indicating a predictable pattern in the LC maneuver.

FIGURE 7. Estimation result of LC prediction model using SVM.

On the other hand, the distances of LK situations are
estimated to range from −4 to 4, indicating that data on the
negative side of the boundary are incorrectly classified as LC
situations. Additionally, the average and standard deviation
of the distance distribution in LK situations are estimated to
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be 1 and 0.5, respectively. Shape of the distribution of LK data
is narrow and asymmetrical compared to that of LC data.

Furthermore, there is an ambiguous area where both
LC and LK data coexist within a range from −4 to 2.
This area represents driver heterogeneity, where the LC
decision-making process differs among drivers in the same
driving conditions. As the LC relaxation and anticipation
steps are not clearly defined and difficult to determine, this
area may indicate a transitional phase between LC and LK
situations. Moreover, there is an imbalance in the size of the
data, with the number of LC samples significantly smaller
than that of LK samples. Once a vehicle changes lanes during
the observation, the duration of the LC process is shorter than
that of LK situations.

C. PERFORMANCE EVALUATION OF THE MODEL
The performance of the model is measured for the positive
and negative classes. In this study, the positive class rep-
resents the rare event of an LC maneuver. True Negative
(TN) refers to the number of actual LK samples that are
correctly predicted as LK. True Positive (TP) is the number
of actual LC samples that are correctly predicted as LC. False
Positive (FP) is the number of LK samples that are incorrectly
predicted as LC. False Negative (FN) is the number of LC
samples that are incorrectly predicted as LK. The measures
can be calculated as follows:

Simple Accuracy =
TN + TP

TN + TP + FP + FN
, (29)

Precision =
TP

TP + FP
, (30)

Recall =
TP

FN + TP
, and (31)

F1-score = 2
Precision × Recall
Precision + Recall

. (32)

Simple accuracy, represented by (29), calculates the ratio
of the number of true samples out of the total. Precision,
represented by (30), is the ratio of the number of TP samples
out of the predicted positives. It indicates the confidence level
of positive sample detection. Recall, represented by (31),
is the ratio of the number of TP samples out of the actual pos-
itives. It reflects the detection power of positive samples. The
F1-score in (32) represents the harmonic mean of precision
and recall.

To evaluate the proposed model, the vehicle trajectory
dataset was divided into train, valid, and test sets. The
measures, summarized in Table 4, show high performance
in distinguishing between LC and LK moments. The train
dataset consists of 6,191 situations, including 563 LC
moments and 5,628 LK moments. The specific results for
TP, FN, FP, and TN are estimated as 467, 96, 35 and 5,593,
respectively. The measures for simple accuracy, precision,
recall, and F1-score are calculated as 0.9788, 0.9303, 0.8295,
and 0.8770, respectively. On the other hand, the test dataset
contains 2,641 situations, including 176 LC moments and
2,465 LK moments. The specific results for TP, FN, FP, and

TN are estimated as 140, 36, 13 and 2,452, respectively.
The measures for simple accuracy, precision, recall, and
F1-score are calculated as 0.9814, 0.9150, 0.7955, and
0.8511, respectively. High performance of all datasets verifies
and validates the proposed model. These results indicate that
the proposed model with the optimal V2V features can iden-
tify how the V2V features exhibit in different values between
the LC and LK maneuvers.

TABLE 4. LC estimation results.

The estimation results provide several implications regard-
ing LC maneuvers. First, the high performance of the model
indicates that most LC and LKmoments can be distinguished
using only seven V2V communication features. Since these
features are easily obtainable and interpretable, the model
is applicable for developing a naturalistic driving behav-
ior model. Second, the LC behavior is visible and intuitive
through the feature values, allowing surrounding vehicles to
recognize the intention of the subject vehicle and cooperative
accordingly. This is supported by the finding that the most
significant features are the lateral acceleration and lateral dis-
tance of the subject vehicle. Third, the relationship between
the selected features should be carefully examined in the LC
decision-making process. The presence of an ambiguous area
indicates driver heterogeneity, suggesting a transitional phase
between LC and LK maneuvers. Fourth, despite the high
model performance, it is important to note that the proposed
model needs to be developed with more details in terms of
safety. FN samples indicate misjudgments of LC maneuvers
as LK maneuvers, implying that lag vehicles may fail to
recognize the LC maneuvers of subject vehicles, potentially
leading to traffic accidents.

V. STRATEGY FOR NATURALISTIC LC BEHAVIOR OF
AUTONOMOUS VEHICLES
It would take more than 30 years to fully replace all vehicles
with AVs. Therefore, it is crucial to develop the naturalistic
driving behavior of AVs to resemble that of human drivers.
This will help prevent confusion among human drivers and
enable them to make proper driving judgments. Abnormal
driving behaviors exhibited by AVs, such as abrupt LCs
without properly assessing the surrounding traffic conditions
or failure to yield based on misinterpretation of the traffic
environment, can lead to increased rates of traffic acci-
dents and congestion when interacting with human drivers.
Therefore, this section proposes and evaluates a strategy
for naturalistic LC behavior of AVs using the proposed
model.

108006 VOLUME 11, 2023



E. Lee et al.: Modeling LC Behaviors for AVs Based on V2V Communication

A. DISTINGUISHED V2V COMMUNICATION FEATURES
To investigate the characteristics of naturalistic LC behavior,
the post-processing stage involves removing the inappropri-
ately classified LC and LK data. Fig. 8 and Table 5 show
statistics on the distance to the SVM hyperplane of the pro-
cessed data, displayed in boxplots according to each feature.
Note that these values are expressed using the normalized
z-score since the distance is calculated using the vector.
Interestingly, it is observed that, generally, during LK situ-
ations, the values of acceleration tend to be higher than those
observed during LC situations. Additionally, the absolute
values or range widths of the LK data tend to be smaller
compared to the LC data across all selected features.

FIGURE 8. Distinguished V2V communication features.

TABLE 5. Distinguished V2V communication features.

B. STRATEGY FOR NATURALISTIC LC MANEUVERS
Based on the estimated results, we propose a naturalistic AV
driving strategy for implementing LCmaneuvers. AVs follow
to target the estimated average values of V2V features in
each of the LK and LC situations. A total of 100 simulations
with variations were conducted in this study. Variations in the
values were randomly sampled within one standard deviation
range of the average from the normal distribution for each

feature at every time step. Then, the optimal longitudinal and
lateral accelerations at each time step were determined by
averaging the obtained values during the simulation.

1) SIMULATION RESULTS OF TRAJECTORIES
Examples of the HV and AV trajectories are depicted in
Fig. 9. The x- and y- axes represent longitudinal and lateral
positions, respectively. The trajectory lines directing the east
show the movements of vehicles. The blue and red lines
indicate the LK and LCmaneuvers of HV trajectories, respec-
tively. The gray lines indicate simulated AV trajectories. The
results represent that AVs have shown human-like driving
behaviors during LC implementation. The simulation results
are descibed below.

As shown in Fig. 9(a), the actual trajectory of the HV
displays a DLCmaneuver, transitioning from lane 3 to lane 2.
During the LK situation before the LC, the vehicle shifts its
lateral position from approximately 9 m to 7.5 m, and its lon-
gitudinal position from around 220m to 305m. Then, it enters
into the LC situation with the anticipation step (Point A). The
vehicle gradually approaches the lane marking and informs
an LC intention to its surrounding vehicles. Then, it crosses
over the marking at the longitudinal position 310 m (Point B),
which indicates the LC execution step. After the execution,
the vehicle is in the LC relaxation step and it aims to align its
lateral position of around 6.5 m (Point C). As the LC situation
is over, the vehicle returns back to the LK situation while
maintaining its lateral position. For the case of simulation,
AV trajectories show similarities with the HV trajectory in
the longitudinal and lateral movements. For another exam-
ple, as shown in Fig. 9(b), the simulation results for AVs
demonstrate small variations in trajectories compared to other
samples. This is due to smaller spacings with their surround-
ing vehicles, not allowing the subject vehicle to have many
options for relaxed drivings. On the other hand, as shown in
Fig. 9(c), the results for AVs demonstrate greater variations
due to larger spacings with their surrounding vehicles. Never-
theless, all these AVs have shown enough spacings with their
surrounding vehicles. In the case of Fig. 9(d), as the actual HV
trajectory shows the most smooth and stable movements, the
simulated AV trajectories also display their small variations
during both LK and LC situations accordingly.

Notably, no collisions have occurred in any of the sim-
ulation results. In terms of the qualitative aspect, it can be
concluded that the proposed model has developed the AV
driving strategy to resemble HV driving behaviors for har-
monizing with the traffic flow. This V2V-based AVs assess
its given traffic condition carefully and performs human-like
driving behavior. Then human drivers may not misjudge AVs’
unfamiliar behaviors and thereby reduce both traffic accident
rates and level of congestion.

2) PERFORMANCE EVALUATION
To evaluate performance of the proposed strategy, we employ
measurements that evaluate accuracy of simulated trajectories
over time frames. These measures calculate the discrepancy
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FIGURE 9. Comparison between the actual and simulated trajectories of LC vehicles.

in trajectories between the actual HV and simulated AV data.

RMSE =



√
1
tmax

∑tmax

t=1

(
pn (t) − p̂n (t)

)2√
1
tmax

∑tmax

t=1

(
yn (t) − ŷn (t)

)2 , (33)

and

FDE =

{
abs

(
pn (tmax) − p̂n (tmax)

)
abs

(
yn (tmax) − ŷn (tmax)

) (34)

where,

pn (t) : longitudinal position of actual HV ID n at time t ,
p̂n (t) : longitudinal position of simulatedAV ID n at time

t,
yn (t) : local lateral position of actual HV ID n at time t ,
ŷn (t) : local lateral position of simulated AV ID n at time

t ,
t: the frame number, and
tmax: the maximum value of frame number.

RMSE (Root Mean Squared Error), represented by (33),
calculates the mean value of the longitudinal and lateral
displacement error. FDE (Final Displacement Error), repre-
sented by (34), is the value of the final displacement error
between the actual and simulated trajectories. Since there

have been a total of 100 simulations conducted, the perfor-
mance measures obtained from individual simulations have
been averaged.

We have conducted a comparative analysis of the tra-
jectory prediction results between the proposed model and
other models. The other models are adopted from the study
conducted by Ren et al. [36]. They proposed a state-of-the-
art LSTM model that predicts trajectories of LC vehicles.
They have demonstrated the model’s performance by com-
paring with a classical LSTM model. They set the maximum
duration for the prediction as 5 seconds. While our model
has been simulated with the duration of about 15 seconds,
we have selected same duration of LC situations to compare
the results.

As summarized in Table 6, the RMSE of the longitudinal
and lateral positions are calculated as 7.8826 and 0.4650 in
the classical model, 4.5821 and 0.2987 in the model of
Ren et al., and 4.1443 and 0.0314 in our proposed model.
The overall RMSEs have been calculated as 7.8963, 4.5918,
and 4.1444, respectively. The overall error has been reduced
by 47.5%. For the FDE, the errors of the longitudinal and
lateral positions are calculated as 10.6916 and 0.6602 in the
classical model, 6.6774 and 0.2720 in the model of Ren et al.,
and 6.0688 and 0.0304 in our proposed model. The overall
FDEs have been calculated as 10.7120, 6.6829, and 6.0689,
respectively. The overall error has been reduced by 43.3%.
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TABLE 6. Simulation results.

These results demonstrate that our proposed model has
reduced the prediction error. Notably, AV driving behaviors
in the lateral direction have significantly improved. It can
be interpreted that the simulated AVs harmonize with their
surrounding vehicles while changing lanes. The proposed
model is capable of effectively simulating naturalistic LC
behaviors based on V2V communication. Moreover, as the
model based on SVM has achieved interpretability, it can be
said that AV driving behaviors can be adjusted anytime for
better traffic operations and safety.

VI. CONCLUSION AND DISCUSSION
Given that the transition period of mixed traffic is expected
to continue for more than 30 years, it is crucial to evolve AV
technology to resemble human driving. This will help prevent
confusion among drivers and enable them to make proper
driving judgments. Abnormal driving behaviors exhibited
by AVs, such as abrupt LCs without properly assessing the
surrounding traffic conditions or failing to yield based onmis-
interpretation of the traffic environment, can lead to increased
rates of traffic accidents and congestionwhen interactingwith
human drivers.

The existing models have predicted AV trajectories either
using a predicted permutation or a recognized permutation.
As the prediction results largely depend on the train dataset,
some critical bias and errors can occur if unexperienced
dataset are input during simulations. To address this issue, this
study proposes the intuitive and interpretable model. First,
the standardized approach is established to select the opti-
mal V2V features using the mRMR algorithm with Pearson
correlation method. Then, the SVM is applied to intuitively
and simply separate boundaries of the V2V features between
LC and LK situations. Subsequently, the AV driving strategy
is proposed as AVs to target the estimated average values
of V2V features in each LK and LC situation. As a result,
our proposed model achieved both interpretability and high
model performance for LC implementation.

Performance measures for distinguishing the characteris-
tics between the LC and LK situations have shown high
accuracy when applied to the NGSIM dataset. Simple
accuracy, precision, recall, and F1-score have been mea-
sured as 0.9814, 0.9150, 0.7955, and 0.8511, respectively.

Subsequently, the simulation results of the AV driving strat-
egy have significantly reduced the overall prediction error by
43.3%, compared to the existing model. Notably, AV driving
behaviors in the lateral direction have significantly improved.
The results suggest that the proposed model effectively sim-
ulates naturalistic LC behaviors for AVs to harmonized with
their surrounding vehicles based on the seven optimal V2V
features.

There are several issues in this study thatmerit future inves-
tigation to improve AV technology. First of all, other V2V
candidate features can be investigated further. More effective
features can improve misjudgments between the LC and LK
maneuvers at the moment. For example, it would reduce a
probability that an AV executes an LC even though the gap
between the lead and lag vehicles on the target lane is not
acceptable. Additionally, other scenarios where surrounding
vehicles are less than six should also be considered. Some
other time periods where there are not much traffics should
be applied as well. Furthermore, other driving situations,
such as MLC situations, other geometric configurations,
or interrupted flows, should also be further studied. Lastly,
integrating other driving behaviors such as car-following
maneuvers or cooperative driving could enhance the driving
behavior model in a more natural manner.

Although the SVM model estimates the boundary condi-
tions between the LC and LK situations, there exists other
machine learning tools that can be applied for further mod-
els such as spatio-temporal algorithms [37]. Future research
should focus on developing technological tools that pro-
vide clear interpretations of complex driving patterns in
greater detail. Moreover, further studies with larger datasets
are expected to refine the proposed model for improved
efficiency.
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