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ABSTRACT The objective of diagnosis prediction involves foreseeing the potential diseases/conditions
according to analyzing patients’ historical Electronic Health Records (EHRs). The primary challenge in
this task is to develop a predictive model that is both sturdy and accurate, while also being interpretable.
The most advanced models usually take recurrent neural networks (RNNs) as backbones and then utilize
other techniques, such as attention mechanisms, to address this challenge. However, the effectiveness of
these models heavily relies on having ample EHR data. Consequently, when the data is insufficient, the
performance of these models declines significantly. Recently, graph-based attention models have been
proposed to mitigate the issues caused by insufficient data, although they do not fully capitalize on the
knowledge present in medical ontologies. To address these problems, knowledge-based recurrent neural
networks (named KARNS) are introduced, which is an end-to-end, robust, and accurate deep learning-based
architecture designed to predict patients’ future health information. KARNS explicitly leverages the
high-level representations of medical codes within the medical ontologies to enhance the accuracy of
predictions. Experimental outcomes demonstrate that the proposed KARNS outperforms existing approaches
on three real-world medical datasets. It ensures robustness even with limited training data and learns disease
representations that are interpretable.

INDEX TERMS Healthcare informatics, diagnosis prediction, deep learning models, recurrent neural
networks.

I. INTRODUCTION
The prediction of patients’ future health status using
their historical Electronic Healthcare Records (EHRs) has
garnered significant attention from healthcare providers
and researchers alike [1], [2], [3], [4], [5], [6], [7], [8],
and [9]. Specifically, the field of diagnosis prediction, which
focuses on forecasting future diagnoses based on patients’
sequential EHR data, has become a popular yet challenging
area of research. The challenges within diagnosis predic-
tion encompass two main aspects: 1) effectively modeling
sequential EHR data to capture their unique characteristics,
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such as high-dimensionality and noise existence, and
2) ensuring reliable predictive performance even in the
presence of limited training data.

Various deep learning approaches have been proposed
to achieve this objective [10], [11], [12], [13], [14]. One
such approach, Med2Vec [14], simulates work embedding
techniques [15] to learn embeddings for medical codes in
a low-dimensional space, which are used to predict future
visits or potential diseases for patients. However, Med2Vec
only models the codes in a short visit window and treats each
visit as independent. This approach ignores the importance
of modeling the sequential nature of EHR data. To capture
sequential dependencies within healthcare records, state-
of-the-art diagnosis prediction methods commonly employ
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recurrent neural networks (RNNs) [11], [12], [13], [16],
[17], [18]. For instance, the reverse time attention model
(RETAIN) [10] utilizes two time-ordered reverse RNNs
with attention mechanisms to further boost the prediction
performance. Besides, the design of RETAIN makes it
output the attention weights of each medical code during
the prediction, which increases the interpretability of the
diagnosis prediction task. Another RNN-based approach,
Dipole, [13] uses a bidirectional RNN (BRNN) with dif-
ferent attention mechanisms, leading to improved prediction
accuracy. However, these models often require substantial
amounts of training data to ensure reliable predictive
performance. Yet, there are cases where certainmedical codes
associated with rare diseases appear infrequently in EHR
data. Consequently, training a robust and accurate predictive
model for these rare codes becomes a more challenging yet
crucial task.

To address this challenge, the graph-based attention model
(GRAM) was introduced [11]. It leverages the International
Classification of Diseases (ICD) ontology, which is a
tree structure, as extra knowledge to enhance prediction
performance and interpretability. Correspondingly, GRAM
proposes a graph-based attention mechanism to learn robust
representations of medical codes. GRAM exhibits good
performance even with limited data availability. However,
it does not demonstrate any performance improvement when
abundant EHR data is present compared to RNN variants.
Furthermore, GRAM solely utilizes ontology information
for learning medical code representations, which indirectly
influences the prediction outcomes. Thus, directly incorpo-
rating high-level representations of medical codes into the
prediction process can enhance the accuracy of predictive
models while preserving the interpretability of medical code
representations.

In this paper, a novel deep learning architecture called
KARNS is introduced, which utilizes knowledge-based
recurrent neural networks for predicting patients’ future
diagnoses, as depicted in Figure 1. The main idea behind
KARNS is to select high-level or general representatives
for each medical code from a given medical ontology or
knowledge graph, specifically by considering codes in their
ancestor set. This approach allows us to create representative
vectors for each visit. The knowledge graph used in KARNS
can be obtained from reliable sources such as the ICD
ontology or the Clinical Classifications Software (CCS).

To learn the embeddings of medical codes and their ances-
tors, KARNS employs a graph-based attention mechanism.
Subsequently, KARNS learns the visit-level representation vt
using the learned medical code embeddings. To further use
the extra knowledge, KARNS utilizes the learned ancestor
embeddings to aggregate a knowledge-based representa-
tion qt for the visit. These vectors are then separately inputted
into recurrent neural networks (RNNs) to generate hidden
state representations, i.e., ht and kt . ht represents the output
of the original input visit, while kt captures the high-level
representation of the visit. The concatenation of these two

FIGURE 1. The proposed KARNS model.

hidden states is passed through a classification layer to predict
what diagnosis codes will appear in the next visit.

In the experiments, three real-world medical datasets are
used to evaluate the efficacy of KARNS, compared with state-
of-the-art baselines. The quantitative study demonstrates
the effectiveness and robustness of KARNS in scenarios
with both sufficient and insufficient data. Furthermore, the
qualitative analysis illustrates the interpretability of KARNS
by visualizing the generated medical code embeddings.

Overall, the proposed KARNS architecture shows remark-
able performance in the diagnosis prediction task, out-
performing existing approaches. Through extensive exper-
imentation and analysis, the effectiveness, robustness, and
interpretability of KARNS is demonstrated using real-world
medical datasets.

The designed model holds significant potential as a
crucial component of a smartphone or web application.
Once users register on the application, they can upload their
Electronic Healthcare Records (EHR) data. The application
will automatically encrypt and securely store this data in a
database. By analyzing the uploaded data, the application can
provide prediction results regarding the user’s health status.

Whenever a user inputs new visit information, the applica-
tion will be triggered to automatically re-predict the user’s
health status based on both the historical and new EHR
data using the well-trained model. To ensure the ongoing
effectiveness of the model, it will be regularly retrained when
the number of available data reaches a specified threshold.

Equipping the application with the designed model allows
users to conveniently monitor their health status in real time.
By providing timely predictions, users can take proactive
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measures to prevent potential diseases and maintain their
well-being. The application serves as a valuable tool for
individuals to stay informed about their health and take
appropriate actions for early disease prevention.

II. THE PROPOSED MODEL
In this section, some basic notations of medical ontology and
EHR data are first introduced, and then preliminary concepts
used in the model are described. Finally, the proposed
knowledge-based recurrent neural networks KARNS model is
presented.

A. NOTATIONS
In the model design, a medical ontology is used to enhance
model performance and interpretability. Let G represent the
medical ontology, a tree structure as shown in Figure 1,
which allows us to use a directed acyclic graph (DAG)
to represent the hierarchical relationships between various
medical concepts. In this tree-based knowledge graph, there
are two kinds of medical codes: leaves and their ancestors.

• Leaves. ci (1 ≤ i ≤ |C|) is used to represent a leaf
node, and all leaf nodes can be represented by a set,
C = {c1, c2, · · · , c|C|}, where |C| represents the total
number of unique medical codes.

• Ancestors. nj (1 ≤ j ≤ |N |) is used to denote
an ancestor node, and the set of ancestor nodes is
represented by N = {n1, n2, · · · , n|N |}, where |N |

represents the total number of ancestor codes in G.
For a certain leaf node ci, it has a set of ancestors,

which is denoted as φ(ci) ⊂ N . Take c1 in Figure 1 as
an example, its ancestor set is φ(c1) = {n1, n2}. All of
these nodes in φ(ci) can be seen as the high-level or general
representatives of ci. The closer they are to ci, the stronger
the ability of representation for ci is. However, the high-level
representative of ci should be neither too general nor too
specific. For example, the medical code ‘‘250.10: Diabetes
with ketoacidosis, type II or unspecified type, not stated
as uncontrolled’’ has four ancestors in the CCS-multi-level
diagnoses hierarchy. They are ‘‘Endocrine; nutritional; and
metabolic diseases and immunity disorders’’, ‘‘Diabetes mel-
litus with complications [50.]’’, ‘‘Diabetes with ketoacidosis
or uncontrolled diabetes’’, and the virtual root of G. Among
them, ‘‘Diabetes mellitus with complications [50.]’’ may be
the best or moderate representative of the code ‘‘250.10’’.
Mathematically, nj ∈ φ(ci) (1 ≤ j ≤ |N |) is used to denote
the high-level representative of ci. Note that many medical
codes may have the same high-level representative nj. In this
paper, the node, which appears second in the hierarchy from
the root in the CCS multi-level diagnoses, is used as the high-
level representative.

Assume that there are P patients in the EHR dataset, and
for each patient, there are T visits. It is worth noting that
for each patient, T may be different. The T visits can form
a sequence {V1, · · · ,VT }. For each visit Vt , it contains a
subset of leaf codes. In other words, Vt ⊆ C. As mentioned
before, each leaf code ci has an ancestor code set φ(ci). For all

codes in Vt , the union set of their ancestors is denoted as Qt .
Two binary vectors are used to simplify the representation of
each visit and its ancestor code set. xt represents the binary
representation of Vt . If the i-th code appears in Vt , then
xt [i] = 1; otherwise, xt [i] = 0. Note that the length of xt
is |C|. Similarly, ft denotes the binary vector of the ancestor
codes Qt . If nj is in the ancestor code set, then ft [j] = 1;
otherwise, ft [j] = 0, and the size of ft is |N |.
The task of diagnosis prediction is defined as using

the graph G, the visit sequence {x1, · · · , xT } and the
corresponding ancestor sequence {f1, · · · , fT }, to predict the
set of diagnosis codes that will appear in VT+1.

B. THE PROPOSED KARNS
The proposed knowledge-based Recurrent Neural Networks
(KARNS) architecture is depicted in Figure 1. This model
utilizes an external knowledge graph G to obtain the
embedding matricesM for medical codes and A for ancestor
codes, employing a graph-based attention mechanism.

The learned medical code embeddings are then used
to generate the representation of each visit. Since in the
proposed KARNS, there are two RNNs, and each RNN needs
the corresponding input data. For the left RNN, M and xt
are used to generate the original visit representation vt as its
input. For the right RNN, A and ft are used to generate the
input qt . Each RNNwill output the hidden state ht (left) or kt
(right). These two hidden states are concatenated to generate
a final aggregated representation st , which is used for the
diagnosis prediction.

1) KNOWLEDGE GRAPH EMBEDDING
To encode the medical ontology structure, the graph-based
attention mechanism is employed, inspired by the work
of GRAM [11]. This allows us to obtain medical code
embeddingsM and an ancestor embedding matrix A.
Each medical code ci in the knowledge graph G is

associated with a learnable basic embedding vector ei ∈

Rd , where d represents the dimensionality. Similarly, each
ancestor code nj is associated with a learnable embedding
vector aj ∈ Rd . Here, 1 ≤ i ≤ |C| represents the index for
medical codes, and 1 ≤ j ≤ |N | represents the index for
ancestor codes.

The final representation of a medical code ci, denoted
by mi ∈ Rd , is obtained by leveraging the graph-based
attention mechanism, which combines the basic embedding
ei with its ancestors. The specific mechanism for combining
the embeddings is described below:

mi = αiiei +
∑
j∈φ(ci)

αijaj, (1)

where αii +
∑

j∈φ(ci) αij = 1, and

αii =
exp(θ (ei, ei))

exp(θ (ei, ei)) +
∑

j∈φ(ci) exp(θ (ei, aj))
,

αij =
exp(θ (ei, aj))

exp(θ (ei, ei)) +
∑

j∈φ(ci) exp(θ (ei, aj))
. (2)
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θ (·, ·) is a scalar value and defined as

θ (ei, aj) = u⊤
a tanh(Wa

[
ei
aj

]
+ ba). (3)

To compute θ (aj, aj), aj will be replaced by ei in Eq. (3).
Therefore, θ (ei, ei) can be obtained.
Consequently, the medical code embedding matrix is

generated as M = m1,m2, · · · ,m|C| ∈ Rd×|C|, where
mi represents the i-th column of M. Similarly, the ancestor
embeddings are represented by A = a1, a2, · · · , a|N | ∈

Rd×|N |, where aj denotes the j-th column of A.
In the original GRAM model, only the medical code

embedding matrix M is utilized in the final prediction,
neglecting the significance of ancestor codes. However,
ancestor codes possess more general or high-level informa-
tion about medical codes. Taking into account the high-level
representations of medical codes allows us to enhance the
predictive performance for diagnosis prediction tasks. Hence,
the proposed model KARNS leverages both the medical code
embedding matrix M and the ancestor embedding matrix A
in its architecture.

2) VISIT AND REPRESENTATIVE EMBEDDING
Taking into account the importance of high-level representa-
tions of medical codes, the proposed model KARNS considers
both the leaf code feature matrix M and the ancestor code
feature matrix A. To embed the binary input vectors xt ∈

0, 1|C| and ft ∈ 0, 1|N |, the linear transformation with a
non-linear activation function is used, which is defined as
follows:

vt = tanh(Mxt ), (4)

qt = tanh(Aft ), (5)

where vt ∈ Rd and qt ∈ Rd .

3) KNOWLEDGE-BASED TWO-WAY RNNs
In theKARNS architecture, twoGRUswith shared parameters
are employed. The first GRU is responsible for learning
visit-level hidden states, while the second GRU is utilized to
capture the high-level information of visits.

To obtain the visit-level hidden state ht ∈ Rg given the
visit-level vector vt , the following expression can be used:

ht = GRU(vt ; �). (6)

Similarly, the high-level hidden state kt ∈ Rg of the t-th visit
can be obtained as follows:

kt = GRU(qt ; �). (7)

Here, GRU denotes Gated Recurrent Unit (GRU) [19], which
belongs to the family of RNN. Note that in the model design,
GRU can be replaced by RNN variants, such as Long-Short
TermMemory (LSTM) [20] and T-LSTM [21]. � denotes all
the parameters of the GRU model.

4) DIAGNOSIS PREDICTION
To generate the aggregated representation st ∈ R2g in
the proposed KARNS, the current hidden state ht and the
high-level hidden state kt are then concatenated using a
simple concatenation layer, resulting in:

st = [ht ;kt ]. (8)

The goal of KARNS is to predict the set of diagnosis codes
appearing in the (t + 1)-th visit. To this end, the aggregated
representation st is passed through the non-linear activation
function softmax to generate the output ŷt as follows:

ŷt = Softmax(Wcst + bc), (9)

whereWc ∈ R|C|×2g and bc ∈ R|C| are learnable parameters.

5) OBJECTIVE FUNCTION
The loss for each patient across all timestamps is calculated
by employing the cross-entropy between the ground truth
visit yt and the predicted visit ŷt , based on Eq. (9). The loss
can be expressed as:

Lp(x1, x2, · · · , xT ; f1, f2, · · · , fT )

= −
1

T − 1

T−1∑
t=1

(
y⊤
t log(ŷt ) + (1 − yt )⊤ log(1 − ŷt )

)
.

(10)

Note that this loss is only for an individual patient. The
average of the individual cross-entropy loss for all P patients
is calculated as follows:

L =
1
P

P∑
p=1

Lp. (11)

III. EXPERIMENTS
This section begins by presenting three real-world datasets
utilized in the experiments. Subsequently, the experimental
setup is described. Finally, the performance of the proposed
KARNS model on these three real-world datasets is analyzed.
The results indicate that KARNS outperforms state-of-the-art
predictive models across multiple evaluation strategies.

A. REAL-WORLD DATASETS
In the experiments, three datasets are used to evaluate the
effectiveness of KARNS. One is a publicly available dataset,
and the other two datasets are private.

The first one is the Medical Information Mart for Intensive
Care (MIMIC-III) dataset [22], which is a publicly available
electronic health record dataset comprising medical records
of ICU patients over 11 years and has been used by existing
study [10], [23]. Since the goal of this task is to predict
the next visit’s diagnosis code set, if the patient only has
one recorded visit, then it will be removed from the dataset.
This dataset is characterized by short visit lengths and a
relatively small number of patients, allowing us to assess
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the performance of KARNS in scenarios with limited training
data.

The Medicaid dataset, an insurance claim dataset, contains
records of 99,159 patients and 2,034,485 visits spanning the
years 2011 and 2012, and the selected patients had at least ten
visits, enabling us to evaluate KARNS on datasets with longer
visit records.

Furthermore, another dataset focusing on one specific
diseaseDiabetes is used, which is a subset ofMedicaid. In this
dataset, all patients had a diagnosis of diabetes, as indicated
by the presence of the ICD9 diagnosis code 250.xx in their
claims.

In the context of diagnosis prediction, the objective is to
predict the diagnosis information for the next visit. However,
instead of directly predicting the specific diagnosis codes, the
experiments follow the approach used in [11] and [13] and
predict diagnosis categories.

There are several benefits to predicting category infor-
mation. Firstly, it improves training speed and predictive
performance compared to predicting individual diagnosis
codes. Secondly, it ensures an adequate level of granularity
for all diagnoses. In the experiments, the nodes in the
second hierarchy of the ICD9 codes are used as category
labels. It is worth noting that the hierarchy of CCS (Clinical
Classifications Software) can also be utilized as category
labels, and both grouping methods yield similar predictive
performance [11].

More detailed information about the three real-world
datasets is presented in Table 1.

TABLE 1. Statistics of MIMIC-III, Medicaid, and Diabetes Dataset.

B. EXPERIMENTAL SETUP
In order to conduct a fair evaluation of the proposed KARNS,
a list of state-of-the-art baselines is presented first. These
baselines serve as reference models for comparison. Next,
the evaluation metrics are introduced and used to assess the
predictive performance of KARNS. These metrics provide
a comprehensive evaluation of the model’s effectiveness.
Lastly, detailed information regarding the implementation,
including dataset preprocessing, model architecture, hyper-
parameter settings, and the optimization algorithm employed,
is introduced. These implementation details ensure the
transparency and reproducibility of the experimental setup.

Baselines
The following four state-of-the-art approaches are used:

• RNN serves as a naive baseline that directly embeds visit
information into vector representations using a GRU.
In other words, it does not use any extra knowledge.
Each visit will generate a hidden state, which is then
used to make predictions.

• RNN+ extends the RNN model by incorporating a
location-based attention model, similar to Dipole. The
main difference is that RNN+ uses a unidirectional
GRU for predictions, while Dipole employs a bidirec-
tional GRU.

• Dipole [13] uses BRNNs and attention mechanisms for
predicting future visit information. It achieves the best
performance among diagnosis prediction approaches
that do not employ medical ontologies. The visit
sequence is embedded using a multilayer perceptron
(MLP), and the bidirectional GRUs with attention
mechanisms generate latent vectors for predictions.

• GRAM [11] is different from the previous baselines,
which is the first work to incorporate a medical
knowledge ontology and recurrent neural networks
for diagnosis prediction. It embeds each visit in a
time-ordered sequence using a medical code embedding
matrix learned from the knowledge graph. The embed-
ded visit vectors are then fed into a GRU to predict the
next visit information.

1) EVALUATION MEASURES
The diagnosis prediction task aims to predict a set of
diagnosis codes, which is different from classification
tasks. To evaluate the performance of all approaches, two
evaluationmetrics are used: visit-level accuracy@k and code-
level accuracy@k . The accuracy@k metric measures the
correctness of the predicted medical codes. Next, the details
of these two metrics with an example are introduced.

For example, there are two visits, and their ground truth
labels are Gp1 = {c1, c3, c4} and Gp2 = {c1, c2}. The
predictions are Ĝp1 = {[c1, c2, c3, c4, c7, c8]} and Ĝp2 =

{[c1, c2, c3, c4]}.

• Visit-level accuracy@k evaluates the average accuracy
of predicting the correct medical codes among the top
k guesses. It is calculated by dividing the number of
correct medical codes in the top k predictions by the
minimum value between k and the total number of
category labels in the (t + 1)-th visit, which is defined
as follows:

V-Acc@k =
1

|Pt |

|Pt |∑
p=1

1
Tp

Tp∑
t=1

|Gpt ∩ Ĝpt [1, k]|

min{k, |Gpt ∩ Ĝpt [1, k]|}
,

(12)

where |Pt | denotes the number of patients in the testing
data, Tp is the number of visits in the p-th patient’s
record, Gpt is the set of the ground truth codes of the
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TABLE 2. Performance in terms of the metric accuracy@k .

t-th visit, Ĝpt is the predicted category code set, and
Ĝpt [1, k] means the top-k predictions. In this example,
if k = 2, Ĝp1[1, 2] = {c1, c2} and Ĝ

p
2[1, 2] = {c1, c2},

and visit-level accuracy@2 = 1
2 (

1
min{2,3} +

2
min{2,2} ) =

1
2 (0.5 + 1) = 0.75.

• Code-level accuracy@k evaluates the accuracy of
predicting the correct category labels within a visit. If the
target label is among the top k predicted labels for a visit
that contains multiple category labels, it is considered
as a correct prediction. Code-level accuracy@k is
determined by dividing the number of correct label
predictions by the total number of label predictions,
which is defined as follows:

C-Acc@k =
1

|Pt |

|Pt |∑
p=1

1
Tp

Tp∑
t=1

|Gpt ∩ Ĝpt [1, k]|

|Ĝpt |
, (13)

where |Ĝpt | denotes the number of category codes in the
t-th predicted visit. Still in this example, when k = 2,
accuracy@2 = 1

2 (
1
6 +

2
4 ) =

1
2 (0.17 + 0.5) = 0.33.

Both visit-level and code-level accuracy@k measures
provide insights into the performance of approaches at
different levels of granularity. Higher values indicate better
performance for all four measures. In the experiments, k is
varied from 5 to 30 to assess the performance across different
prediction scenarios.

2) IMPLEMENTATION DETAILS
In the experiments, the CCS-multi-level ontology is utilized
as the knowledge graph, following the approach proposed by
Choi et al. [11]. For medical codes with multiple ancestors,
the codes appearing in the second hierarchy as their
representatives are selected. A code has only one ancestor,
which is treated as its representative.

The implementations of all approaches are based on
PyTorch 2.0. Each dataset is randomly divided into three
parts in a 0.75:0.10:0.15 ratio as training, validation, and

testing sets at the patient level. All baselines and the proposed
approach use the same training, validation, and testing sets.
The lowest loss on the validation set is stored as the optimal
parameter set during the training stage. For training the
models, the Adadelta optimization algorithm [24] with a
minibatch size of 50 patients is employed. Regularization is
applied using ℓ2 normwith a coefficient of 0.001, and dropout
with a rate of 0.5 is employed for all approaches.

To ensure a fair performance comparison, the dimension d
is set to 128 for all methods. Additionally, for GRAM and the
proposed KARNS, the attention size l is set to 128 as well.

C. RESULTS OF DIAGNOSIS PREDICTION
To fairly compare all the approaches, different values of k are
used in the experiments on the three real-world datasets. The
experimental results in terms of the accuracy@k measure are
shown in Table 2, where set k from 5 to 30, and the proposed
KARNS achieves the superior performance.

On the MIMIC-III dataset, the performance of GRAM is
much better than that of other baselines. However, KARNS
significantly outperforms GRAM in terms of both visit-level
and code-level accuracy. This indicates that leveraging
high-level recurrent neural networks can greatly improve
predictive performance. It is worthy noting that both Dipole
and RNN+ performworse than the naive baseline, RNN. This
is likely due to the limited number of visits per patient in
this dataset. Insufficient data prevents Dipole and RNN+

from accurately learning attention modules, resulting in
poor prediction performance. In contrast, KARNS leverages
high-level information from previous visits to learn general
representations for future visits, mitigating the impact of
limited training data.

Regarding the values of k , it can be observed that the
values generally increase as k becomes larger, except for the
visit-level accuracy on the MIMIC-III dataset. This can be
attributed to the lack of training data for certain labels. The
lower probabilities assigned to these labels in the predictions
lead to fewer correct predictions when k is larger. However,
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FIGURE 2. Results of different label frequency groups on the MIMIC-III dataset.

FIGURE 3. Results of different label frequency groups on the Medicaid dataset.

the number of correct predictions is divided by a larger
value of min(k, |yt |), resulting in lower average performance
compared to the case when k = 5.
On the Medicaid dataset, both Dipole and RNN+

outperform GRAM for small values of k , indicating the
superior ability of attention mechanisms to improve predic-
tive accuracy when sufficient data is available. However,
the accuracy of KARNS remains higher than both Dipole
and RNN+, confirming the effectiveness of considering
general or high-level information in improving prediction
performance.

On the Diabetes dataset, the accuracy of KARNS surpasses
all the baseline approaches. This can be attributed to the high
relevance of most medical codes to diabetes in this dataset.
The proposed KARNS effectively captures the relationships
among medical codes using high-level information, leading
to accurate predictions.

It is worth noting that the performance of GRAM is
comparable to that of both Dipole and RNN+ on the
Diabetes dataset, indicating that models utilizing knowledge
graphs can achieve similar performance to models employing
attention mechanisms.

In summary, the results in Table 2 demonstrate the
robustness and effectiveness of KARNS across different types
of datasets, supporting its superiority over the baseline
methods.

D. DATA SUFFICIENCY ANALYSIS
The results of different diagnosis prediction approaches are
indeed sensitive to the number of available training instances,
as observed in Table 2. To further analyze the impact of
training dataset sizes, additional experiments were conducted
on the MIMIC-III and Medicaid datasets.

In this experiment, the data are divided into four groups,
according to the frequency of category labels appearing in the
training data. The frequency is ranked in an ascending order.
The first 25% data are as the first group, and the group name
is 0-25. The next 25% data are in the second group, named
25-50. Similarly, the following two groups are 50-75 and 75-
100. Such a division method can clearly distinguish the rarest
labels from the most common ones. The value of the accuracy
of labels in each group is calculated.

Figure 2 shows the results in terms of the code-level
accuracy@20 on the MIMIC-III dataset. The x-axis repre-
sents the different approaches, while the y-axis denotes the
average accuracy of the approaches. Figure 3 depicts the
code-level accuracy@20 on the Medicaid dataset.

From Figure 2 and Figure 3, it can be observed that
the proposed KARNS consistently outperforms the baselines
in the 0-25 and 25-50 groups. This demonstrates the
effectiveness of KARNS in predicting codes with limited
training data, emphasizing the importance of incorporating
high-level information.

In Figure 2, among all the baselines, GRAM achieves the
best performance, indicating that even with insufficient data,
GRAM can still learn reasonablemedical code representations
based on the knowledge graph, which improves the predic-
tions. However, the accuracy of GRAM is lower compared to
the proposed KARNS, highlighting the significance of incor-
porating high-level information in the diagnosis prediction
task.

On the other hand, in the Medicaid dataset where there is
sufficient training data, attention mechanisms play a more
important role. Figure 2 shows that RNN+ and Dipole
exhibit relatively better performance in the 75-100 group.
In comparison, the performance of GRAM is inferior to that
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FIGURE 4. Visualization of the learned medical code representations on the diabetes dataset using t-SNE scatterplots.

of RNN+ and Dipole. This suggests that when training
data is sufficient, calculating attention weights for past
visits can achieve similar performance to incorporating a
medical knowledge graph. However, KARNS goes beyond
these approaches by integrating both the medical knowledge
graph and high-level information, leading to the best overall
performance, as shown in Table 2.

In conclusion, the experiments provide further evidence of
the effectiveness of KARNS in predicting codes with limited
training data, as well as the importance of incorporating
high-level information in improving prediction performance.

E. INTERPRETABLE REPRESENTATION ANALYSIS
Interpretability of medical code representations is indeed
crucial for the diagnosis prediction task. To provide a
qualitative demonstration of the learned representations by
all the models on the Diabetes dataset, a random selection
of 2000 medical codes was made, and these codes were
plotted in a 2-D space using t-SNE (t-Distributed Stochastic
Neighbor Embedding) [25], as shown in Figure 4. The color
of the dots in the plot represents the first disease categories in
the CCS multi-level hierarchy.

From the figure, it can be observed that both KARNS
and GRAM have the ability to cluster diagnosis codes
into interpretable clusters. This demonstrates that these
models have learned representations that capture meaningful
relationships among the medical codes. However, it is
worth noting that the predictive performance of KARNS
is significantly better than that of GRAM, as shown in
Table 2. This observation highlights the fact that KARNS
not only maintains the advantages of GRAM in terms of
interpretability but also improves the prediction accuracy.

Furthermore, from Figure 4(c), Figure 4(d), and
Figure 4(e), it can be concluded that without a knowledge
graph, relying solely on co-occurrences or supervised
predictions cannot easily learn interpretable medical code
representations. This further emphasizes the importance of
incorporating medical knowledge into the models, as done in
KARNS and GRAM, to obtain both interpretable and accurate
representations.

In summary, the qualitative analysis of the learned repre-
sentations supports the effectiveness of KARNS in generating
interpretable medical code representations while achieving
superior predictive performance compared to GRAM and
other baselines.

IV. RELATED WORK
This section presents an overview of related work in the
field, focusing onmining electronic healthcare records (EHR)
using deep learning techniques and the specific area of
diagnosis prediction.

A. DEEP LEARNING FOR EHR
Deep learning techniques have been widely applied to extract
valuable medical knowledge from EHR data, encompassing
both structured and unstructured information [5]. Convolu-
tional neural networks (CNNs) have been utilized for predict-
ing unplanned readmission [6], diseases [7], and risk [4], [26]
based on EHR data. Stacked denoising autoencoders (SDAs)
have been employed to identify characteristic physiological
patterns in clinical time series data [2]. To capture the
temporal dynamics in EHR data, recurrent neural networks
(RNNs) have been extensively used for modeling disease
progression [8], [27], handling time series healthcare data
with missing values [28], [29], and performing diagnosis
classification [30] and prediction [10], [13], [16], [17], [18],
[23], [31], [32], [33], [34].

B. DIAGNOSIS PREDICTION
Diagnosis prediction, a core task in EHR data mining,
involves predicting future visit information based on histor-
ical records. Med2Vec [14] is an unsupervised method that
learns interpretable embeddings of medical codes. Although
it can be used for predicting future health information,
it disregards long-term dependencies among medical codes
across visits. RETAIN [10] incorporates a reverse time
attention mechanism in an RNN to interpret the contribution
of each medical code to the current prediction, focusing
on binary prediction tasks. Dipole [13] is a state-of-the-
art diagnosis prediction model that employs bidirectional
recurrent neural networks (BRNNs) and different attention
mechanisms to predict patient visit information. GRAM [11]
utilizes a graph-based attention mechanism on a medical
ontology to learn robust medical code embeddings, even in
scenarios with limited training data, and employs an RNN to
model patient visits.

Among the mentioned diagnosis prediction models, the
most relevant one to the proposed KARNS is GRAM.
Compared to GRAM, the proposed KARNS not only applies
a graph-based attention mechanism to learn interpretable
medical code embeddings but also incorporates high-level
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representations of medical codes. This integration signifi-
cantly improves prediction accuracy and ensures robustness
compared to state-of-the-art approaches.

V. DISCUSSION
Although the proposed KARNS outperforms baselines, it still
suffer from the following issues:

• Integration of temporal dynamics: Currently, KARNS
captures information from previous visits using recur-
rent neural networks. Future research can explore more
advanced models that effectively capture the temporal
dynamics within EHR data, such as transformer-based
models [35].

• Enhancement of medical code embeddings: Although
KARNS incorporates accurate embeddings of medical
codes and their ancestors, there is room for improve-
ment. Future studies can explore techniques to refine
medical code embeddings, such as incorporating exter-
nal knowledge sources or leveraging pre-trained lan-
guage models specifically trained on medical text [23].

• Handling missing data: EHR data often contain
missing values, which can impact prediction accuracy.
Future work can focus on developing strategies to handle
missing data in KARNS, such as imputation techniques
or attention mechanisms that dynamically weigh the
available information.

• Interpretability and explainability: While KARNS
demonstrates interpretability through visualizing
learned medical code representations, further research
can delve into enhancing the interpretability and
explainability of the model’s predictions. This could
involve techniques such as attention mechanisms,
saliency maps, or rule extraction methods to provide
insights into the decision-making process.

• Generalization across diverse populations: It is cru-
cial to evaluate the generalizability of KARNS across
diverse patient populations. Future studies can investi-
gate the model’s performance on datasets representing
different demographic groups, ensuring fairness and
avoiding bias in diagnosis predictions.

• Real-time prediction and clinical deployment: Con-
sider exploring the feasibility of implementing KARNS
in real-time prediction systems within clinical settings.
Conducting studies that validate the model’s perfor-
mance in real-time scenarios can provide valuable
insights into its practical usability and potential integra-
tion with existing healthcare systems.

VI. CONCLUSION
Diagnosis prediction poses a significant challenge in health-
care informatics due to limitations in existing approaches
when handling various types of electronic healthcare record
(EHR) datasets and incorporating high-level representations
of medical codes. To address these challenges and accurately
predict patients’ future visit information, this paper intro-
duces a novel end-to-end model called KARNS.

The proposed KARNS model utilizes a given medical
ontology to identify high-level representatives for medical
codes and generates representative vectors for each visit.
By incorporating precise embeddings of medical codes and
their ancestors, the model captures both specific and general
knowledge. To leverage information from previous visits
and the knowledge graph, KARNS employs two recurrent
neural networks (RNNs). By combining the hidden states
of these RNNs into a novel vector representation, KARNS
significantly enhances prediction accuracy.

Experimental results on three real-world medical
datasets demonstrate the effectiveness and robustness
of KARNS for diagnosis prediction. The proposed model
outperforms state-of-the-art approaches, regardless of
the availability of abundant or insufficient EHR data.
Additionally, the learned medical code representations in
KARNS exhibit interpretability, as demonstrated through
visualization.

In summary, the KARNS model offers a powerful and
robust solution for diagnosis prediction in healthcare infor-
matics. It leverages high-level representations of medical
codes, incorporates knowledge from medical ontologies, and
achieves state-of-the-art performance across different types
of EHR datasets.

REFERENCES
[1] H. Malik, N. Fatema, and J. A. Alzubi, AI and Machine Learning

Paradigms for Health Monitoring System: Intelligent Data Analytics.
Berlin, Germany: Springer, 2021.

[2] Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, ‘‘Deep computational
phenotyping,’’ in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2015, pp. 507–516.

[3] Z. Che, Y. Cheng, S. Zhai, Z. Sun, and Y. Liu, ‘‘Boosting deep learning
risk prediction with generative adversarial networks for electronic health
records,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2017,
pp. 787–792.

[4] Y. Cheng, F. Wang, P. Zhang, and J. Hu, ‘‘Risk prediction with electronic
health records: A deep learning approach,’’ in Proc. SIAM Int. Conf. Data
Mining, Jun. 2016, pp. 432–440.

[5] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, ‘‘Deep learning
for healthcare: Review, opportunities and challenges,’’ Briefings Bioinf.,
vol. 19, no. 1, pp. 1236–1246, Jan. 2018.

[6] P. Nguyen, T. Tran, N. Wickramasinghe, and S. Venkatesh, ‘‘Deepr: A
convolutional net for medical records,’’ IEEE J. Biomed. Health Informat.,
vol. 21, no. 1, pp. 22–30, Jan. 2017.

[7] Q. Suo, F. Ma, Y. Yuan, M. Huai, W. Zhong, A. Zhang, and J. Gao,
‘‘Personalized disease prediction using a CNN-based similarity learning
method,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), Nov. 2017,
pp. 811–816.

[8] T. Pham, T. Tran, D. Phung, and S. Venkatesh, ‘‘DeepCare: A deep
dynamic memory model for predictive medicine,’’ in Proc. Pacific–Asia
Conf. Knowl. Discovery Data Mining, 2016, pp. 30–41.

[9] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu,
X. Liu, J. Marcus, M. Sun, and P. Sundberg, ‘‘Scalable and accurate deep
learning with electronic health records,’’ NPJ Digit. Med., vol. 1, no. 1,
p. 18, 2018.

[10] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart,
‘‘RETAIN: An interpretable predictive model for healthcare using reverse
time attention mechanism,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3504–3512.

[11] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, ‘‘GRAM:
Graph-based attention model for healthcare representation learning,’’ in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2017, pp. 787–795.

VOLUME 11, 2023 106441



H. Shen: Enhancing Diagnosis Prediction in Healthcare With Knowledge-Based RNNs

[12] Q. Suo, F. Ma, G. Canino, J. Gao, A. Zhang, P. Veltri, and A. Gnasso,
‘‘A multi-task framework for monitoring health conditions via attention-
based recurrent neural networks,’’ in Proc. AMIA Annu. Symp., 2017,
p. 1665.

[13] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, ‘‘Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2017, pp. 1903–1911.

[14] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J.
Bost, J. Tejedor-Sojo, and J. Sun, ‘‘Multi-layer representation learning
for medical concepts,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2016, pp. 1495–1504.

[15] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[16] M. Gupta, T.-L.-T. Phan, H. T. Bunnell, and R. Beheshti, ‘‘Obesity
prediction with EHR data: A deep learning approach with interpretable
elements,’’ ACM Trans. Comput. Healthcare, vol. 3, no. 3, pp. 1–19,
Jul. 2022.

[17] J. Ba, V. Mnih, and K. Kavukcuoglu, ‘‘Multiple object recognition with
visual attention,’’ in Proc. 3rd Int. Conf. Learn. Represent., 2015, pp. 1–10.

[18] F. Yang, J. Zhang, W. Chen, Y. Lai, Y. Wang, and Q. Zou, ‘‘DeepMPM:
A mortality risk prediction model using longitudinal EHR data,’’ BMC
Bioinf., vol. 23, no. 1, p. 423, Oct. 2022.

[19] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, ‘‘On the
properties of neural machine translation: Encoder-decoder approaches,’’
2014, arXiv:1409.1259.

[20] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[21] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, ‘‘Patient
subtyping via time-aware LSTM networks,’’ in Proc. 23rd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2017, pp. 65–74.

[22] A. E. W. Johnson, T. J. Pollard, L. Shen, L.-W.-H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark,
‘‘MIMIC-III, a freely accessible critical care database,’’ Sci. Data, vol. 3,
no. 1, pp. 1–9, May 2016.

[23] F. Ma, Y. Wang, H. Xiao, Y. Yuan, R. Chitta, J. Zhou, and J. Gao,
‘‘A general framework for diagnosis prediction via incorporating medical
code descriptions,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM),
Dec. 2018, pp. 1070–1075.

[24] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701.

[25] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[26] F. Ma, J. Gao, Q. Suo, Q. You, J. Zhou, and A. Zhang, ‘‘Risk prediction
on electronic health records with prior medical knowledge,’’ in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 1910–1919.

[27] C. Che, C. Xiao, J. Liang, B. Jin, J. Zho, and F. Wang, ‘‘An RNN
architecture with dynamic temporal matching for personalized predictions
of Parkinson’s disease,’’ in Proc. SIAM Int. Conf. Data Mining, 2017,
pp. 198–206.

[28] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, ‘‘Recurrent
neural networks for multivariate time series with missing values,’’ 2016,
arXiv:1606.01865.

[29] Z. C. Lipton, D. C. Kale, and R.Wetzel, ‘‘Modeling missing data in clinical
time series with RNNs,’’ inProc. 1st Mach. Learn. Healthcare Conf., 2016,
pp. 253–270.

[30] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, ‘‘Learning to
diagnose with LSTM recurrent neural networks,’’ in Proc. Int. Conf. Learn.
Represent., 2015, pp. 1–18.

[31] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, ‘‘Doctor
AI: Predicting clinical events via recurrent neural networks,’’ in Proc. 1st
Mach. Learn. Healthcare Conf., 2016, pp. 301–318.

[32] L. Rasmy, Y. Xiang, Z. Xie, C. Tao, and D. Zhi, ‘‘Med-BERT: Pretrained
contextualized embeddings on large-scale structured electronic health
records for disease prediction,’’ Npj Digit. Med., vol. 4, no. 1, p. 86,
May 2021.

[33] E. Choi, C. Xiao, W. Stewart, and J. Sun, ‘‘MiME: Multilevel medical
embedding of electronic health records for predictive healthcare,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 4547–4557.

[34] J. G. D. Ochoa and F. E. Mustafa, ‘‘Graph neural network modelling as
a potentially effective method for predicting and analyzing procedures
based on patients’ diagnoses,’’ Artif. Intell. Med., vol. 131, Sep. 2022,
Art. no. 102359.

[35] J. Luo, M. Ye, C. Xiao, and F. Ma, ‘‘HiTANet: Hierarchical time-aware
attention networks for risk prediction on electronic health records,’’ in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 647–656.

HUA SHEN received the Ph.D. degree from
the Dalian University of Technology, China. She
is currently an Associate Professor with the
College of Artificial Intelligence, Anshan Normal
University, China. Her research interests include
data mining and machine learning.

106442 VOLUME 11, 2023


