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ABSTRACT Modulation classification has been widely studied in recent years. However, few studies focus
on the performance degradation in multipath fading channels, whose impact is non-negligible. In this paper,
a convolutional neural network (CNN) employing cyclostationary (CS) feature, which maintain the essential
characteristics in fading channels, is proposed for robust modulation classification. Our method can be
implemented in two approaches, referred as CASE1 and CASE2. In CASE1, a single-structured CNN is
designed for learning hybrid CS features to perform classification. And in CASE2, we present a CNNmodel
based on a hierarchical structure to perform two-stage classification. Specifically, the coarse classification
is performed by learning the second-order CS features with the first-level CNN. Next, another CNN can
be selectively activated to learn from high-order CS features for fine classification within the subclass.
In this way, our method uses CS features to provide favorable guidance for the learning process of CNN,
thus improving the classification performance in fading channels. The experimental results demonstrate the
advantages of the proposed method in terms of classification accuracy and computational complexity.

INDEX TERMS Modulation classification, cyclostationary features, convolutional neural network,
multipath fading channels.

I. INTRODUCTION
Modulation classification is a key technology in modern
wireless communication, and it receives widespread attention
while facing numerous challenges. In spectrum monitoring,
modulation classification often needs to provide more
information than traditional spectrum sensing. Generally,
spectrum sensing algorithms based on energy detection,
matched filtering, and covariance-based detection only need
to determine whether a channel is available or not [1], [2],
[3]. Then, cognitive radio users can use these channels free
of charge, and they can share access with licensed users
without interfering with them [4], [5]. Besides searching
for unoccupied channels like in traditional spectrum sensing
algorithms, themodulation classifier also needs to distinguish
different modulation types in the channel. Cognitive nodes
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can exploit this information to obtain more appropriate
statistical data, make decisions based on detected signals, and
distinguish their network from other transmissions. In the
military field, modulation classification needs to obtain the
modulation information of wireless signals in the battlefield
environment with little or no prior information, thereby
implementing communication interference and interference
countermeasures in a targeted manner [6], [7]. However,
an important issue in practical applications of modulation
classification is its susceptibility to the impact of signal
transmission environment [8], [9], [10]. In scenarios such
as wideband wireless communication and mobile commu-
nication, multipath fading channels greatly degrades the
classification performance. As in stationary signal analysis,
signals passing through fading channels make their features
close to those of noise, thereby reducing its separability.

The cyclostationary (CS) feature based method has con-
siderable potential to solve the above problem [11], [12].
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In a short observation time, both signal and fading channel
can be modeled as cyclostationary process. On this premise,
the designed cyclostationary features are insensitive to the
channel and differ significantly from the features of noise.
In addition, CS features have an significant advantage is
that it is insensitive to unknown signal shaping and have the
ability to preserve the phase information [13], [14], so there
is no need for a rigorous pre-processing. C. M. Spooner
was the first to exploit the difference in cyclic cumulants
(CCs) to determine the modulation type in unknown signals
[15]. Subsequently, the classification capacity of CC of each
order was analyzed, as reported in [16], [17], and [18].
Like et al. combined multi-antenna technique with CS
features to distinguish various signals such as ASK, PSK,
and CDMA in multipath channels [19], [20]. Gardner et al.
was the first to analyze the spectral correlation function
(SOF) of various frequency band modulation signals, and
it was pointed out that the classification of signals can be
completed by using the spectral correlation characteristics of
signals [13], [21], [22]. Then, Headley et al. used spectrum-
correlated cyclic frequency slices and combined them with a
4-layer linear perception network to distinguish QPSK,MSK,
and AM signals in fading channels [23].
In recent years, with its powerful feature representation

and classification capacity, deep learning (DL) technique
has been widely applied in many fields. As for modulation
classification, the methods with DL tend to replace tradi-
tional methods with feature extraction. O’Shea first applied
DL to modulation classification, used convolutional neural
networks (CNNs) to train radio time series, and obtained
good results [24], [25]. The long short-termmemory (LSTM)
neural network has unique advantages in processing time
series signals, which can further enhance the performance of
modulation classification [26], [27], [28].Wei et al. compared
the modulation classification performance of three types
of models, including convolutional long short-term deep
neural network (CLDNN), residual network (ResNet), and
densely connected network (DenseNet). Among them, the
best model was nearly 13.5% more accurate than a 6-layer
CNN model under the same conditions [29]. In fact, the end-
to-end learning with DL from signal discrete sequence often
requires samples of high quality and quantity; in contrast,
traditional methods with feature extraction are difficult for
pre-processing and have poor robustness to environmental
changes. Therefore, a combined scheme, i.e., extracting
shallow features artificially, and guiding the deep network to
learn deep features and then make decisions, is a reliable and
stable means of approach.

Based on the above facts, this paper proposes a novel
modulation classification method based on CS features with
CNN in multipath fading channels. Specifically, we select
features based on SOF and CC to make the classifier input
robust to the channel. Then, modulation classification is
achieved from the aspects of two cases. In CASE 1, a CNN
with a single structure is designed to learn the hybrid features,
including the profiles of SOF and CCs with zero delay,

And, in CASE 2, a two-level tree-structured CNN model is
designed. The first level CNN learns the profiles of SOF to
perform coarse classification. Then the classifier selectively
activates the second-level CNN, and uses the zero-delay CCs
to perform fine classification in the subclass. In this way,
the proposed method can achieve classification in fading
channels without using prior knowledge such as carrier
frequency and symbol rate. Hence, the main contributions of
this paper include:

i) Innovation in classification method: With the help of
powerful feature extraction and learning capabilities of CNN,
adaptive decision-making, rather than statistical decision-
making, is used for modulation classification.

ii) Innovation in network input:To combat the adverse
effects of multipath fading channels, CS features instead of
signal discrete sequence are used as input to the network.
In addition, the form of low complexity input is studied.

iii) Innovation in numerical studies: We investigate
the classification performance of the proposed method in
various channels, and further analyze the contribution of
feature extraction and classifier design on improving the
performance in multipath fading channels.

The rest of this paper is organized as follows. Section II
presents the signal model and derives the candidate CS
features for classification. Section III proposes the CNN
model for modulation classification and provides the imple-
mentation method. Section IV conducts numerical analysis.
Finally, the conclusion of this paper is given in Section V.

II. ANALYSIS OF CS FEATURES IN A FREQUENCY
SELECTIVE FADING CHANNELS
A. A SIGNAL MODEL
The received signal passing through the fading channel can
be represented as:

y(t) = ej2π fctejφx(t) ⊗ h(t) + w(t), (1)

where x(t) and y(t) represent the transmitted and received
signals, respectively. ⊗ is the convolution operation, w(t) is
the additive Gaussian noise, fc and φ represent the carrier
frequency and phase offset, respectively. In this paper, the
channel is modeled as a multipath fading channel, so the
channel impulse response h(t) can be written as:

h(t) =

L−1∑
l=0

αlejϕl δ(t − tl), (2)

where L is the number of channel taps, al , ϕl, and tl are the
amplitude, phase, and tap delay of the channel, respectively.
If x(t) is a digital modulated signal, (1) can be further
expressed as:

y(n) = ej2π fcnejφ
L∑
l=1

alejϕl
∑

k
skg(n− k − kl) + w(n),

(3)

where g(n) = prx(n)⊗h(n)⊗ptx(n) represents a combination
of the impulse responses of receiver, channel and transmitter
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FIGURE 1. SOF of two modulated signal in the AWGN channel and 4-path Rayleigh channel, where the SNR is 5 dB, the
symbol period is 1/Tb = fs /5, the carrier frequency is fc =fs/4, and the number of samples 4096.

filter, kl = tl/Ts and Ts represents the index of time delay
and the symbol duration, respectively. Besides, sk is within
the range of n ∈ (k − 1/2, k + 1/2), and assumed to be a
zero-mean normally distributed random vector.

B. SECOND-ORDER CS FEATURES
Under the premise of cyclic periodicity, the spectral correla-
tion function (SCF) of the signal x(n) can be expressed as:

Sα
x (f ) = lim

U→∞
lim
N→∞

1
N

N∑
n=1

XU (n, f +
α

2
)X∗

U
(n, f −

α

2
), (4)

XU (n, f ) =

∑n+U/2

n−U/2
x(v)ej2π fv, (5)

where α is the Fourier component.
Here, it can be seen that Sα

x (f ) is a measurement of
the correlation between the spectral components of x(t).
A significant advantage using SCF is its insensitivity to
AWGN. Since the spectral components of AWGN are
uncorrelated, it does not affect the SCF for any value of
α ̸= 0.

The SOF acts as a normalized version of SCF, which can
be defined as follows:

Cα
x (f ) =

Sα
x
(n, f )√

S0
x
(n, f + α/2)S0

x
∗(n− α/2)

. (6)

It can be seen that, the value of Cα
x (f ) is normalized

between 0 and 1. Next, we consider the convolution of the
signal and channel, which can be regarded as a linear time
invariant (LTI) system transformation:

xh(n) = x(n) ⊗ h(n). (7)

The SCF of the input and output of LTI system is defined by:

Sα
xh (f ) = H (f +

α

2
)Sα
x (f )H

∗(f −
α

2
), (8)

where H (f ) is the channel frequency response. By substitut-
ing (11) into the definition of SOF in (9), it is given that:

Cα
xh (f ) ≡ Cα

x (f ). (9)

If the additive noise term in (1) is ignored, the influence of
frequency, phase shift, and time delay in the received signal
can be eliminated by taking the amplitude of SOF, which can
be described as: ∣∣∣Cα

y (f )
∣∣∣ ≡

∣∣Cα
x (f )

∣∣ . (10)

Therefore, the amplitude of SOF is robust to the channel
effect.

Fig. 1 shows the SOF amplitude of the modulated signal
under AWGN channel and 4-path Rayleigh fading channel.
It can be found that the amplitude of SOF can effectively
resist the influence of channel effects, where the amplitude
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of SOF of the modulated signal passing through the multipath
fading channel is approximately equal to that of the original
undistorted signal. As long as the frequency of the signal of
interest is not completely offset by the channel, the amplitude
of SOF can retain reliable signal characteristics. Therefore,
robust modulation classification in fading channels can be
achieved by checking the pattern in the amplitude of SOF.

C. HIGH-ORDER CS FEATURES
Although SOF generates different amplitudes for different
modulation types, certain modulation types (e.g., PSK/QAM-
type modulation) can generate the similar pattern. This leads
to the actual loss of distinguishability for signals in the
modulation pool. To solve this problem, higher-order cyclic
statistics (HOCS) is introduced. Concerning this, the p-
order/q-conjugate temporal cumulant (TC) is used, which is
obtained through:

Cx(n, s)p,q = Cum{x(∗)1 (n+ s1) · · · x(∗)p (n+ sp)}

=

∑
{Pn}

(−1)Z−1(Z − 1)!
Z∏
z=1

mx(n, sz)pz,qz , (11)

where mx is the moment of the signal, {Pn} is the set of
different partitions of {1, 2, . . . , p}; sz is a delay vector
with an index specified by z; pz and qz correspond to the
number of elements and the number of conjugate terms in
the subset Pz, respectively. When calculating TC, the impact
of the lower-order moments is effectively alleviated, leaving
only the residual impact of the current order. Note that the
TC is also a periodic function of a CS signal, whose Fourier
components are given by:

Cγ
x
(s)p,q = lim

N→∞

1
N

N∑
n=1

Cx(n, s)n,qe−j2πλnTs , (12)

where Cγ
x
(s)p,q is defined as the CC of x(n).

By substituting (3) into (11) and (12), the set of values of
the cyclic frequency for which CC is not constant to 0 can be
expressed as:

κn,q = {γ | γ = β + (p− 2q)fc, β = i/Ts, i integer}. (13)

At this time, the value of CC is:

Cγ
y
(s)p,q = Cn,qT−1

s ej2π fc
∑n

m=1 (−)msmej(n−2q)φ

×

∑
n

n∏
m=1

g(∗)m (n+ sm)e−j2πβnTs + Cγ
w
(s)n,q,

(14)

where Cp,q is the p-order/q-conjugate cumulant of the
stationary discrete data sequence, and the possible negative
sign (−) comes from one of the q-conjugate (∗)q. Thus, the
value of CC of the received signal is proportional to Cp,q,
whose value is well known for the commonmodulation types,
which is listed in Tab. 1.
From (13) and (14), we can see that the spectral peaks

of the CCs of different modulations appear at different

TABLE 1. Theoretical values of cumulants.

cyclic frequencies in frequency selective fading channels.
Therefore, robust modulation classification can be achieved
by checking the cyclostationary of the CCs of the modulated
signals on the cyclic frequency axis.

III. CS FEATURE BASED MODULATION CLASSIFICATION
WITH CNN
A. FEATURE SELECTION AND SAMPLE CONSTRUCTION
Due to the fact that the amplitude of SOF is a three-
dimensional (3-D) image, this provides an unreasonable
amount of data for real-time operation of the classifier.
Therefore, it is necessary to reduce the dimension of feature
input. In previous studies, it has been proved that in the
case of minimum computational complexity and maximum
information retention, the profiles of cyclic frequency and
frequency can be used to create a pseudo-3D image of SOF,
which can perform classification with significantly higher
reliability [30]. Therefore, the candidate features based on
second-order CS used for classification in this paper are
classified as cyclic frequency profile:

2(α) = max
f

∣∣Cα
x (f )

∣∣ , (15)

and frequency profile:

4(f ) = max
α

∣∣Cα
x (f )

∣∣ . (16)

For high-order CS features in (20), the noise term is 0, and
taking its absolute value can eliminate the correlation with
carrier frequency, phase, and timing offset:

0γ
y (s)p,q =

∣∣Cp,q∣∣T−1
s

∣∣∣∣∣∑n

n∏
m=1

g(∗)m (n+ sm)e−j2πβnTs

∣∣∣∣∣ ,
γ = β + (p− 2q)fc, β = i/Ts, i integer. (17)

It can be noted that, (17) is proportional to the following
function:

8(p, q, s, γ, r) =

∣∣∣∣∣∑n

n∏
m=1

g(∗)m (n+ sm)e−j2πβnTs

∣∣∣∣∣ . (18)
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FIGURE 2. Form of the hybrid feature matrix.

It can be seen that this function depends on the order of
CC p, the number of conjugates q, delay vector s, cyclic
frequency γ and roll-off coefficient r . If the raised cosine
shaping pulse is assumed, the maximum value of the obtained
function 8(p, q, s, γ, r) appears at s = 0⃗n, where 0⃗n is the
n-dimensional zero vector. And at that time, the function
decreases as γ increases. Therefore, a vector with zero delay,
denoted as 0

γ
y (

−→
0 n)n,q, n = 2, 4, 6, 8, q ≤ n/2, q integer,

is used as a candidate feature. It is worth noting that, our
classification method uses deep learning instead of statistical
decision-making. Therefore, there is no need to calculate
non-zero discrete values at specific cycle frequencies, and
thus 0

γ
p,q is directly input as feature vector into the

classifier.
In addition, subcarriers in OFDM systems can be modeled

as independently modulated signals, where each signal has
its own second-order CS features. However, due to the
‘‘destructive interference’’ between overlapping CS features,
their bandwidth overlap actually reduces the discrimination
of the observed SOF between OFDM and single carrier
modulation, especially at low SNRs [31]. Besides, OFDM
exhibits significant distinguishability from single carrier
modulation in high-order CS features. Therefore, our method
uses features based on CC to distinguish OFDM signals from
single-carrier modulated signals.

Next, the selected features need to be constructed as
samples suitable for classifier input, and the two types of
feature vectors mentioned above are rearranged to form a
hybrid feature matrix. The feature values obtained from each
calculation are arranged in rows, and different feature vectors
are distributed in columns. It should be noted that the same
number of indexes D are used during the calculation of two
types of feature vectors. Finally, we merge the two feature
matrices into a mixed feature matrix by column, and the
construction process is shown in Fig. 2.

B. CNN MODEL FOR MODULATION CLASSIFICATION
Our purpose is to that using the CS features to classify
nine modulated signals, including 2ASK, 2FSK, 4FSK,
MSK, BPSK, QPSK, 16QAM, 64QAM, and OFDM. To this
end, we consider a novel modulation classification method

based on CNN, which has two different approaches, and the
corresponding network architectures are shown in Fig. 3.

FIGURE 3. Illustration of two different approaches of the proposed
method.

CASE1: A single-structured CNN is trained using all
possible modulation types. The input of the network is in the
form of the hybrid feature matrix described in Fig. 2. Then,
the hybrid features are fed to the CNN classifier, which is
pre-trained with the features of nine possible modulations.
Finally, the network outputs the predicted results.
CASE2: A hierarchical CNN architecture is used to

perform two-stage classification, which is shown in Fig. 4.
In the first stage, CNN#1 using SOF profile feature input
is trained to perform coarse classification in the given
modulation, and the prediction outputs include 2ASK, 2FSK,
4FSK, MSK, and PSK/QAM/OFDM; if the coarse classifier
predicts PSK/QAM/OFDM, CNN#2 using CC feature input
is activated to perform the fine classification in the subclass,
and the prediction outputs include BPSK, QPSK, 16QAM,
64QAM, OFDM.
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FIGURE 4. Illustration of tree structure of the two-stage classification.

Generally speaking, the performance of modulation classi-
fication is measured by using an accuracy indicator. First, the
accuracy PCASE1 of CASE1 is defined as:

PCASE1 = P(χ̂k = χk ), k ∈ [0, 8], (19)

where χk represents the label sequence of the modulation
type of the transmitted signal, and χ̂k is the predicted label
sequence. The value of k ranges from 0 to 8, representing
the modulation types of BPSK, QPSK, 16QAM, 64QAM,
OFDM, 2ASK, 2FSK, 4FSK, andMSK, respectively. PCASE1
represents the accuracy of the nine types of modulation clas-
sification. For CASE2, two independent accuracy functions
need to be defined, namely, coarse classification accuracy
PCCASE2 and fine classification accuracy PFCASE2:

PCCASE2 =

∑
n
P(χ̂C = n|Hn),n ∈ [0, 4], (20)

PFCASE2 = P(χ̂k = χk |H0), k ∈ [0, 4], (21)

where Hn represents the hypothesis of the presence of
2ASK/2FSK/4FSK/MSK in the coarse classification, χ̂C is
the prediction that the transmitted signal is χC, and χ̂k
represents the prediction of the fine classification process
in CASE2. For the transmitted modulated signal, χC can be
defined as:

χC =

{
0, k ∈ [0, 4]

k − 4, k ∈ [5, 8]
(22)

The overall accuracy PCASE2 of CASE2 is shown in (29):

PCASE2 = PCCASE2P
F
CASE2. (23)

C. IMPLEMENTATION OF THE CNN MODEL
The design and implementation of the CNN model used
in this paper is based on the open-source learning library
Keras [32]. As illustrated in Fig. 5, the proposed model
consists of three convolutional layers, three pooling layers
and two dense layers in sequence. The three convolutional
layers have 64, 128, and 64 filters, respectively. There are
two dense layers at the end of the network. The first hidden
layer contains 128 neurons; the second hidden layer is
determined by the number of output probabilities, consisting
of 11, 8, and 5 neurons, applied to CNN#1, CNN#2, and
CNN#3, respectively. A LeakyReLU activation functionwith
an alpha value of 0.1 is used in each convolutional layer
to extract discriminative features. Our purpose in choosing

FIGURE 5. Illustration of the proposed CNN model.

Leaky ReLU is that, different from ReLU, it can map larger
negative values to the smaller ones through a mapping line
with a small slope. In each convolutional layer, 3 × 3 filters
are used. Besides, 2 × 2 maximum pooling is used to
reduce dimensionality and training time. A dense layer is
then formed with 128 neurons and a Leaky ReLU activation
function. After the dense layers, the probability class of
each layer is calculated by the softmax activation function.
In addition, we use the adaptive moment estimation (ADAM)
optimizer, whose parameters are belta1= 0.5, belta2= 0.999,
epsilon = 1 × 10−8, and the learning rate 1 × 10−4. During
the training stage, an early stopping mechanism is employed
to prevent the model from over-fitting. Patience is selected as
10 epochs as the early stopping function, and validation loss
is monitored during training. If the validation loss converges
to a level and remains at this level for 10 epochs, the training
is terminated and the weights at the end of the training stage
are used in the test stage.

TABLE 2. Layout of the proposed CNN model.

Tab. 2 shows the layout configuration of the proposed CNN
model. As for the motivation behind this design, our first
consideration is to use 64 filters with a size of 3 × 3 in the
first convolutional layer to extract information about changes
in the local region of the mapping output. Here, a smaller
filter is selected for capturing peaks in the feature matrix
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which creates local differences in the cycle frequency and
latency axis [33]. After the cyclic properties of all local
differences are determined, the second convolutional layer
examines the attributes including size and location related to
these cyclic properties. Herein, the better learning of these
properties can be achieved by increasing the filter number
to 128. As for the last convolutional layer, all attributes are
converted to the mean of all information collected. Then, the
number of neurons in the first dense layer is set to 128 so that
enough information is acquired without over-fitting. Then,
after flattening 3-D feature vectors into 1-D feature vectors
through the flatten layer, two dense layers with 128 and
11 neurons are fed, and the number of neurons in the last layer
is determined by the number of output probability vectors.

IV. SIMULATION EXPERIMENTS
A. SIMULATION SETTINGS
This section simulates based on the modulation types
mentioned earlier. Except that the shaping of 2FSK uses
the rectangular function, each modulated signal is modeled
with an intermediate frequency (IF) uniformly distributed
between sampling frequencies of 0.23 to 0.27 times, a symbol
rate uniformly distributed between sampling frequencies
of 0.16 and 0.24 times, and a raised cosine pulse shape
with 50% residual bandwidth. The OFDM signal employs
32 subcarriers (ensure sufficient number of subcarriers so
that they can be modeled as independent Gaussian signals),
modulated using BPSK with no cyclic prefix and the same
raised cosine filter as other signals. In addition, it is assumed
that the receiving filter is an ideal low-pass filter that
can completely remove out-of-band noise. As the prior
information is assumed to be unknown in this study, signals
are sampled at a constant rate, rather than being sampled at
integer multiples of the symbol rate.

The input to the classifier is two types of feature, where
the SOF profile is calculated by 400 symbols (corresponding
to 4096 discrete sampling points of IF signals). The CCs
uses 2000 symbols, corresponding to 20526 sample points.
As mentioned above, the same number of indexes is used in
the calculation of features, that is, each feature vector has the
same length of 256. Thus, we have 3 × 104 feature matrices
(SOF profile feature matrix, CC feature matrix and hybrid
feature matrix) of each type of modulation in the dataset.
Then, the dataset is divided into training and testing sets in a
7:3 ratio. Also, assuming that the frequency-selective fading
channel is implemented using independent equal-power taps
with random Rayleigh amplitude and uniformly distributed
phase, and the SNR range is from 0 dB to 15 dB.

B. RESULTS AND ANALYSIS
The proposed method is first tested in AWGN channel. Fig. 6
shows the performance comparison of CAES1, CASE2,
CASE2 coarse classification, and CASE2 fine classification
under various SNRs. Specifically, the classification sets of
CAES1 and CASE2 are the entire modulation set, while the

FIGURE 6. Comparison of classification performance of different
approaches/stages of the proposed method in AWGN channel.

classification sets of CASE2 coarse classification and fine
classification are the subset of the modulation set described
in Section III. It can be seen from that in AWGN channel,
CASE2 can achieve an accuracy of more than 95% when the
SNR is above 5 dB, and the classification accuracy is close
to 100% when the SNR is greater than 10 dB. In contrast,
the performance of CASE1 is slightly worse than that of
CASE2, e.g., to achieve the same level of accuracy as CASE2,
the SNR needs to be increased by about 2 to 3 dB. This
demonstrates the advantage of hierarchical classification in
terms of accuracy. Moreover, the accuracy of CASE2 coarse
classification can reach 100% when the SNR is higher than
10 dB, and it is about 85% when the SNR is 0 dB. In contrast,
CASE2 fine classification performs better at a low SNR,
reaching a classification accuracy of about 90% at the SNR
of 0 dB. This is because the fine classification uses CCs as
the feature, which reduces the impact of noise.

Next, the CASE2 implementation based on the proposed
algorithm is simulated and the contribution of the features
involved to modulation classification in frequency selective
fading channels is analyzed. Fig. 8 shows the effect of using
SOF profile features with different numbers of channel taps
on coarse classification. It can be found that under the low
SNR and severe multipath effects, the accuracy is less than
65%. However, the accuracy increases with the increase of
SNR. Under the condition that the SNR is greater than 5 dB,
the proposed method can achieve a satisfactory accuracy of
more than 80% in coarse classification, and has only a small
performance loss compared with that in AWGN channel. This
proves that the proposedmethod using SOF profile features is
robustness to the multipath effect on the channel under high
SNR.

Fig. 9 shows the effect of using CC features with different
numbers of channel taps on fine classification. It can be
found that similar to the coarse classification, the accuracy
increases with the increase of the SNR. Under the condition
that the SNR is greater than 5 dB, the proposed method can
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FIGURE 7. Confusion matrices of different approaches of the proposed method at the SNR of 5 dB.

FIGURE 8. Comparison of classification performance using SOF profile
features under different number of channel taps.

FIGURE 9. Comparison of classification performance using CC features
under different number of channel taps.

also achieve a satisfactory accuracy of more than 80% when
distinguishing sub-categories in the modulation sets. The
difference is that the CC feature can achieve low performance

attenuation at low SNR, with approximately 73% accuracy at
0 dB under the most severe multipath effects. In fact, this is
due to the noise suppression of high-order CCs. Therefore,
this proves that proposed method using CC features is also
robustness to the multipath effect on the channel.

FIGURE 10. Comparison of classification performance using different
features under different channel conditions.

Although the theoretical derivation does not involve fast
fading channels, relevant channel scenarios are set up in
simulation experiments. Each tap of the fast fading channel
involved maintains a coherent value of 0.9 on approximately
500 samples equal to 50 symbols. Figure 10 shows the
performance comparison of modulation recognition using
SOF profile features and CC features under different channel
conditions at a signal-to-noise ratio of 10 dB. It can be found
that using two types of features for classification in fast
fading channels results in performance degradation compared
to slow fading channels, and using CC features is more
severe compared to SOF profile features. This is because
CC features require more symbols for calculation, and are
therefore more affected by fast fading.

Fig. 11 shows the performance comparison of modulation
recognition for CASE2 under broader channel conditions,
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FIGURE 11. Comparison of classification performance using different
features under different channel conditions.

including AWGN channel, slow flat fading channel, slow
two-path fading channel, slow sixteen-path fading channel,
fast flat fading channel, and fast sixteen-path fading channel.
The channel multipath and fast fading settings are the same
as those in the simulation experiments mentioned above.
It can be observed that under the condition of the SNR
greater than 5 dB, the proposed method has almost the same
performance in both slow flat fading channels and slow two-
path fading channels, achieving an accuracy of over 90%.
In slow sixteen-path fading channels with severe multipath
effects, the proposed method can achieve an accuracy of
over 70% even above 5 dB. This proves the robustness of
the proposed method to multipath effects under high SNR.
In addition, it can be observed that the performance of the
proposed method significantly degrades under fast fading
conditions. The accuracy decreases by more than 10% in fast
flat fading channels compared to that in slow flat fading, and
the overall accuracy is less than 50% under the worst channel
conditions (fast sixteen-path fading channels). Therefore,
the method is recommended to run in slow fading channel
environments.

Next, the accuracy and complexity of the proposed deep
learning model based on the implementation of CASE1
are evaluated in the slow four-path fading channel. Firstly,
we analyze how the input feature dimension affects the
performance of the proposed model through simulation
experiment. Gradually reducing the dimensionality of feature
vectors (i.e. reducing the number of indices used for various
features, D), Fig. 12 shows the classification accuracy under
different SNRs. The results indicate that the classification
performance is not well enoughwhen using the featurematrix
input with 8-rows, but satisfactory performance is achieved
when the number of rows is between 16 and 256 (power of 2)
in the feature matrix. Considering the accuracy and training
time under low SNR conditions, 32× 14 is the most suitable
input feature dimension for the proposed model, achieving an
accuracy of 87.3% at 5 dB. Moreover, for the comparison of

FIGURE 12. Comparison of classification performance of the proposed
deep learning model between different input feature dimensions.

deep learning models in the following part, this size of feature
input is used.

FIGURE 13. Comparison of classification performance between the
proposed deep learning method and the traditional classification
algorithm based on SVM.

Then, in order to investigate the performance gain of the
proposed DL-based classifier compared to machine learning
(ML)-based classifiers, we demonstrate the classification
accuracy using the same feature input in Fig. 13. The involved
ML classification algorithms are support vector machine
(SVM) [34], K-Nearest Neighbor (KNN) [35], and decision
tree (DT) [36]. It can be observed that at an accuracy level of
80%, the SNRs required by the SVM,KNN, andDT classifier
are about 4 dB, 5.5 dB, and 10.5 dB higher than the proposed
DL-based classifier, respectively. This proves that the DL-
based classifier has better classification performance under
the same feature input in fading channels. In addition, SVM
requires a SNR estimator to create and train a model for each
SNR level when used in reality. On the contrary, the proposed
classifier is independent of SNR, and therefore has certain
advantages in computational complexity.
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FIGURE 14. Comparison of performance of various deep learning models
in terms of complexity, memory, and accuracy.

Finally, we compare the performance of the proposed
CNN model with classical deep learning models, namely
CLDNN [37] and LSTM [26]. As shown in Fig. 14, the
proposed model has advantages in low time consumption
(i.e. epoch duration), effective memory occupation and high
classification accuracy. In this experiment, the epoch size of
all models remains the same. The memory occupation and
training time of each model are normalized using those of
LSTM, because the maximum values are observed in the
LSTM model. The average accuracy is the average of the
accuracy within the range of SNR between 0 dB and 15 dB.
Therefore, Fig. 13 actually provides results unrelated to
computer performance. It should be noted that early stopping
is used in all model training processes, and the least epochs
are used. The experimental results show that the proposed
CNN based deep learning model has a maximum accuracy
of 89.6%, an average accuracy of 85.5%, a normalized epoch
duration of 0.02, and a memory footprint of 0.05. This
indicates that the proposed model is more robust and efficient
than other classical deep learning models.

V. CONCLUSION
In this study, a CS feature based method with CNN was
proposed for modulation classification in multipath fading
channels. Two approaches were provided to implement our
method. Onewas to directly learn from the hybrid CS features
and perform classifications through a single-structured CNN;
the other used a hierarchical CNN classifier to perform
coarse classification based on SOF and fine classification
based on CC, respectively. The simulation experiments
indicated that, benefiting from feature extraction based on
CS and classification based on CNN, the proposed method
can achieve satisfactory performance under various channel
conditions. Besides, the hierarchical approach achieves better
performance than that through one-stage. Moreover, the
proposed classifier with CNNwas proven to be superior to the
method with ML and other DL classifiers. All these results
demonstrate the applicability of CS feature-based method

with CNN in the rapidly changing channel environment of
wireless communication networks.

However, in our method, the fading channel is modeled
as a stationary or quasi stationary channel, and simulation
also shows poor performance once the channel experiences
fast fading. In future research, we will further explore the
potential of CS features and DL models, aiming to solve the
problems of modulation classification in dynamic channels.
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